Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5420))

  • 1045 Accesses

Abstract

In this paper, we introduce the notion of path-bicolorability that generalizes bipartite graphs in a natural way: For k ≥ 2, a graph G = (V,E) is P k -bicolorable if its vertex set V can be partitioned into two subsets (i.e., colors) V 1 and V 2 such that for every induced P k (i.e., path with exactly k − 1 edges and k vertices) in G, the two colors alternate along the P k , i.e., no two consecutive vertices of the P k belong to the same color V i , i = 1,2. Obviously, a graph is bipartite if and only if is P 2-bicolorable, every graph is P k -bicolorable for some k and if G is P k -bicolorable then it is P k + 1-bicolorable. The notion of P k -bicolorable graphs is motivated by a similar notion of cycle-bicolorable graphs introduced in connection with chordal probe graphs. Moreover, P 3- and P 4-bicolorable graphs are closely related to various other concepts such as 2-subcolorable graphs, P 4-bipartite graphs and alternately orientable graphs.

We give a structural characterization of P 3-bicolorable graphs which also implies linear time recognition of these graphs. Moreover, we give a characterization of P 4-bicolorable graphs in terms of forbidden subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, M.O., Jamison, R.E., Hedetniemi, S.T., Locke, S.C.: The subchromatic number of a graph. Discrete Math. 74, 33–49 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzaken, C., Hammer, P.L., de Werra, D.: Split graphs of Dilworth number 2. Discrete Math. 55, 123–128 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, A., Golumbic, M.C., Lipshteyn, M.: Recognizing chordal probe graphs and cycle-bicolorable graphs. SIAM J. Discrete Math. 21, 573–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandstädt, A., Le, V.B.: Split-Perfect Graphs: Characterizations and Algorithmic Use. SIAM J. Discrete Math. 17, 341–360 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Information Processing Letters 98, 133–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Math. Appl., vol. 3. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  7. Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.: More about subcolorings. Computing 69, 187–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 64, 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corneil, D.G., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs. Discrete Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Computing 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcolorings: Complexity and Algorithms. SIAM J. Discrete Math. 16, 635–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Földes, S., Hammer, P.L.: Split graphs. Congressus Numerantium 19, 311–315 (1977)

    MATH  Google Scholar 

  13. Golumbic, M.C., Lipshteyn, M.: Chordal probe graphs. Discrete Applied Mathematics 143, 221–237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoàng, C.T.: Perfect Graphs, Ph.D. Thesis, School of Computer Science, McGill University Montreal (1985)

    Google Scholar 

  15. Hoàng, C.T.: Alternating orientation and alternating colouration of perfect graphs. Journal of Combinatorial Theory (B) 42, 264–273 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoàng, C.T., Le, V.B.: P 4-free colorings and P 4-bipartite graphs. Discrete Math. and Theoretical Computer Science 4, 109–122 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Hoàng, C.T., Reed, B.A.: Some classes of perfectly orderable graphs. Journal Graph Theory 13, 445–463 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jamison, B., Olariu, S.: P 4-reducible graphs–a class of uniquely tree representable graphs. Studies in Appl. Math. 81, 79–87 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jamison, B., Olariu, S.: A linear-time recognition algorithm for P 4-reducible graphs. Theoretical Computer Science 145, 329–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jamison, B., Olariu, S.: Recognizing P 4-sparse graphs in linear time. SIAM J. Computing 21, 381–406 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jamison, B., Olariu, S.: p-components and the homogeneous decomposition of graphs. SIAM J. Discrete Math. 8, 448–463 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaiser, T.: Communication (2007)

    Google Scholar 

  23. Lipshteyn, M.: Structured Families of Graphs: Properties, Algorithms, and Representations, Ph.D. Thesis, University of Haifa (2005)

    Google Scholar 

  24. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. J. Algorithms 42, 69–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Preissmann, M., de Werra, D., Mahadev, N.V.R.: A note on superbrittle graphs. Discrete Math. 61, 259–267 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandstädt, A., Golumbic, M.C., Le, V.B., Lipshteyn, M. (2009). Path-Bicolorable Graphs. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds) Graph Theory, Computational Intelligence and Thought. Lecture Notes in Computer Science, vol 5420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02029-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02029-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02028-5

  • Online ISBN: 978-3-642-02029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics