
4

Reflexes: Abstractions for Integrating Highly
Responsive Tasks into Java Applications

JESPER HONIG SPRING
École Polytechnique Fédérale de Lausanne
FILIP PIZLO and JEAN PRIVAT
Purdue University
RACHID GUERRAOUI
École Polytechnique Fédérale de Lausanne
and
JAN VITEK
Purdue University

Achieving submillisecond response times in a managed language environment such as Java or C#
requires overcoming significant challenges. In this article, we propose Reflexes, a programming
model and runtime system infrastructure that lets developers seamlessly mix highly responsive
tasks and timing-oblivious Java applications. Thus enabling gradual addition of real-time features,
to a non-real-time application without having to resort to recoding the real-time parts in a different
language such as C or Ada. Experiments with the Reflex prototype implementation show that it is
possible to run a real-time task with a period of 45 μs with an accuracy of 99.996% (only 0.001%
worse than the corresponding C implementation) in the presence of garbage collection and heavy
load ordinary Java threads.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—run-time
environments

General Terms: Languages, Experimentation

Additional Key Words and Phrases: Real-time systems, Java virtual machine, memory manage-
ment

This work was supported in part by NSF grants 501 1398-1086 and 501 1398-1600.
Authors’ addresses: J. H. Spring and R. Guerraoui, École polytechnique Fédérale de
Lausanne, IC IIF LPD EPFL, INR 310 (Building INR), Station 14, CH-1015 Lausanne; email:
{jesper.spring; rachid.guerraoui}@epfl.ch; F. Pizlo, J. Privat, and J. Vitek, Department of Com-
puter Sciences, Purdue University, West Lafayette, IN 47907; email: {pizlo,jv}@cs.purdue.edu;
privat.jean@uqam.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1539-9087/2010/08-ART4 $10.00
DOI 10.1145/1814539.1814543 http://doi.acm.org/10.1145/1814539.1814543

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:2 • J. H. Spring et al.

ACM Reference Format:
Spring, J. H., Pizlo, F., Privat, J., Guerraoui, R., and Vitek, J. 2010. Reflexes: Abstractions for
integrating highly responsive tasks into java applications. ACM Trans. Embedd. Comput. Syst. 10,
1, Article 4 (August 2010), 29 pages.
DOI = 10.1145/1814539.1814543 http://doi.acm.org/10.1145/1814539.1814543

1. INTRODUCTION

The state of the art in real-time system development is that most real-time sys-
tem programming models are defined as a function of the hardware, operating
system and libraries available to the programmer. Not surprisingly this state
of affairs leads to nonportable codes, and low rates of reuse across project based
on different infrastructures. The last decade, there has been a push by indus-
try to switch to high-level programming languages such as Java and C# that
have benefits such as memory safety and protability across operating systems
and hardware platforms. These languages have seen widespread adoption for
multiple reasons, not the least of which being higher developer productivity.
Unfortunately, these benefits come at a price, namely the heavyweight run-
time infrastructure needed to support the execution of those languages. For
instance, in Java the absence of memory errors is predicated on the use of com-
plex garbage collection algorithms that can introduce pauses in the hundreds
of milliseconds in a high-performance implementation. Other popular runtime
services such as dynamic class loading and just-in-time compilation can also
introduce pathological behaviors.

The goal of this article is not to propose Java as a replacement for the system’s
programming languages such as C or Ada. Instead, we take the position that
there are many systems that are predominently made up of timing-oblivious
code with little nuggets of soft- or hard-real-time behavior. The question we are
investigating is how to seamlessly extend a non-real-time application written
in a high-level language with real-time tasks without having to switch lan-
guages. We would like, as much as possible, to retain the benefits of memory
safety, portability, reusability of Java, yet support the definition of real-time
components. The solution space is constrained by our desire to keep the seman-
tics of plain Java system intact. We investigate a solution that relies on novel
runtime support and static-type checking.

Different approaches have already been explored to bring real-time capabil-
ities to Java. At one end of the spectrum, one can envision running unmodified
Java application in a virtual machine carefully engineered to avoid pausing
user-code and employ a real-time garbage collector to bound the latencies due
to memory management. The state of the art in real-time garbage collection is
below 1 millisecond maximum pause times and a 2× slow down due to garbage
collection overheads [Pizlo and Vitek 2008]. This approach has the benefit of
requiring no changes to programs and thus being perfectly backwards compat-
ible. At the other end of the spectrum, one could amend the Java language to
better support real-time. This is the approach chosen in the Real-time Specifi-
cation for Java (RTSJ) [Gosling and Bollella 2000] which changes and extends
the semantics of Java to provide strong real-time guarantees. RTSJ programs

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:3

can execute without interference from the garbage collector and thus poten-
tially run much faster and with better response times. The drawbacks of the
RTSJ is that it is invasive; the whole program and all libraries have to be aware
that they may be executed in a real-time context. Furthermore, some of the de-
sign choices underlying the RTSJ entail runtime overheads and the possibility
of memory access errors that are not caught by the type system. We defer to
Pizlo et al. [2004] for a discussion of some of these drawbacks and to Auer-
bach et al. [2007b], Dawson and Thwaite [2008], Armbuster et al. [2007], and
Bollella et al. [2005] for a discussion of the challenges faced by implementers
of the RTSJ.

This article proposes a different approach. We introduce Reflexes, a pro-
gramming model for mixing highly responsive tasks with timing-oblivious
Java programs. This work is based on the first author’s Ph.D thesis [Spring
2008], and our VEE’07 [Spring et al. 2007a] and OOPSLA’07 [Spring et al.
2007b] papers. While Reflexes require a modified virtual machine, it does
not entail changes to the libraries or user programs. Software components
that have no time constraints are left untouched and will be unaware that
they are not on plain Java virtual machine. Real-time tasks, however, are
written using the Reflex abstractions. Reflex defines a restricted subset of
the Java language and libraries extended with a facility for safe region-
based memory management, obstruction-free atomic regions and real-time
preemptive scheduling. Reflex enforce strong static memory partitioning be-
tween data belonging to plain Java threads and data used by Reflex tasks.
This partitioning is done by the compiler and does not incur run-time
overheads.

We report on two implementation of Reflex. The first implementation effort
was carried out on top of the Ovm virtual machine [Armbuster et al. 2007]
that provides support for real-time Java on uni-processor systems. Ovm is an
ahead-of-time compiler, the code of the entire application is translated to C and
compiled with an off-the-shelf compiler such as gcc. The second implementation
uses a commercial real-time Java virtual machine with chip-level multiproces-
sor support. Our experiments show that Reflexes provide better latency than
either a real-time collector or the commercial implementation of the RTSJ. We
have run tasks with periods as low as 45 μs without background noise due
to plain Java task and the Java garbage collection and obtained an accuracy
of 99.996%. This is only 0.001% worse than the corresponding C implementa-
tion. We argue that Reflexes are a promising approach to incorporate real-time
processing in the Java language.

2. RELATED WORK

The most closely related work to this article is the Eventron [Spoonhower et al.
2006] and Exotask [Auerbach et al. 2007a] real-time programming models
developed in parallel by Auerbach et al. at IBM Research. Both models have
the goal of extending Java in a nonintrusive way with real-time features. They
differ in the constraints they impose on programs and the real-time guarantees
that can be achieved.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:4 • J. H. Spring et al.

Eventrons provide strong responsiveness guarantees at the expense of ex-
pressiveness. In the Eventron model, a real-time task cannot allocate new
objects. Furthermore, it is prevented, by load-time compiler inserted checks,
from writing to reference variables or even reading reference variables that
may be modified by other threads. The constraints on reference variables are
particularly stringent and entail that computation in an Eventron is limited
to modification of scalar variables. The motivation for these constraints is that
they enable Eventron tasks to preempt the garbage collector at any time, even
when the heap is in the process of being compacted and all references are
not up-to date. This is the key to being able to achieve response times in the
microseconds on Java platform. Reflexes have similar responsiveness but are
less restrictive, we take advantage of our the type system partition memory. In
the memory partition that belongs to a Reflex allocation and reading/writing
reference variables is supported.

In later work [Auerbach et al. 2007a], Eventrons were generalized to form a
graph of tasks called Exotasks. Like Reflex, the tasks partition the memory of
the virutal machine in disjoint areas which are kept disjoint. The main inno-
vation in Exotasks was that tasks could be garbage collected. As the memory
used by individual tasks is disjoint, the collection is task-local and can usually
be carried out in very little time. Tasks communicate by exchanging messages
by deep-copy.

In a recent collaboration with IBM Research, we have successfully transi-
tioned the key ideas of Reflex (and its follow-up called StreamFlex [Spring
et al. 2007b]) in the context of the IBM production virtual machine. The result-
ing envionment, referred to as FlexoTask [Auerbach et al. 2008], adopts the
ownership-type system introduced in this article as well our obstruction-free
atomic region abstraction.

3. PROGRAMMING MODEL OVERVIEW

A Reflex program consists of a graph of Reflex tasks1 connected in accordance
with some topology through a number of unidirectional communication chan-
nels. This relates directly to graph-based modeling systems, such as Simulink
and Ptolemy [Lee 2003], that are used to design real-time control systems, and
to stream-based programming languages like StreamIt [Thies et al. 2002]. A
Reflex graph is constructed as a Java program, following standard Java pro-
gramming conventions, and using standard Java development tools.

Reflexes can run in isolation or as part of a larger Java application. To
interact with ordinary Java threads, Reflex provides special methods which
will ensure that real-time activities do not block for normal Java threads.
Figure 1 illustrates a Reflex program and its interaction with an ordinary Java
thread.

A Reflex acts as the basic computational unit in the graph, consisting of
user-defined persistent data structures, typed input and output channels, and
user-specific logic implementing the functional behavior of the task. In order
to ensure low latency, each Reflex lives in a partition of the virtual machine’s

1Note, we use the term, Reflexes, to denote both the programming model as well as the tasks.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:5

Fig. 1. Illustration of a Java application consisting of time-oblivious code (blue) and a time-critical
Reflex graph with three connected tasks.

memory outside of the control of the garbage collector. Furthermore, Reflexes
are executed with a priority higher than ordinary Java threads. This allows
the Reflex scheduler to safely preempt any Java thread, including the garbage
collector. Memory partitioning also prevents synchronization hazards, such as
a task blocking on a lock held by an ordinary Java thread, which in turn can
be blocked by the garbage collector.

In terms of memory management, a Reflex is composed of stable objects,
transient objects and capsules. Stable objects include the Reflex itself as well
as any internal data structure that must have a lifetime equal to that of the
graph. Transient objects live only while the Reflex is active. This reflects the
split between temporary data needed during one activation of a periodic activity
and data that persists for the duration of a program. Capsules are data objects
used as messages between Reflexes. They persist as long as they are referenced
by a channel or task. Their contents is severely restricted. Specifying whether
an object is stable, transient or capsule is done at the class level.

The Reflex runtime infrastructure includes a scheduler that is responsible
for releasing Reflexes. While a Reflex can become schedulable any time new
data appears on one of its input channels, the scheduler does not, in general, at-
tempt to guarantee timeliness; only that each task will eventually be released.
If the programmer requires timely execution, clocks must be used. When a Re-
flex is connected to a clock, the scheduler arranges for the task to be released
according to the clock’s period. Hence, with this scheme, a periodic activity is
modeled with a single Reflex connected to a clock. While multiple threads can
drive the execution of a graph, individual Reflexes are single-threaded.

3.1 Reflex Graph

A graph is constructed by extending the built-in abstract ReflexGraph class, and
implementing at least one of its constructors. The graph is, in turn, responsible
of creating tasks and connecting them in accordance with the desired topology.
Once a graph is fully constructed, the validate is invoked to check the well-
formedness of the graph. Safety of memory operations is checked statically as
part of compilation of the Reflex classes.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:6 • J. H. Spring et al.

Fig. 2. An excerpt of the abstract ReflexGraph class to be subclassed by the programmer in order
to create and connect tasks in the graph according to user-specific requirements.

Fig. 3. An excerpt of the ReflexTask class to be subclassed by the programmer. Its initialize()

and execute() methods provide the user-specific functional behavior.

Validation involves verifying that (1) channels are connected to fields of the
proper types; (2) that sufficient space is available within the private mem-
ory areas of the tasks; and (3) the communication area (whose size is set in
the ReflexGraph constructor), and that clocks are configured with periods sup-
ported by the underlying virtual machine. Cyclic graphs are allowed in the
validation phase as they do not necessarily run indefinitely. Once validated,
the graph’s topology is fixed and the start() method can be invoked to sched-
ule the Reflex in the graph.

Figure 2 shows the methods for the reflective creation of Reflexes and chan-
nels. Reflection is needed because the data structures representing these ab-
stractions must be allocated under the control of the runtime infrastructure
in the proper memory regions to make sure that they are not traversed by the
garbage collector.

3.2 Reflexes

A Reflex is the computational unit in our model, and is constructed by extending
the built-in abstract ReflexTask class. The programmer must implement an
execute() method, which defines the functional behavior of the task. Figure 3
shows an excerpt of this class.

The execute() method is invoked by the Reflex scheduler when the Re-
flex is schedulable. This occurs upon the arrival of data on one of its input
channels according to the specified rate on the channels. More specifically, the
rate specifies how much data the task needs on its individual input channels

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:7

Fig. 4. Illustration of the memory model of a Reflex task (hexagon) in its own private memory
area with its object graphs of stable (red) and transient (orange) objects (circles).

in order to execute. By default, each channel’s rate is set to one, but this can
optionally be overridden.

By convention, the execute() method is expected to yield and give control
back to the runtime infrastructure – in most cases, it would be a programming
error for an activity to fail to yield as this could block all tasks in the graph and
cause deadline misses.

A Reflex can also provide an initialize() method that is invoked by the
infrastructure to initialize the task before it starts (but after the tasks in the
graph have been connected).

3.3 Memory Management

Reflexes execute in complete isolation from the Java heap, instead they run in
their own (heap-allocated) private memory region, illustrated in Figure 4. The
ReflexTask instance itself is allocated within its own private memory region to
shield it from the garbage collector.

The memory region of a Reflex is partitioned between a stable heap and a
transient area. The sizes of both regions are chosen at startup as illustrated
in Figure 3. As the stable heap has a fixed size, the allocation of stable ob-
jects must be managed carefully to avoid running out of memory. The transient
area is also fixed in size and serves as a per-invocation scratchpad. Once the
execute() method returns, all allocations made in the transient area dur-
ing its execution will be reclaimed in constant time; any allocations made on
the stable heap will remain. Our design assumes that the allocation of per-
sistent state is the exception. Specifying whether an object is stable or tran-
sient is done at the class level. By default, data allocated by or within a task
is directed to the transient area. Only objects of classes implementing the
Stable marker interface will be put on the stable heap and persist between
invocations.

The ReflexTask class is declared stable and will always be allocated in the
stable heap of its own private memory area. Given different lifetimes different

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:8 • J. H. Spring et al.

the objects, for memory safety reasons, stable objects are restricted from refer-
encing transient objects; whereas transient objects can reference both transient
and stable types. Referencing a transient object from a stable one could lead to
a dangling pointer once the transient area has been reclaimed. Finally, alloca-
tions made by a Reflex are never directed to the public heap.

By using class granularity for distinguishing between stable and transient
objects, we relinquish the possibility of using the same class in both memory
contexts. The alternative approach would be to introduce some per-object an-
notation, for example, one could write code like @stable HashMap h = @stable
new HashMap() where the annotation @stable is used to denote data that re-
sides in stable memory. Unfortunately, that is not sufficient. Specifically, the
problem is that the code within the HashMap class may itself perform alloca-
tions, and those allocations would have to be destined in the exact same stable
memory context to be consistent. Here, an approach treating the annotation
as a type parameter, for example, new HashMap<@stable>(), would help. How-
ever, this approach is notationally cumbersome and requires retrofitting all
library classes with generic parameters. The added effort and complexity does
not seem warranted.

Another design choice is that the transient area is the default allocation
context. Unlike for stable classes, transient classes have no restrictions on the
types of their fields. This choice reflects the hypothesis that stable code is the
smaller part of a Reflex and that it is less likely that we need to reuse legacy
libraries in stable classes (part of the reason is that the allocation behavior of
many library classes is not appropriate for an environment where objects are
not reclaimed).

3.3.1 Stable Arrays. As mentioned, the default allocation context is the
transient area. Following this design choice, primitive array objects allocated
using statements such as int[] ia = new int[10] are thus transient. It fol-
lows that stable objects cannot reference standard array objects. It is not rea-
sonable to forbid stable arrays, Reflex provides two special cases. The Reflex
API introduces a StableArray base class and provides a set of subclasses for
each of the available primitive types. These classes encapsulate the different
primitive arrays, and, as their names indicate, enable the allocation of these
arrays in the stable heap. For reference types, Reflex takes the position that an
array of Stable types is considered stable.

3.4 Exceptions

Given this distinction between object lifetime, exception handling within a
Reflex requires special attention. When an exception is thrown within a Re-
flex, the object and its stack trace are created in the transient area, and will be
reclaimed like any other object following the completion of the invocation of the
execute() method. If the exception propagates out of the execute() method,
the stack trace is logged and the graph is terminated.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:9

Fig. 5. Excerpts of the CapsuleChannel classe for transferring Capsule type data.

3.5 Reflex Communication

Reflex provides type-safe, nonblocking communication between the individual
Reflexes and between ordinary, time-oblivious Java threads and time-critical
Reflex tasks.

3.5.1 Nonblocking Channels. Inter-task communication is designed with a
key requirement in mind; enabling nonblocking, zero-copy messaging between
Reflexes. A Reflex communicates with other tasks solely through nonblocking
channels. A channel is a fixed-sized, typed buffer connecting two Reflexes. The
infrastructure supports primitive type channels (all of Java’s primitive types),
time channels holding periodic time-stamps, and a restricted set of objects
belonging to subclasses of the Capsule base class.

Figure 5 gives an overview of the CapsuleChannel class which is straightfor-
ward. The TimeChannel class is different in order to avoid storing, potentially
large, numbers of clock ticks. Hence, it has two methods, one to put a current
clock tick in microseconds on the channel, and one to return the latest unread
clock tick.

The operations performed on a channel during a given release are atomic.
Once a Reflex starts executing, its channels are logically frozen, no other task
is allowed to modify them. All changes to channels are published when the
execute() method returns. Channels are created when two ReflexTask in-
stances are connected by a call to the connect() method on the ReflexGraph
class. The method will create the channel with its given size, and set the fields
of the Reflexes. The connection is done by reflection based on the name provided
as argument.

Channels are allocated in a memory region separate from any of the Reflexes
using them – the communication area, as depicted in Figure 6. Capsules are
also allocated in this region. The region is, like the private memory area, free
of interference from the garbage collector. It is fixed-sized, and so the program-
mer has to carefully size the communication area to account for channels and
capsules it holds. While this at first appears limiting, the actual number of cap-
sule types used in an application as well as the instances created of each type,
in our experience, are typically bounded. The actual allocation of the memory
area is performed by the Reflex runtime as part of the instantiation of the
ReflexGraph.

Reflex does not support growable channels and, in case of overflow, silently
drops packets. Other policies have been considered but have not been imple-
mented. Variable sized channel, for example, can be added if users are willing
to take the chance that put operations take variable time.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:10 • J. H. Spring et al.

Fig. 6. Reflex tasks communicate by passing around references to capsules on a shared channel.
Channels and capsules are allocated in a separate memory area managed by the Reflex run-time.

3.5.2 Capsules. Given the goal of zero-copy messaging, using capsules on
channels turns out to be challenging in the absence of a garbage collector.
Indeed, the question of where to allocate capsules, and when to deallocate them
is a difficult one. They cannot be allocated in the transient memory of a Re-
flex as they would be deallocated as soon as the execute() method completes.
Likewise, they should not be allocated in stable memory for fear of running
out of space. Instead, as mentioned above, capsules are allocated from a pool
managed by the infrastructure. The invocation to makeCapsule() causes for a
capsule of the requested type to be returned, this is either an existing capsule
or a newly allocated one. Capsules are returned to the pool as soon they are
not referenced by any task or channel. The Reflex type system and runtime
infrastructure ensure that a capsule can be accessed by at most one task and
be on at most one queue at a time. For pragmatic reasons, there is one loophole
in the zero-copy semantics, if a Reflex needs to put a capsule on multiple output
channels, the capsule will be copied in order to preserve the single-reference
invariant.

To guarantee memory safety, capsule classes are restricted. Specifically, to
preserve isolation between tasks, a Reflex must not retain a reference to a
capsule that has been pushed to its output channel, and a capsule should
not retain references to the task’s stable data. In fact, a capsule must not leak
references. This is achieved by restricting capsules to reference-immutable data
types. Informally, an object is reference-immutable if none of its reference fields,
of transitively reachable reference fields, can modified. For pragmatic reasons,
we restrict capsules a bit further and limit their fields to primitive types and
arrays of primitive types. While these constraints have proved acceptable so far,
one could loosen them if they prove to be too stringent, for example, by allowing
capsules to have final fields of any reference-immutable types. However, this
will come at the price of more complex set of static checks.

3.5.3 Obstruction-free Communication with Atomic Methods. Reflexes
prevent synchronous operations by replacing lock-based synchronization with
an obstruction-free communication scheme based on atomic methods [Manson

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:11

Fig. 7. Example of declaration of method on ReflexTask class to be invoked with transactional
semantics by ordinary Java threads.

et al. 2005]. The principle behind atomic methods is to let an ordinary Java
thread invoke certain methods on the time-critical task. Once inside the atomic
method, the ordinary Java thread can access the data it shares with the Re-
flex. These methods ensure that any memory mutations made by the ordinary
Java thread to objects allocated within a Reflex’s stable memory will only be
visible if the atomic method runs to completion. Again, given the default alloca-
tion context, any transient objects allocated during the invocation of the atomic
method will be reclaimed when the method returns. If the ordinary Java thread
is preempted by the Reflex scheduler, all of the changes will be discarded and
the atomic method will be scheduled for re-execution. The semantics ensures
that time-critical tasks can run obstruction-free without blocking.

Atomic methods to be invoked by ordinary Java threads are required to be
declared on a subclass of the ReflexTask and must be annotated @atomic as
demonstrated with the write() method in Figure 7. Methods annotated with
@atomic are implicitly synchronized, preventing concurrent invocation of the
method by multiple ordinary Java threads.

For reasons of type-safety, parameters of atomic methods are limited to
types allowed in capsules, that is, primitives and primitive array types. Return
types are even more restricted, atomic method may only return primitives.
This further restriction is necessary to prevent returning a transient object,
which would lead to a dangling pointer, or a stable object, which would breach
isolation.

3.5.4 Communicating through Static Variables. In addition to atomic
methods, Reflexes can communicate with ordinary Java threads through static
variables. However, static variables pose a particular type-safety problem as
references to objects allocated in different Reflexes or on the heap could eas-
ily breach isolation. Thus, their use is restricted to primitive and reference-
immutable types. Objects referenced from static variables must not be moved
by the garbage collector throughout the lifetime of the Reflex graph.

3.6 Scheduling

The Reflex programming model specifies a time triggered scheduling policy
embodied in the Clock task which causes connected tasks to be executed peri-
odically. A graph must have at least one Clock in order to execute. The Clock
is connected to a ReflexTask by a TimeChannel as shown in Figure 8. Upon
firing, the Clock publishes a time stamp on its output time channel, causing
the Reflex attached to this channel to become schedulable.

Threads are not required to be mapped to tasks following a one-to-one
scheme. However, as a minimum threads are assigned to Clock tasks that then,

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:12 • J. H. Spring et al.

Fig. 8. Each graph is under the purview of a time triggered scheduler. Threads are not bound
to tasks. At a minimum, a thread is assigned to each Clock but the infrastructure can choose to
increase the thread count in order to improve parallelism.

within the period, simply traverse as far down in the graph possible and exe-
cute all schedulable tasks, a simple scheme that makes sense on a uni-processor
machine. On a uni-processor platform, executing the Reflex graph using mul-
tiple threads would not contribute to any true parallelism, but rather extend
the total execution time of the graph by introducing an execution overhead
of context switching between the threads. Contrary, on a multi-processor ma-
chine applying multiple threads would be beneficial to parallelism as different
threads are run by multiple processors.

To ensure backward compatibility with library classes, synchronized state-
ments and wait/notify are allowed. However, they are essentially treated as
no-ops as there is at most one thread active within a task.

4. EXAMPLE: INTRUSION DETECTOR SYSTEM

To illustrate the applicability of Reflexes, we have implemented a stream pro-
cessing application in the form of an Intrusion Detection System (IDS), inspired
by Sekar et al. [1999], which analyzes a stream of raw network packets and
detects intrusions by pattern matching.

Figure 9 shows the declaration of the Reflex graph class IDSGraph, which
instantiates and connects the tasks that combined implement the intru-
sion detection system. The argument to the IDSGraph constructor is the pe-
riod in microseconds provided to the clock. Figure 10 provides a graphi-
cal illustration of the same Reflex graph, its tasks, and how the tasks are
connected.

The capsules being passed around the system represent different network
packets: Ethernet, IP, TCP and UDP. Object-oriented techniques are useful
in the implementation as nested structures of protocol headers are modeled
by inheritance. For instance, the IP capsule class (IP Hdr) is a subclass of the
Ethernet capsule class (Ether Hdr seen in Figure 11) with extra fields to store
IP protocol information.

Figure 12 shows the PacketReader class that creates capsules representing
network packets from a raw stream of bytes. For our experiments, we sim-
ulate the network with the Synthesizer class. The synthesizer runs as an
ordinary Java thread, and feeds the PacketReader task instance with a raw

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:13

Fig. 9. The IDSGraph class extends the abstract ReflexGraph class, declares a constructor for
setting up the graph with default priority and communication area. Note, how at the end of the
constructor the validate method is invoked, causing the graph to be validated.

Fig. 10. Graphical representation of the Reflex graph of an Intrusion Detection System consisting
of six tasks and a clock task triggered periodically by a time triggered scheduler.

stream of bytes to be analyzed. Communication between the synthesizer and
the PacketReader is done by invoking the write method on the PacketReader.
This method takes a reference to a buffer of data (primitive byte array) allocated
on the heap and parses it to create packets. The write method is annotated
@atomic to give it transactional semantics, thereby ensuring that the task can
safely preempt the synthesizer thread at any time.

The PacketReader buffers data in its stable memory with the Buffer class,
shown in Figure 13. Being referred from an instance field of the PacketReader
task, the Buffer class itself is declared stable (by implementing the Stable
interface), and in addition contains a primitive array of bytes. To satisfy the
static safety constraints, we use the StableByteArray class to represent the
primitive array within the stable class.

The reader uses the readPacket method to initialize capsules from the data
stored in the buffer. The capsule instance itself in which to read the data is
retrieved from the capsule pool through the makeCapsule call. The methods

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:14 • J. H. Spring et al.

Fig. 11. An excerpt of the Ether Hdr capsule containing primitive byte arrays.

Fig. 12. An excerpt of the PacketReader task that reads packets received from the ordinary Java
thread and pushes them down in the graph. The write method, invoked by the ordinary Java
thread, is declared to have transactional semantics.

Fig. 13. An excerpt of the Buffer class shared by the ordinary Java thread and the PacketReader

to exchange data. Note, that the class is declared stable as it is used as an instance field on the
PacketReader task (which inherently is stable), and that it uses the StableByteArray type to
represent a primitive byte array.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:15

startRead, commitRead, and abortRead are used to ensure that only whole
packets are read from the buffer. They do not need synchronization since (1) po-
tential higher priority tasks have no way to access the buffer (thanks to the
isolation), and (2) ordinary Java threads, that can access the buffer through the
write method, cannot preempt the Reflex task execution, assuming a priority-
preemptive scheduling policy where the task runs at higher priorities than
ordinary Java threads.

The packets first go to the TrustFilter, which looks for packets that match a
trusted pattern; these packets will not require further analysis. Other packets
are forwarded to the VSIPFragment task. This task detects IP fragments that
are smaller than TCP headers. These are dangerous as they can be used to
bypass packet-filtering firewalls. The TearDrop task recognizes attacks that
involves IP packets that overlap.

The three tasks, TrustFilter, VSIPFragment, and TearDrop have a similar
structure: an input channel (in) for incoming packets to analyze and two output
channels, one for packets caught by the tasks (ok or fail), the other one for
uncaught packets (out). These tasks also mark caught packets with metadata
that can be used in further treatment, logging or statistics. The task imple-
mentations rely on an automaton stored in stable space to recognize patterns
on packet sequences that correspond to attacks.

The Joiner is used to transform a stream of data from multiple input tasks to
a single stream of data. The last Reflex task, PacketDumper, gathers statistics
of the whole intrusion detection process thanks to the meta-data written on
packed by the previous tasks.

5. STATIC SAFETY CHECKS

Reflexes use an approach inspired by previous work on ownership type systems
to statically enforce isolation, prevent dangling pointers or access to heap-
allocated objects. Ownership types were first proposed in Noble et al. [1998] as
a way to control aliasing in object-oriented systems. Typically, these systems
track aliasing by imposing a tree-shaped ownership structure on object graphs.
Objects belonging to one particular owner can only be accessed through that
owner, direct references that bypass the owner are disallowed. Most ownership
type systems require fairly extensive annotations that tend to be cumbersome
and require invasive changes to legacy code.

In contrast, Reflexes rely on an implicit ownership type system [Zhao
et al. 2008] in which no ownership parameters need to be added to variable
and method declarations. Instead, the ownership is defaulted using straight-
forward rules; every task encapsulates and owns all objects allocated within
its private memory region. Given this ownership, the static checks ensure that
references to objects owned by a Reflex are never accessed from outside, that
Reflexes cannot reference heap-allocated objects (with a few exceptions), and
that stable objects cannot reference transient ones. Figure 14 illustrates legal
and illegal object references.

An important property of the static safety checks is that the restrictions
they enforce only apply to the time-critical parts of the application code. In

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:16 • J. H. Spring et al.

Fig. 14. The legal (green) and illegal (red) object references in and out of a Reflex task that static
safety checks must ensure are respectively allowed and caught. The figure illustrates a ReflexTask

with its stable and transient object graphs as well as a number of heap-allocated objects (blue) and
static variables (black), of which some are pinned to the location on the heap.

other words, the legacy code interacting with Reflexes is not affected by the
restrictions. One exception here is the data being shared between the time-
oblivious code and Reflexes; since such data is referenced from a Reflex context
it will be checked.

The remainder of this section informally describes a set of rules that we argue
are sufficient to ensure that neither Reflexes nor ordinary Java threads will
experience dangling pointers nor observe heap-allocated objects in inconsistent
states.

5.1 Partially Closed-World Assumption

A key requirement for type-checking a Reflex is that all classes used by it must
be verified. To do so, we first construct a summary of classes, W, used within
a Reflex based on an approximation of the live class set. The classes in W are
categorized in three disjoint sets: stable, transient and capsule classes.

The first thing the type checker has to ensure is that no class outside of
W can be instantiated within any task in the program. This can be done in
a straightforward fashion by inspecting the methods of the classes in W and
checking that new objects are instances of class in W.

R1. Consider a class instance creation expression new C(...) occurring in class C’. If
C’ or a subclass of C’ is in W then C must be in W.

The type checker will validate all classes in W and their parent classes.
Classes that are not in W need not be checked. The checker will ensure that
classes having static methods invoked from within a task belong in W. Taken
together rule R1 and R2 ensure that no object of a class that is not in W will
ever be created while evaluating code in W.

We add class whose static methods are used in Reflex to W.
R2. Consider any invocation of a static method C.m() occurring in class C’. If C’ or a
subclass of C’ is in W then C must be in W.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:17

While W is clearly an over approximation of the code that will be used in
a Reflex, we have not found the imprecision of the analysis to cause practical
problems. Substituting a more precise analysis, such as done in Auerbach et al.
[2007a], can be done without affecting the soundness of the type system.

5.2 Implicit Ownership

The key ownership property to be enforced is that objects allocated within a
Reflex task are encapsulated. This means that no object allocated outside of a
Reflex task may refer to a stable or transient object of that Reflex (except to
the ReflexTask instance itself). Conversely, no stable or transient object may
refer to an object allocated outside of the Reflex.

R3. The declaration of a non-private instance field of type T on a ReflexTask class, or
subclass thereof, is only allowed if T is a primitive type.

Requiring that reference fields in a ReflexTask class to be private, ensures
that isolation cannot be breached by accessing or updating fields of a Reflex.

R4. The declaration of a non-private method m on a ReflexTask class, or subclass
thereof, is only allowed if m is declared @atomic.

The above rule ensures that interaction between Reflexes and ordinary Java
thread will be nonblocking and data race free.

R5. Methods declared @atomic on a ReflexTask class, or subclass thereof, are restricted
to declaring parameters of primitive and primitive array types, and can at most return
primitive types.

Any method that can be invoked from ordinary Java runs the risk of leaking
references through arguments or return values. Limiting signatures to primi-
tive types is definitely safe but too restrictive. The type system allows arrays of
primitive types in argument position, this does not create a breach of isolation
by virtue of the treatment of arrays as transient, that is, references that can
not be retained in the Reflex.

Finally, the creation of Reflexes must be performed by the infrastructure and
be initiated from outside of a Reflex. Without this rule, it would be possible for
an instance of some subclass of ReflexTask to create another instance of the
same class and breach isolation by accessing private reference fields.

R6. Calling new on a ReflexTask class, or subclass thereof, is illegal. Invoking methods
of ReflexGraph within W is illegal.

Dangling pointers within the ReflexTask instance are prevented by seg-
regating stable from transient references. No (long-living) stable object may
acquire a reference to a (short-lived) transient object. This is done at the class
granularity. If a class is declared stable, then it can only refer to other stable
classes.
R7. The type T of an instance field declaration in a stable class or a parent of a stable
class is legal if T is a primitive type or if T is a stable class.

Since the set of static safety checks tracks classes, it is critical to prevent in-
stances of transient classes from masquerading as stable types. This is achieved

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:18 • J. H. Spring et al.

by mandating that descendant of stable classes are stable.

R8. Assume C is a stable class in W, for any class C’ in W. If C’ extends C then C’

must be stable.

Following from here, since the ReflexTask class is declared stable by imple-
menting the Stable interface, any subclass thereof can only declare instance
fields of primitive or stable types.

It should be noted that the previous rule does not prevent a class declared
stable in some W to have subclasses that do not respect R7 (i.e., they are
not valid stable classes as they, for example, declare non-stable reference type
fields). That is allowed as long as these are not in W, that is, not used from
within a Reflex.

5.3 Static Reference Isolation

Enforcing encapsulation also requires static variables to be controlled. With-
out any limitations, they can be used for sharing references across encapsu-
lation boundaries. A drastic solution would be to prevent the code in W from
reading or writing static reference variables. Clearly, this is safe, but is it too
restrictive? While it may be possible for newly written code to replace static
variables with objects that are threaded through constructors, the same cannot
be said for library classes that could be difficult to refactor. Furthermore, if one
did, backwards compatibility would be lost.

The key observation here is that static variables are not dangerous if they
are never modified. This suggest introducing the notion of reference-immutable
types. These are basically types that are transitively immutable in their refer-
ence fields and mutable in their primitive fields.

R9. A field F in class C is effectively final if it is either (1) declared final and of
reference-immutable type, or (2) declared private, of reference-immutable type, and
not assigned in any non-constructor methods in class C and parent classes of C.

R10. A class C in W is reference-immutable if all non-primitive fields in the class and
parent classes are effectively final.

Inference of which types must be immutable is based on the use of static
variables.
R11. Let T be a class in W or a parent of a class in W. A static field access expression
occurring in T is legal if the field is a primitive or if the field is effectively final and it can
be statically determined that it is assigned a null or a value of reference-immutable
type. An assignment statement occurring in T is legal if the left-hand side of the
assignment is a static field of a primitive type.

This last rule represents a pragmatic attempt to balance the desire for ex-
pressiveness, in particular to support the reuse of library code, with the ability
to statically ensure type-safety. However, it turns out that enforcing this rule
statically is nontrivial. Because of subtyping, it is not sufficient to look at
the type of the declared field, but also the possible types of the values that
can be assigned to the field. Thus, to declare a static field of type T safe, all

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:19

Fig. 15. A simple and conservative algorithm for inferring the possible value types that can be
assigned to a static variable of reference-immutable type.

values that can be assigned to it must be of reference-immutable type. If the
type of the declared field is a final type (declared final) and is a reference-
immutable type according to R10, then it follows that reading from this static
field is safe. For nonfinal types determining this property may not be possible
statically.

We use an approximation on the set of live classes based on the following
principles. This set of live types W for the static variable can be found by
analyzing the class initializer, or <clinit>, of the class declaring it, and from
here looking at all the types that are used directly or indirectly by the class
initializer. To calculate this live set, we use a simple and conservative algorithm
where all methods reachable from the class initializer are analyzed together
with their bytecodes, thereby refraining from doing any control-flow and data-
flow analysis. The algorithm is shown in Figure 15.

Having analyzed the class initializers and calculated a live set of classes
from here, all classes that are type incompatible with the type of the static field
being read are discarded from the live set as they can never be assigned to
the field. The remaining classes in the live set are then checked for reference-
immutability following the rule in R10, and in the event that one or more types
are not reference-immutable, there is a safety problem, and the violating code
statement will have to be rejected.

Finally, we assume that all static variables are either initialized eagerly
before the instantiations of the Reflex graph or that the infrastructure ensure
that class initializers never allocate in transient memory.

5.4 Capsules

A capsule is manipulated in a linear fashion. At any given time, the following
must be enforced: there is at most one reference to the capsule from a data
channel, and at most one Reflex can have references to the capsule from its stack

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:20 • J. H. Spring et al.

or transient objects. With these invariants, the implementation can achieve
zero copy management of capsules.

R12. A capsule is an instance of a subclass of Capsule, which declares only fields of
primitive types and final primitive array types, and declares only private construc-
tors.

The above rule is a pragmatic choice that effectively and easily ensures that
capsules are reference-immutable (without permitting general reference-im-
mutable data structures) and can only be instantiated by the Reflex infrastruc-
ture. This has two purposes: (1) it prevents creation of capsules in transient
memory which could lead to dangling pointers; and (2) it ensures that all cap-
sules are allocated off one infrastructure-controlled memory pool.

R13. Capsule types in W are transient types.

From the point of view of stable and transient classes, a capsule is “just” like
any other transient class. Thus, we inherit the guarantee that when execute()
method returns there will be no reference to the capsule in the state of a Reflex.

5.5 Arrays

Primitive arrays are by default transient types. Reflexes must use the set of
provided array wrappers for storing primitive arrays in the stable heap, as
described in Section 3.3.1. Array of reference types have the same allocation
context as their element type. Thus any array of T is stable if T is stable
and transient otherwise. So, for instance, assuming that S is a stable class,
the statement Object[] ms = new S[1] is valid since ms is transient variable
referring to a stable array.

5.6 Further Restrictions

Furthermore, the static checker restrict classes inW from the use of finalization
as this would hamper the constant time deallocation guarantee of the transient
area, thread creation as scheduling is controlled by the infrastructure, and
the use of weak, soft, and phantom references. While not restricted, native
code invoked from a Reflex poses problems. Likewise, the use of reflection to,
for example, load of classes, is illegal as such classes would not be statically
checked. As it is not verified, native code could perform operations that impact
predictability, for example, by blocking, or memory safety, for example, through
JNI callbacks. We currently rely programmer to manually ensure that native
code is fit for use in a Reflex.

6. IMPLEMENTATION

Our implementation builds on the Ovm [Armbuster et al. 2007] real-time Java
virtual machine, which comes with an optimizing ahead-of-time compiler and
provides an implementation of the Real-Time Specification for Java. The virtual
machine was designed for resource constrained uni-processor embedded devices
and has been successfully deployed on a ScanEagle Unmanned Aerial Vehicle
in collaboration with the Boeing Company.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:21

We leverage the RTSJ support in Ovm to implement some of the key features
of the Reflex API. For instance, the stable and transient memory areas in a Re-
flex are implemented by reusing the Ovm RTSJ ScopedMemory implementation,
and the threads executing the Reflex tasks are subclasses of the standard
RealtimeThread construct. The virtual machine configuration described here
uses an optimizing ahead-of-time compiler to achieve performance competitive
to commercial virtual machines [Pizlo and Vitek 2006]. Furthermore, in our
implementation, we switched off memory boundary checks on the ScopedMemory
that are normally performed by RTSJ-compliant virtual machines, as these
guarantees are provided statically through our static safety checks.

6.1 Scheduling

Scheduling is implemented in the Ovm virtual machine supporting priority-
preemption for real-time threads with a complete range of priorities from 1-
42, the subrange 12-39 are real-time priorities used by Reflex tasks and the
remaining are used for ordinary Java threads. The virtual machine’s mostly
copying garbage collector is run in an ordinary Java thread.

The ReflexTask instances in each Reflex graph are executed by a single
thread with real-time priorities according to the priority of the graph it belongs
to. The thread is started as a result of an invocation of start on the Reflex
graph, which basically causes the thread of the Clock task to start. Having
started, upon reaching its period, the Clock will put the latest time stamp on
channel, and traverse downstream in the graph and execute any schedulable
tasks.

6.2 Memory Management

For each ReflexTask, the implementation allocates a fixed size continuous
memory region for the Reflex’s stable area and another region for its tran-
sient area. The size of each of the above is set programmatically in the Reflex
API, as shown in Figure 3. Furthermore, a buffer is set aside for the transac-
tional log. In our prototype implementation, the size of the transaction log is
growable, but not shrinkable, but the log can be reset and already allocated
entries reused between transactions. However, note that the transaction log
only holds mutations to stable objects. The ReflexTask object, the transaction
log and all other implementation specific data structures are allocated in the
Reflex task’s stable area, and thus not subject to garbage collection.

The default allocation area for ordinary Java threads is of course the public
heap. For real-time threads executing the executemethod, this area is the tran-
sient area of the task. When an ordinary Java thread invokes a transactional
method on a Reflex, the memory area has to be switched to the transient area
of the task throughout the invocation, and reset once the invocation returns.
To enable this, the bytecode rewriter of the Ovm compiler has been modified to
bracket all invocations of atomic methods declared on the ReflexTask subclass
with invocations to the native setCurrentArea/reclaimArea methods to switch
between regions. Whereas the method setCurrentArea changes the allocation
area for the current thread, the method reclaimArea causes for the objects in

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:22 • J. H. Spring et al.

the provided area to be reclaimed by resetting the allocation pointer to the start
of the area in constant time.

The virtual machine also is responsible for redirecting the allocation of stable
classes into the stable heap. For this purpose, another native method, setAlloc-
Kind(graph, class), is exposed for internally identifying stable classes. This
method is invoked by the Reflex run-time once for each stable class used by
the tasks in the graph to be executed. The list of stable classes is provided to
the Reflex run-time engine as a result of the type checking of the given Reflex
graph.

Finally, the virtual machine supports allocation policies for metadata. In
particular, we rely on a policy for lock inflation ensuring that a lock is allocated
in the same area as the object with which it is associated.

6.3 Atomic Methods

To implement the atomic methods, we exploit the preemptible atomic re-
gions [Manson et al. 2005] facility of the Ovm virtual machine, a non-standard
facility not supported by standard compliant commercial Java virtual ma-
chines. Any method annotated @atomic is treated specially by the Ovm com-
piler. More specifically, the compiler will privatize the call-graph of a trans-
actional method, that is, recursively generate a transactional variant of each
method reachable from the transactional method. This transactionalized vari-
ant of the call-graph is invoked by the ordinary Java thread, whereas the
non-transactional variant is kept around as the Reflex task might itself invoke
(from the execute() method) some of the methods, and those should not be
invoked with transactional semantics.

We have applied a subtle modification to the preemptible atomic region
implementation. Rather than having a single global transaction log, a trans-
actional log is created per ReflexTask instance in the graph, assuming that
it declares atomic methods. This change ensures the encapsulation of each
ReflexTask instance, and enables concurrent invocation of different atomic
methods on different ReflexTask instances.

The preemptible atomic regions use a roll-back approach in which for each
field write performed by an ordinary Java thread on a stable object within the
transactional method, the virtual machine inserts an entry in the transaction
log and records the original value and address of field. With this approach, a
transaction abort boils down to replaying the entries in the transaction log in
reverse order. Running on a uni-processor virtual machine, no conflict detec-
tion is needed. Rather, the transaction aborts are simply performed eagerly at
context switches. Specifically, the transaction log is rolled back by the high-
priority thread before it invokes the execute method of the schedulable Reflex.
Whereas the complexity of transaction aborts is proportional with the number
of writes performed in the transactional method at the time of preemption,
starting and committing a transaction can be done in constant time. Upon re-
suming, the ordinary Java thread will discover that it was preempted, and will
subsequently retry the invocation of the transactional method.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:23

6.4 Exceptions

Several exception cases need to be considered.

—If an exception occurs within the transient area of a Reflex during the invo-
cation of the execute() method, we rely on standard Java semantics causing
the exception object and its stack trace to be allocated in transient memory.

—If the exception propagates out of the execute method, the stack trace is
printed and the task’s computation terminates.

—If the exception occurs during an ordinary Java thread’s invocation of an
atomic method and the exception propagates out of the outermost atomic
method, we rely on standard RTSJ behavior. The problem here is that the
exception object is allocated in the transient area within the task, and thus is
out of reach of the receiving Java thread allocated on the public heap. Lever-
aging RTSJ specific behavior, rather than receiving the specific exception ob-
ject, the ordinary Java thread will receive an unchecked ThrowBoundaryError
with a String based description of the actual thrown exception.

6.5 Pinning of Objects

The Ovm garbage collector supports pinning for objects such that the objects
are not moved or removed during a collection, and will therefore always be
in a consistent state when observed by referent objects from other memory
areas, including a Reflex task. We do not pin static variables, but instead for
convenience allocated them in ImmortalMemory area giving us the same guar-
antees. In contrast, arguments to atomic methods are heap-allocated objects
and must be pinned when the ordinary Java thread invokes a transactional
method and unpinned again when the invocation exits. We have modified the
bytecode rewriter of the Ovm compiler to instrument the method bodies of the
atomic methods to pin any reference type objects passed in upon entry and
unpin again upon exit.

7. EVALUATION

The conducted experiments were performed using the Ovm virtual machine
built with support for POSIX high-resolution timers, and configured it with an
interrupt rate of 1 μs, disabled the run-time memory region integrity checks
(read/write barriers) and set the heap size to 512 MB. Finally, nondeterminism
due to just-in-time (JIT) compilation is avoided through Ovm’s ahead-of-time
compiler. As execution platform we used an AMD Athlon 64 X2 Dual Core pro-
cessor 4400+ with 2GB of physical memory running Linux with kernel version
2.6.17 extended with high resolution timer (HRT) patches and configured with
a tick period of 1 μs.

7.1 Predictability

To evaluate predictability of Reflexes, we implemented a simple Reflex graph
containing a single null task, scheduled it for a 45-μs period (equivalent to
frequency of 22.05 KHz, a standard audio frequency), and let it execute over

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:24 • J. H. Spring et al.

Fig. 16. Histograms of inter-arrival time for (a) Reflex graph with a null task, and (b) a C variant
both scheduled for 45 μs periods. The x-axis shows the logarithm of the inter-arrival time in μs
and the y-axis shows the logarithm of its frequency.

Fig. 17. Missed deadlines over time for (a) a Reflex graph with a null task, and (b) a C variant
both scheduled for 45 μs periods. The x-axis shows the executions (1 million shown) of the periodic
task and the y-axis shows the logarithm of the size of the deadline misses.

10 million periods. We also implemented a C variant of the same code, though
the C variant relies on POSIX real-time extensions.

As depicted in Figure 16 nearly all interesting observations centered around
the 45-μs period, though the Reflex variant appears to be slightly less timely
than the C variant, because the spread in inter-arrival time is wider. Also
note the observations clustered around 200-250 μs for both variants, which
we attribute to perturbations in the underlying operating system. Similar
observations for an equivalent base performance benchmark are reported in
Spoonhower et al. [2006].

Figure 17 depicts missed deadlines for both Reflex and the C variants. More
precisely, with Reflexes 99.996% of the periods are completed in time compared
to 99.997% for the C variant. Interestingly, Figure 17 indicates some pattern in
deadline misses around 100-200 μs for both Reflex and the C variants, though
for the C variant there seems to more consistency in that pattern. Also, it
appears that both versions experience an equivalent amount of deadline misses,
but Reflexes have more variation in the actual sizes of the misses than the C

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:25

Fig. 18. Histograms of inter-arrival time for (a) a Reflex and (b) a C variant of an audio player task
scheduled for 45-μs periods. The x-axis shows the inter-arrival time in μs and the y-axis shows the
logarithm of its frequency.

variant. In both cases, given the similar patterns in the missed deadlines lead
us to believe that these must be caused by the underlying operating system.

7.2 Performance

We next measured the performance of Reflexes using a music synthesizer ap-
plication, developed for Eventrons [Spoonhower et al. 2006], which we modified
to make use of Reflexes, including a transactional method. In short, the sce-
nario involves an ordinary Java thread that generates music samples, and
writes these to a buffer on the ReflexTask instance through a transactional
method. These samples are then periodically read by an audio player Reflex
scheduled with 45-μs periods and which then writes the samples individually
to the sound device for playing. For the sake of comparison, we implemented a
corresponding C variant of the music synthesizer.

Figure 18 depicts the interarrival time of the time-critical audio player
thread for both the Reflex and C variants. As already noted in Figure 16,
outlier clusters around the 200–300μs range can also be seen in Figure 18 for
both the Reflex and its C variants. However, in Figure 18 these outliers appear
to have been enhanced, which we attribute to the effects of buffering conges-
tion in the sound device to which the time-critical task is writing (twice per
execution).2

The outlier clusters seen in Figure 18 also seem to have a direct impact on
the missed deadlines as seen in Figure 19. Specifically, for Reflexes 99.869%
of the periods complete in time and do not cause deadline misses compared to
99.949% for the C variant. Of particular interest in Figure 19 is to see how
the perturbation causes regular deadline misses around 180 μs. We consider
these anomalies to most likely be caused by buffering on the sound device or
to stem from other interactions with the underlying operating system, and we
have learned (through private conversations) from the Eventrons project that

2First the upper eight most significant bits of the short value are written to the sound device
followed by the eight least significant.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:26 • J. H. Spring et al.

Fig. 19. Missed deadlines over time for (a) a Reflex and (b) a C variant of an audio processing
task scheduled for 45 μs periods. The x-axis shows the periodic executions (1 million shown) of the
time-critical task and the y-axis shows the logarithm of the size of the deadline misses.

they experienced equivalent behavior at these frequencies. With Reflexes, how-
ever, there seems to be further frequent deadline misses in the ranges 2–3μs,
5–6μs and around 110–120μs. These we attribute to the jitter in timeliness as
described earlier and depicted in Figure 16 and which also appears to cause
similar missed deadlines as seen in Figure 17.

7.3 Intrusion Detection

We evaluate the Intrusion Detector System implementation, described in
Section 4. The graph was configured with a period of 80μs, meaning that the
PacketReader creates capsules at a rate of 12.5KHz. At this rate, the packet
synthesizer, an ordinary Java thread, is able to generate packets in to the
attack detection pipeline without experiencing underruns, that is, at a rate
which matches the rate with which the IDS can analyze them. The time used
to analyze a single network packet (from the capsule creation to the end of the
TearDrop task) varies from 3μs to 23μs with an average of 6μs. One reason for
this variation is that some packets are identified as a possible suspects by one
of the tasks, and thus require additional processing in the automata. If we con-
sider raw bytes instead of network packets, our IDS implementation delivers
an analysis rate of 77MB per second.

