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Abstract. Process-oriented programming is a design methodology in
which software applications are constructed from communicating concur-
rent processes. A process-oriented design is typically composed of a large
number of small isolated concurrent components. These components al-
low for the scalable parallel execution of the resulting application on both
shared-memory and distributed-memory architectures. In this paper we
present a runtime designed to support process-oriented programming by
providing lightweight processes and communication primitives. Our run-
time scheduler, implemented using lock-free algorithms, automatically
executes concurrent components in parallel on multicore systems. Run-
time heuristics dynamically group processes into cache-affine work units
based on communication patterns. Work units are then distributed via
wait-free work-stealing. Initial performance analysis shows that, using
the algorithms presented in this paper, process-oriented software can ex-
ecute with an efficiency approaching that of optimised sequential and
coarse-grain threaded designs.

1 Introduction

Interest in concurrent programming techniques is growing as a result of the
increasing ubiquity of multicore systems on the desktop, and in mobile and em-
bedded systems. Designing applications which can scale to not only the current
generation of multicore systems, but also the next, is an important research
topic. Process-oriented programming is one concurrency paradigm available for
creating such scalable software.

Process-oriented programming employs concurrency as a design tool for con-
structing software applications. Small independent concurrent processes are com-
posed to form larger components, which through continued composition form the
application as a whole. The developer is dissuaded from using forms of sharing
which may introduce race-hazards and aliasing errors; they may even be pre-
vented from doing so by the compiler [44]. Instead interaction between processes
takes place via explicit communication and synchronisation primitives. These
expose dependencies at the design level and permit diagrammatic representa-
tions such as Figure 12. While in the past message-passing concurrency mapped
processes one-to-one to processors [21, 42], process-oriented designs are intended
to be architecture independent [9, 17, 25, 32].
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Parallel execution potential is inherent in a process-oriented design, and is
bounded only by the number of ready processes. While the size of components
varies with the design style chosen, a typical process-oriented design can have
thousands of processes. Furthermore, as processes are created and connections
between them made at runtime, truly dynamic systems can be modelled directly
as process networks [34, 45]. The explicit transfer of state using communica-
tion allows unmodified designs to be serialised for a single processor [39], and
parallelised across shared-memory and distributed-memory multiprocessor sys-
tems [41, 43].

We would like process-oriented software to execute with comparable perfor-
mance to a sequential implementation in the absence of hardware parallelism,
and automatically scale when multiple processors are available. To make this
possible, scheduling and communication overheads must be minimised. Com-
munication between processes must have an overhead comparable to calling a
procedure, or invoking a method on an object. Runtime implementations which
build communication upon common locking and operating system synchronisa-
tion primitives do not provide sufficient performance. Process-oriented software
also requires functionality not provided by many lightweight threading frame-
works (see section 6).

In this paper we present implementation details of our runtime kernel for re-
alising scalable process-oriented programming on multicore systems. Specifically
we contribute:

– Wait-free algorithms for process migration via work stealing [12, 14].
– Automatically grouping communicating processes into cache-affine work

units at runtime.
– Multiprocessor-aware interprocess communication with an average overhead

of only 140 cycles on modern commodity hardware.
– A mechanism for choice over a set of communication channels inspired by

that available on the INMOS Transputer [11, 27], but made multiprocessor-
safe.

Our runtime is a C library and provides a C API. It can also be used through
occam-π, a concurrent programming language which supports process-oriented
design. The occam-π language extends original occam [32] with channel, process
and data mobility. It is rooted in the formalisms of Hoare’s CSP [26, 39], and
Milner’s π-calculus [34].

occam-π is being used as an implementation language for complex systems
research [7]. A complex system can be modelled as agents, each of which is a
composition of concurrent processes. Agents move through and interact with
their environment by communicating with it. The environment itself is also a
composition of concurrently executing processes. Simulations can scale up to
hundreds of thousands of processes [38]. Using the runtime presented in this pa-
per, these simulations can be executed in real time on commodity workstations,
utilising all processing resources available.

The rest of the paper is as follows. In section 2 we introduce our light-
weight processes and a system for scheduling them across multiprocessors while
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attempting to enhance cache utilisation. Section 3 describes communication
channels, which can be used to pass information between processes executing
on the same processor or separate processors in a shared-memory system. Prim-
itives for choice, protecting shared resources and synchronising large numbers
of processes are discussed in section 4. Finally an evaluation of performance
comparing a sample set of applications implemented using other concurrency
frameworks is presented in section 5. Related work is presented in section 6. Our
conclusions and details of possible future work are in sections 7 and 8.

2 Processes

In this section we describe our runtime’s cooperative scheduling model for
concurrent processes. As the fundamental building blocks of process-oriented
software, processes must be lightweight. Our design is intended to minimise
context-switch times and memory usage, as well as exploit cache affinity and
hardware parallelism.

For reference in later sections we must first describe how processes are rep-
resented by the scheduler kernel. Each process has a process descriptor used to
store state when descheduled or performing certain kernel calls. The descriptor
can be allocated statically on the process stack, or when state does not need to
persist across kernel calls it may be allocated dynamically at the point of call. In
either case, the size of the process descriptor is eight machine words (32 bytes on
a 32-bit machine). This minimal memory overhead makes the creation of very
large numbers of processes practical.

The process descriptor contains the following elements:

Alternation State Priority and Affinity Mask

Communication Data Pointer Stored Instruction Pointer

Queue Link Pointer Stored Stack Pointer

2.1 Scheduling

Our scheduling model is divided into uniprocessor and multiprocessor compo-
nents. In the next three sections we focus on uniprocessor scheduling. We also
explain how processes can be grouped to enhance cache-affinity.

For each physical processor in the host system a scheduler instance, a logical
processor, is started. The logical processor contains a run queue, which is a
linked list of batches. Batches are in turn linked lists of process descriptors,
linked using the Queue Link Pointer field. An overview of this structure can be
seen in Figure 1.

The scheduler executes each batch by moving the processes it contains to its
active queue. A dispatch count is calculated based on the number of processes in
the batch (multiplied by a constant) and bounded by the batch dispatch limit.
The dispatch count is decremented each time a process is taken from the active
queue and executed. When the dispatch count reaches zero, and the active queue
is not empty, the current active queue is stored in to a new batch which is added
to the end of the run queue.



166 C.G. Ritson, A.T. Sampson, and F.R.M. Barnes

Logical Processor

Process

Process

Process

Head

Tail

Dispatch
Count

Active Queue

Batch

Batch

Process

Process

Process

Head

Tail

Batch

Head

Tail

Migration Window

Run Queue

Fig. 1. A logical processor instance schedules batches of processes on each physical
processor. Batches in the migration window can be stolen by other logical processors.

Batching. As outlined above, batches are the base unit of work stored in sched-
uler data structures, and also for migration (see section 2.2). Batches address
the issue of cache thrashing which can occur with process-oriented designs. It is
highly probable that with a large number of processes switched frequently, the
working set will exceed the processor’s cache size. Processes and their data will
be drawn into cache only to be rapidly evicted again, serving few or no hits. Mod-
ern processor architectures rely on cache to compensate for the high-latency of
system memory, so sidelining the cache will severely restrict performance. The
solution is to reduce the size of the working set by minimising the memory
overheads on processes and partitioning the run queue. Vella proposed and ex-
perimented with dividing the run queue into batches of processes [14, 43]. Each
batch is executed multiple times before moving on to the next. Relatively small
batches fit well within the processor cache. Successive executions permit cache
utilisation, thus improving performance.

Our scheduler attempts to group processes into the same batch when they
communicate or synchronise with each other. By forming batches in this way, pro-
cesses which communicate frequently are scheduled on the same processor, reduc-
ing interprocessor traffic. This is an improvement to Vella’s techniques which used
fixed-size batches determined by the developer and compile-time analysis. Our
variable-size batches are formed and split automatically using runtime heuristics.

Following a context switch, if the dispatch count is not zero, then the next
process on the active queue is dispatched. If not, then the scheduler restarts with
a new batch. Context switches occur under two conditions. Most commonly, the
current process blocks on a communication or synchronisation primitive and is
descheduled. Alternatively, a process may cooperatively yield to the scheduler, in
which case it is placed at the end of the active queue. With the exception noted
below, processes rescheduled by the currently executing process, for example by
the completion of communication, are also placed on the end of the active queue.
It is this action which draws related processes into the same batch.
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Fig. 2. A fixed-size migration window array allows one logical processor to “steal”
batches from another

Batch Size. If processes are always drawn into a batch during creation and com-
munication, then one batch will eventually grow to encompass all processes in the
system. This will prevent batching from having caching benefits as the working
set will contain all active processes. Therefore a mechanism is required to prevent
batches growing too large and to separate processes which lose association.

We observe that in high valency subgraphs of a process-oriented program net-
work, there will be points when only one process in the subgraph is active. This
process reschedules other processes in the subgraph which may then in turn be-
come the only active process. Based on this observation we state that if while
executing a batch there is a point at which only one process is active then that
batch is probably optimal, i.e. contains only one subgraph. Conversely batches
which never meet this condition during execution should be split. Batches are
split by placing the head process of the active queue in one batch, and the re-
mainder in another. This is a unit-time operation, and so can be carried out
frequently. Repeated execution and split cycles quickly reduce large and unre-
lated batches to small related process subgraphs. Erroneous splits will quickly
reform based on the other scheduling rules.

Additional mechanisms to control batch size can be introduced by modifying
the dispatch count in response to specific events. Process creation is one example.
During process creation the new process is placed on the end of the active queue.
Process creation does not cause a context switch; however, the runtime kernel
decrements and tests the dispatch count. This prevents the batch size exceeding
the dispatch count. Furthermore, if the dispatch count reaches zero and the
aforementioned conditions for batch splitting are met, then the process creating
new processes will be split into a separate batch from the newly created processes.
The newly created batch is then free to migrate. Thus a process spawning a large
number of children may continue to execute while its children begin execution
on other logical processors in the system.

2.2 Process Migration

In this section we describe how logical processors interact as part of a multipro-
cessor system. In particular, we give details of our algorithms for wait-free work
stealing.
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Amdahl’s law [6] states that for a fixed problem size, the total parallel speed
up is limited by the sequential overhead. Hence when scheduling large numbers of
processes on a multicore system, a single locked run queue represents a scalability
bottleneck [28]. For this reason we do not use a global run queue in our runtime
design.

Work is distributed between logical processors via migration. Processes are
free to migrate between logical processors, except where restricted by an explicit
affinity setting. Migration occurs in two circumstances:

1. A process which blocks during communication or synchronisation and is
descheduled on one logical processor can be rescheduled by a process ex-
ecuting on a different logical processor. Unless prohibited by affinity set-
tings, the rescheduled process continues execution on the rescheduling logical
processor.

2. A logical processor which runs out of batches to execute may steal batches
from other logical processors [12, 14].

The first case occurs as part of the communication and synchronisation algo-
rithms outlined in sections 3 and 4. The second case is the mechanism by which
work is spread across the system. It is further underpinned by the observation
that independent long-running subgraphs of processes will tend to be split into
separate batches, which can be stolen by idle logical processors.

The run queue of each logical processor is private and cannot be accessed by
other scheduler instances. To allow batch migration, a fixed-size window onto the
end of each run queue provides access to other logical processors. The fixed size
of the window allows it to be manipulated using wait-free algorithms [23, 24].
These provide freedom from starvation and bounded completion when contention
arises, improving scalability over locks.

Lock-free and wait-free algorithms are often complex to implement and rely
on expensive atomic memory operations such as compare-and-swap [10]. Despite
this, efficient lock-free algorithms are more scalable than their lock-based coun-
terparts [18]. Hence our decision to refine existing wait-free work-stealing for
using in our scheduler [12, 14].

Figure 2 shows the relationship of the migration window to the run queue.
There are three algorithms for accessing the migration window: local enqueue,
local dequeue, and remote dequeue.

Local Enqueue. Figure 3 shows the algorithm used to place a batch onto the
run queue of a logical processor and make it visible in the migration window.

Typically, internal operations on the window will be more common than exter-
nal operations, therefore we decided to optimise for this case rather than the con-
tended case. The effect of this optimisation is that the final step of the algorithm
can produce corruption of the window state word. In the event of corruption the
window will appear to external logical processors to contain more batches than
it does; however, this does not affect correct operation of the external dequeue
algorithm (only its operating efficiency). The result is an algorithm with a deter-
ministic execution time and only one expensive atomic operation.
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1. Link the batch into the run queue linked list.
2. Load the window state word (see Figure 2).
3. Generate a new offset by incrementing the last offset, handling roll over where

appropriate.
4. Record the generated offset into the batch data structure.
5. Atomically swap the batch pointer with the window entry at the generated offset.
6. If the result of the swap is not null, then a batch has been knocked out of the

window; clear its stored offset to indicate it is no longer part of the window.
7. Update the window state word with the generated offset and active bitmap. This

update is done with a blind write, and thus may overwrite updates from external
dequeues.

Fig. 3. Migration window local enqueue algorithm

1. Remove the head batch from the run queue linked list.
2. If the batch has no stored window offset then the dequeue is complete (the batch

is not in the window).
3. Atomically swap null with the migration window entry associated with the batch.
4. If the result is null then the batch has been stolen by an external scheduler. It is

placed on a laundry queue on the logical processor for later cleanup. Dequeue of
this batch fails, and we must restart the algorithm at step 1.

5. The bitmap in the window state word is updated to clear the associated bit. As
with the enqueue algorithm, this occurs via a blind write.

Fig. 4. Migration window local dequeue algorithm

Local Dequeue. To dequeue a batch from its run queue, a logical processor
uses the algorithm in Figure 4.

While the dequeue algorithm may fail and have to restart, it is bounded by
the number of batches enqueued on the logical processor. In the worst case, every
batch may have been stolen and the scheduler must scan every batch to discover
this. Local scanning does not, however, create contention with other logical pro-
cessors, except for underlying system resources such as the memory bus.

Remote Dequeue. When one logical processor attempts to steal work from
the migration window of another, it does so using the algorithm in Figure 5.
This algorithm requires only two atomic operations in the optimal case.

Having migrated a batch the logical processor copies the contents to a new
local batch data structure and marks the original batch as clean and discards the
pointer to it. The originating logical processor will later collect the original batch
structure and reuse it. This allows each logical processor to maintain its own pool
of batch structures, and minimises cache ping-pong (inverting the scheme creates
higher cache traffic).
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1. Load the window state word, creating a local copy.
2. Rotate the active bitmap by the last offset.
3. Scan the bitmap to select an entry to steal. If the bitmap is empty, migration fails.
4. Atomically swap the window entry with null.
5. If the result is null, clear the associated bitmap bit and restart at step 3.
6. Atomically clear the window state word bitmap bit; dequeue succeeds and the

result of the atomic swap is the stolen batch.
7. A local copy of the stolen batch is created, and the original batch marked clean

and its reference discarded.

Fig. 5. Migration window remote dequeue (theft) algorithm

3 Communication

Interprocess communication is central to process-oriented programming, for
sharing state and synchronising computation. The efficiency of communication
therefore directly affects the performance of process-oriented designs.

Our runtime kernel provides a single basic communication primitive for
processes to exchange data: point-to-point synchronised channels. Synchronised
channels require no buffers and data is copied or moved (depending on the mode of
operation) directly between the source and destination processes. Buffered chan-
nels can be constructed efficiently by placing buffer processes between communi-
cating processes. Transactions involving may parties sharing a channel are imple-
mented by associating the channel with a mutual exclusion lock (see section 4).

1. Read the channel word.
2. If it is null or the alternation bit is set (the other party is waiting on multiple

channels):
(a) Store the process state in the process descriptor (instruction pointer, etc).
(b) Store the destination or source buffer pointer in the process descriptor

(Communication Data Pointer).
(c) Atomically swap the process descriptor with the channel word.
(d) If the result is not null, and the alternation bit is not set, then the read at step

1 was stale; jump to step 3.
(e) If the alternation bit is set on the result, then trigger the event (using algorithm

in Figure 10).
(f) A context switch occurs and a new process to execute is selected as described

in section 2.
3. The channel word is not null, hence a process is blocked on it.
4. Load the destination or source buffer pointer from the blocked process descriptor.
5. Copy data or move references and ownership.
6. Reset the channel word to null.
7. Reschedule the process blocked on the channel.