7.4 Atomics on Multicore Virtual Machine

One of the limitations of the Ovm implementation is that the virtual machine
is optimized for uni-processor systems. In order to validate applicability of our
approach, we ported much of the functionality of Reflexes to the IBM Web-
Sphere Real-Time VM, a virtual machine with multiprocessor support and a
RTSJ-implementation. The implementation of atomic methods in a multipro-
cessor setting is significantly different. They use a roll-forward approach in
which an atomic method defers all memory mutations to a local log until com-
mit time. Having reached commit time, it is mandatory to check if the state
of the Reflex has changed during the method invocation, and if so abort the
atomic method. The entries in the log can safely be discarded, in constant time,

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:27

Fig. 20. Frequencies of inter-arrival times of a Reflex with a period of 100 μs continuously inter-
rupted by an ordinary Java thread invoking an atomic method. The x-axis gives inter-arrival times
in microseconds, the y-axis a logarithm of the frequency.

as the mutations will not be applied. If the task state did not change, the atomic
method is permitted to commit its changes with the Reflex scheduler briefly
locked out for a time corresponding to O(n), where n is the number of stable
memory locations updated by the atomic method. We rely on a combination of
program transformations and minimal native extensions to the VM to achieve
this.

We evaluate the impact of atomic methods on predictability using a synthetic
benchmark on an IBM blade server with 4 dual-core AMD Opteron 64 2.4 GHz
processors and 12GB of physical memory running Linux 2.6.21.4. A Reflex
task is scheduled at a period of 100μs, and reads at each periodic execute
the data available on its input buffer in circular fashion into its stable state.
An ordinary Java thread runs continuously and feeds the task with data by
invoking an atomic method on the task every 20ms. To evaluate the influence of
computational noise and garbage collection, another ordinary Java thread runs
concurrently, continuously allocating at the rate of 2MB per second. Figure 20
shows a histogram of the frequencies of inter-arrival times of the Reflex. The
figure contains observations covering almost 600,000 periodic executions. Out
of 3,000 invocations of the atomic method, 516 of them aborted, indicating that
atomic methods were exercised. As can be seen, all observations of the inter-
arrival time are centered around the scheduled period of 100μs. Overall, there
are only a few microseconds of jitter. The interarrival times range from 57 to
144μs.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

4:28 • J. H. Spring et al.

8. CONCLUSIONS

We presented a new programming model, Reflexes, for programming highly
responsive systems in Java. Reflexes combine control and data to provide high-
frequency and predictable real-time tasks. They avoid garbage collection pauses
with a region-based memory model that is both simple and statically type
safe. A Reflex can thus be scheduled periodically by a priority preemptive
scheduler running at higher priority than any other thread in a Java virtual
machine including the garbage collection thread. While Reflexes are protected
from interference, they are not completed isolated. They can communicate
with standard Java threads through a transactional memory abstractions that
prevents priority inversion by preemption and roll-back of non-real-time tasks.

Source code for our Ovm implementation and examples can be found at
http://www.cs.purdue.edu/homes/jv/reflex.

ACKNOWLEDGMENTS

We thank Jason Baker and Toni Cunei for their help with Ovm internals;
Joshua Auerbach and David F. Bacon for their help with J9.

REFERENCES

ARMBUSTER, A., BAKER, J., CUNEI, A., HOLMES, D., FLACK, C., PIZLO, F., PLA, E., PROCHAZKA, M., AND

VITEK, J. 2007. A real-time java virtual machine with applications in avionics. ACM Trans.
Embedd. Comput. Syst. 7, 1, 1–49.

AUERBACH, J., BACON, D. F., IERCAN, D. T., KIRSCH, C. M., RAJAN, V. T., ROECK, H., AND TRUMMER, R.
2007a. Java takes flight: Time-portable real-time programming with Exotasks. In Proceedings
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES). ACM, New York, 7, 51–62.

AUERBACH, J. S., BACON, D. F., BLAINEY, B., CHENG, P., DAWSON, M., FULTON, M., GROVE, D., HART, D.,
AND STOODLEY, M. G. 2007b. Design and implementation of a comprehensive real-time Java
virtual machine. In Proceedings of the 7th ACM and IEEE International Conference on Embedded
Software (EMSOFT). ACM, New York, 249–258.

AUERBACH, J. S., BACON, D. F., GUERRAOUI, R., SPRING, J. H., AND VITEK, J. 2008. Flexible task
graphs: a unified restricted thread programming model for Java. In Proceedings of the 2008
ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM, New York, 1–11.

BOLLELLA, G., DELSART, B., GUIDER, R., LIZZI, C., AND PARAIN, F. 2005. Mackinac: Making HotSpottm

real-time. In Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC). IEEE Computer Society Press, Los Alamitos, CA, 45–
54.

DAWSON, M., AND THWAITE, P. 2008. Testing class libraries for RTSJ safety. In Proceedings of
the 6th International Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES). 61–67.

GOSLING, J., AND BOLLELLA, G. 2000. The Real-Time Specification for Java. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA.

LEE, E. 2003. Overview of the Ptolemy project. Tech. rep. UCB/ERL M03/25, EECS Department,
University of California, Berkeley, Berkeley, CA.

MANSON, J., BAKER, J., CUNEI, A., JAGANNATHAN, S., PROCHAZKA, M., XIN, B., AND VITEK, J. 2005. Pre-
emptible atomic regions for real-time Java. In Proceedings of the 26th IEEE Real-Time Systems
Symposium (RTSS). IEEE Computer Society Press, Los Alamitos, CA.

NOBLE, J., VITEK, J., AND POTTER, J. 1998. Flexible alias protection. In Proceedings of the
12th European Conference on Object-Oriented Programming (ECOOP). Springer-Verlag, Berlin,
Germany, 158–185.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

Reflexes • 4:29

PIZLO, F., FOX, J., HOLMES, D., AND VITEK, J. 2004. Real-time Java scoped memory: design patterns
and semantics. In Proceedings of the IEEE International Symposium on Object-oriented Real-
Time Distributed Computing (ISORC). IEEE Computer Society Press, Los Alamitos, CA.

PIZLO, F., AND VITEK, J. 2006. An emprical evaluation of memory management alternatives for
Real-Time Java. In Proceedings of the 27th IEEE International Real-Time Systems Symposium
(RTSS). IEEE Computer Society Press, Los Alamitos, CA, 35–46.

PIZLO, F., AND VITEK, J. 2008. Memory management for real-time java: State of the art. In Proceed-
ings of the IEEE International Symposium on Object-oriented Real-Time Distributed Computing
(ISORC). IEEE Computer Society Press, Los Alamitos, CA.

SEKAR, R., GUANG, Y., VERMA, S., AND SHANBHAG, T. 1999. A high-performance network intrusion
detection system. In Proceedings of the ACM Conference on Computer and Communications
Security. ACM, New York, 8–17.

SPOONHOWER, D., AUERBACH, J., BACON, D. F., CHENG, P., AND GROVE, D. 2006. Eventrons: a safe
programming construct for high-frequency hard real-time applications. SIGPLAN Not. 41, 6,
283–294.

SPRING, J., PIZLO, F., GUERRAOUI, R., AND VITEK, J. 2007a. Reflexes: Abstractions for highly respon-
sive systems. In Proceedings of the 3rd International ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments (VEE). ACM, New York.

SPRING, J., PRIVAT, J., GUERRAOUI, R., AND VITEK, J. 2007b. StreamFlex: High-throughput stream
programming in Java. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming (OOPSLA). ACM, New York.

SPRING, J. H. 2008. Reflexes: programming abstractions for highly responsive computing in Java.
Ph.D. dissertation, Ecole Polytechnique Fédérale de Lausanne (EPFL).

THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. 2002. Streamit: A language for streaming ap-
plications. In Proceedings of the 11th International Conference on Compiler Construction (CC).
Lecture Notes in Computer Science, vol. 2304. Springer-Verlag, Berlin, Germany, 179–196.

ZHAO, T., BAKER, J., HUNT, J., NOBLE, J., AND VITEK, J. 2008. Implicit ownership types for memory
management. Sci. Comput. Prog. 71, 3, 213–241.

Received May 2009; accepted July 2009

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 4, Publication date: August 2010.