Fig. 6. Channel communication algorithm
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Operations for channel input and output take a source or destination buffer
and a size in bytes to copy. Alternatively the source and destination may be
a reference to a memory object allocated through the runtime kernel, in which
case the reference is moved between the processes together with ownership of
the object.

A channel is represented by a single machine word. The word stores a pointer
to the process descriptor (section 2), a structure guaranteed to be word-aligned.
The lowest order bits of the word also carry state information about the process
descriptor. For the algorithm which follows only the alternation bit is relevant.
It indicates whether the process descriptor stored in the channel is blocked on
this channel or waiting on a number of channels and events (see section 4.1).

Basic channel communication, regardless of direction, is performed using the
algorithm in Figure 6. Using this algorithm the second process to reach the
channel completes the synchronisation and thus the communication. This re-
sults in, typically, only one of the two processes performing an expensive atomic
operation.

4 Synchronisation

In addition to communication, processes often need to synchronise in ways which
do not involve data exchange. This section describes additional synchronisation
primitives supported by our runtime.

4.1 Alternation

For many purposes, blocking channel communication is sufficient; however, pro-
cesses often need to choose between a number of channels and other events. Our
runtime kernel supports choice over a number of channels and timer events: we
call this alternation. occam-π supports this via an ALT language construct.

Alternation allows a process to wait for one or more of a set of channels to
become ready. When an element of the waited set becomes ready, the process is
rescheduled and can make a choice as to which channel to communicate with.
This is similar to the POSIX select system call.

In this section we present algorithms designed for one process waiting on a set
of channels, while other processes sharing those channels commit. This constraint
is enforced by the present version of the occam-π language and inherited from
the original occam language. More general synchronisation algorithms are part
of our ongoing research.

Alternation consists of the following steps:

Initialisation. The Alternation State field of the process descriptor is ini-
tialised. The alternation state consists of:

– flags indicating what stage of alternation the process is in. The initial flags
are enabling and not ready.
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1. Read the channel word.
2. If the channel word is not null, then atomically clear the not ready flag of the

alternation state. The enable operation completes indicating the channel is ready.
3. Atomically swap a pointer to the process descriptor with the alternation bit set

into the channel word.
4. If the result is not null, then the value in step 1 was stale. Write the result back

to the channel word and continue as in step 2.
5. Atomically increment the alternation state reference count.

Fig. 7. Channel enable algorithm

1. Read the channel word.
2. If it does not contain a pointer to the process descriptor of the alternating process,

then the channel is ready. The operation returns indicating the channel is ready.
3. Atomically compare-and-swap null to the channel, if this fails then the channel

just became ready; the algorithm completes as in step 2.
4. Channel is not ready, decrement the reference count in the Alternation State.
5. Return value indicates channel not ready.

Fig. 8. Channel disable algorithm

1. Read the reference count of the Alternation State.
2. If the reference count is one then alternation is finalised; leave algorithm.
3. Save the process state as if to context switch.
4. Atomically decrement and test the reference count.
5. If the reference count does not reach zero then context switch.

Fig. 9. Alternation finalisation algorithm

1. Read the Alternation State of the process descriptor to trigger.
2. Generate a new state with the not ready and waiting flags cleared, and the

reference count decremented by one.
3. Use a compare-and-swap operation to replace the Alternation State.
4. If the operation fails restart at step 1.
5. If the original state had the waiting flag set, or the new reference count is zero,

then reschedule the process.

Fig. 10. Event trigger algorithm

– a reference count which tracks the number of pointers to the process de-
scriptor, initially one. When a logical processor triggers an event which is
part of an alternation it takes one of these references. The alternation only
completes when all references have been counted back through the disable
algorithm or via event triggers.
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Channel Enabling. Each channel a process alternates over is enabled using
the algorithm in Figure 7.

Waiting for Events. Once the process has enabled all the events it makes a
kernel call to wait. An atomic compare-and-swap is used to clear the enabling

and not ready flags, and set the waiting flag. If the compare-and-swap succeeds
then the process is descheduled and a context switch occurs. Failure indicates
that an event has become ready, in which case the enabling flag is atomically
cleared and execution of the process continues.

Channel Disabling. Having been woken up, the process disables channels
using the algorithm in Figure 8.

Finalisation. Having disabled all channels, the alternation is finalised using
the algorithm in Figure 9. This completes the alternation and communication
with any ready channels may take place.

Event Trigger Algorithm. Whenever a logical processor needs to signal an
alternating process that an event has become ready, it executes the event trigger
algorithm in Figure 10. This is the algorithm referenced at step 2(e) of the basic
channel communication algorithm in Figure 6.

4.2 Mutual Exclusion

Section 3 describes communication channels capable of synchronous point-to-
point exchanges involving a pairs of processes. As developers, we often need to
have multiple communication peers using the same channel. This is particularly
useful for implementing the deadlock-free client-server design pattern [47], in
which a number of clients communicate with a single server over channels.

To support this functionality our runtime provides mutual exclusion locks,
which can be associated with the channel directions. This allows ordered multi-
access channels to be constructed. The lock claim and release algorithms are non-
blocking and prevent starvation using FIFO queuing. Importantly, the occam-π
compiler enforces claim and release semantics on these locks, so that an appli-
cation developer cannot forget to release the channel lock.

4.3 Barriers

Our runtime also supports a barrier synchronisation type. Processes can enroll,
resign and synchronise on such barriers. Processes synchronising on a barrier
are blocked until all other processes enrolled on the barrier are also synchronis-
ing. Barriers may also be communicated by reference over channels, atomically
enrolling the receiver as part of the communication; this permits semantics such
as those described by Welch and Barnes [46].

Barriers of this type are useful in implementing agent simulations. Each agent
is enrolled on a barrier and synchronises on it to maintain time-step with the
other agents in the simulation. With many thousands of agents synchronising,
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the performance of barrier operations is critical. It is also important to minimise
the time between barrier completion and returning to the state where all enrolled
processes are scheduled for execution across available logical processors.

5 Performance

In this section we present preliminary results from a number of benchmarks we
have developed to test and compare the performance of our runtime. The source
codes for these benchmarks are publicly available [2].

All our benchmarks were performed on an eight core Intel Xeon workstation
composed of two E5320 quad-core processors running at 1.86GHz. Pairs of cores
share 4MiB of L2 cache, giving a total of 16MiB L2 cache across eight cores. For
all tests the workstation ran Linux 2.6.25 (with Gentoo r7 patches). Where ap-
propriate, the maxcpus boot time flag was used to control the number of available
processor cores.

Comparison of our results was performed by close reimplementation of our
benchmarks using multiple languages and concurrency frameworks:

– CCSP C - our runtime programmed using its C API.
– CCSP occam-π - our runtime programmed using the occam-π.
– Erlang - a functional programming language with asynchronous message

passing 1. We used version 5.6.3 with HiPE [35].
– Haskell - a functional programming language with lightweight threads and

one-place buffered channels provided by the MVar primitive. We used GHC
version 6.8.2 [22].

– pthread C - POSIX threads accessed via the GNU C library. Mutual exclu-
sion (pthread_mutex_t) and condition variables (pthread_cond_t) are use to
construct one-place buffered communication channels.

5.1 Process Ring

To examine communication overheads, we construct a ring of n element pro-
cesses, and one initiator process. Element processes loop: they receive an integer
token from the previous process in the ring, increment it, then send it on to
the next process. The initiator, adds tokens, counts them passing and after a
given count removes them from the ring. By increasing the number of tokens
“in flight” around the ring, we increase the number of potentially concurrently
executing processes.

Given the time taken for a single token to circulate the ring we can estimate
the average communication time of each language runtime as time÷((elements+
1)×roundtrips). For all our examples, there are 255 element processes and tokens

1 We have not forced synchronised communications, but instead we coerced our designs
to function with asynchronous messaging. This should be a performance benefit for
Erlang.
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Table 1. Communication times, calculated using process ring results

Implementation 1-core (ns) 8-core (ns)

CCSP C 73 75
CCSP occam-π 46 39
Erlang 1697 1675
Haskell 269 9892
pthread C 5013 3485
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Fig. 11. With 64 tokens in the process ring, we increase the number of processor cores

make 1024 round trips. With 255 elements it is likely that all processes will fit
within the processor caches, allowing us to examine the best-case communication
time.

Table 1 shows communication times in nanoseconds. These are based on the
circulation of a single token when one core or eight cores enabled.

The communication time for Erlang and our runtime are relatively unaffected
by the number of processor cores. While both CCSP C and CCSP occam-π
implementations use the same runtime, the occam-π compiler caches scheduling
pointers in registers, reducing the kernel call overhead. This explains the 30ns
difference in the results.

POSIX threads performance is noticeably improved by more cores. We spec-
ulate that threads are being given processor affinity by the Linux scheduler.
This then improves performance as interprocessor communication via processor
caches is faster than Linux’s context-switch.

Haskell performance degrades significantly with the addition of cores. We
suspect this reflect internal contention exposed by multiple processors accessing
the Haskell runtime in parallel.

The plot in Figure 11 shows the time taken for 1024 circulations of 64 con-
current tokens as the number of processor cores is increased. With the exception
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of POSIX threads, all the implementations show decreased performance with
increasing numbers of cores. This reflects the fact that, for user processes, com-
municating between processor cores is more expensive than simulated communi-
cation on the same core. As the number of concurrent processes increases, they
are scheduled on to separate cores, increasing the communication costs.

Our runtime, while not performing as in the optimal case (single-core ex-
ecution), does control the slow down with increasing numbers of cores. We
would not expect performance to degrade below interprocessor communication
time.

Erlang and Haskell performance also degrades with increasing numbers of
cores, Haskell more notably so. POSIX threads performance improves, again we
suspect this is for the reasons previously stated.

5.2 Agent Simulation

As previously mentioned, occam-π is being used for complex systems modelling
as part of the CoSMoS project [1]. The investigators are exploring using process-
oriented methodologies for building models of emergent behaviour, and creating
a generic toolkit for doing so. One of the early models investigated by the group
was a process-oriented implementation of Craig Reynolds’ boids, a simulation of
flocking behaviour [37]. The CoSMoS project’s implementation, occoids, employs
agent processes with internal concurrency to implement the boids and their
behaviour rules [7]. Agent processes move through a grid of location processes,
connecting and reconnecting as they go. The topology of space can be modified
by adjusting the underlying network connections, and this technique has been
exploited to build an implementation which spans a network of computers with
only minor changes to the code base.

We have constructed a benchmark based on occoids. Our benchmark is de-
signed to be easy to implement in other languages, and produces results which
allow the verification of an implementation’s correctness. The simulated space is
a two-dimensional torus, and agent positions are represented as integers relative
to the centre of their present location. The occoids simulation uses floating-point
variables so as not to unduly quantise space; however, integers allow us to easily
verify the simulation output and avoid any associated variations in floating point
support.

With reference to the process diagram in Figure 12. Location processes, acting
as servers, maintain a data structure containing all agents presently in their grid
area. View processes act as servers to clients, but also clients to the location pro-
cesses, building aggregate lists of all agents within nine adjacent locations each
simulation step. Agent processes query a view process, and calculate a repulsive
force from other visible agents, applying an internal bias. Having determined
the force, the agent signals movement to its location, reconnecting to a new lo-
cation if appropriate. Agents maintain a consistent sense of time using barrier
synchronisations between activity phases.

The bias is updated based on the position of the agent and the number of other
agents seen. In effect the bias produces randomised behaviour in the agents. The
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Fig. 12. Simplified occoids process diagram. Boxes represent concurrent processes. Ar-
rows represent two-way client-server channel connections, with the arrow pointing at
the server. Agent processes connect to their present location, and “see” other agents
via the location’s view.
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Fig. 13. Increasing the number of cores applied to the agent simulation. The simulation
is a 10x10 grid and 1200 agent processes.

initial position of all other agents in the simulation acts as the seed, and hence
can be easily reproduced.

As a comparison to the process-oriented design, we implemented a hand-
optimised data parallel version using POSIX threads. Only one thread is used
per processor core, and each thread executes a fixed number of agents. Data
updates are performed in parallel using fine-grain locking of location data struc-
tures. This version represents the optimal case and appears as pthread DP C in
Figures 13 and 14.

Figure 13 shows comparative results as we increase the number of available
processor cores with a fixed-size world grid and number of agents. With refer-
ence to the process-oriented implementations, our runtime provides a marked
improvement in performance and scalability. Erlang and Haskell fail to achieve
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Fig. 14. Simulation time for agents benchmark with increasing grid size. Each grid
location has 12 initial agents. The x-axis is the number of locations in each axis.

more than 50% speed up, even with eight available processors. In particular Er-
lang performance begins to degrade beyond three cores. POSIX threads achieve
approximately a 100% speed up over eight cores, while our runtime achieves
350%. Comparing with the optimal case, which has a 575% speed up, there
clearly is still room for improvement in our scheduler.

The overall performance of the C version using our runtime is 50% of the
optimal case. Assuming this performance loss is communication and schedul-
ing overhead then further refinements of our scheduler and compiler integration
should be able to bring performance closer to the optimal case. The reduced
performance of occam-π compared to C is due to more efficient optimisation
of serial code by the GNU C compiler than the occam-π compiler. We plan to
overcome this by targeting GNU C as part of a new compiler we are developing.

Figure 14 shows results when scaling the simulation size with eight cores. Sim-
ulation size is controlled by increasing the grid size and number of agents. In this
test our runtime also outperforms other process-oriented implementations. The
other process-oriented implementations increasingly diverge from the optimal
case with increasing problem size. The similarity of our runtime’s scaling curve
to the optimal suggests that refining of our existing runtime may be sufficient
to achieve near optimal performance.

6 Related Work

Many frameworks and languages provide concurrency primitives beyond those
supported by OS threads and locks. This stems from a desire make concur-
rent programming easier, and to avoid common errors associated with locks and
shared-memory [40]. For example message-passing frameworks such as PVM [19]
and MPI [21] provide primitives similar to those presented in this paper, but do
so for a course-grain network environment.
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It is also desirable to provide lightweight concurrency primitives when the
number of concurrent elements is high [15], or the application has more com-
plete information on how they interact and should be scheduled. Of particu-
lar relevance to our work are lightweight runtimes for task parallelism such as
Cilk [13], OpenMP [4] and Intel’s Thread Building Blocks (TBB) [3]. These run-
times employ modern work-stealing scheduler designs similar to our own, but do
not provide primitives suitable for implementing process-oriented designs.

OpenMP and Intel’s TBB emphasize the data parallelism of tasks, and only
provide for communication of data asynchronously via shared memory. Neither
framework provides constructs for communicating data with synchronisation.
OpenMP’s mutual exclusion locks can be used to implement communication
channels. However, unlike POSIX threads, there is no conditional variable which
can be used to efficiently implement resume on data or buffer space availability.
While TBB’s concurrent_queue provides a communication channel like interface,
TBB only permits parallel tasks over ranges of data and does not support the
spawning of continuously running tasks.

Programming environments such as Cilk [13] and Java’s Fork/Join frame-
work [30] focus on scheduling finite tasks with well-structured computational
dependencies (directed acyclic graphs). Within these frameworks the dependency
graph provides the scheduling scope and the depth of the graph can be used to
bound the number of active tasks and memory utilisation. These bounding guar-
antees are based on the space requirements of the serial execution of the same
program. Our process-oriented programs do not necessarily have a serial exe-
cution, so this model of space bounding is not applicable. Furthermore, as the
lifetime of individual tasks is bounded, a LIFO scheduling order is appropriate.
Lock-free operations on LIFO stacks are simpler than those on a FIFO queue.
The processes we define in this paper have unbounded lifetimes and hence FIFO
scheduling ensures all processes are serviced. A FIFO scheduling order distin-
guishes the scheduling algorithms presented in this paper from those of other
work-stealing schedulers.

Process-oriented programming is very similar to the stream programming
paradigm. Stream programs consist of graphs of concurrent communicating ele-
ments which transform input to output. Process-oriented programming is
distinguished from stream programming in that it permits the dynamic cre-
ation of processes and their runtime reconnection, whereas a stream program’s
data graph is fixed which allows compile-time and instruction-level scheduling
strategies [29].

In the benchmarks presented in this paper (section 5) we have focused on lan-
guages with clear support for implementing process-oriented designs, examining
both Erlang and Haskell. Erlang provides asynchronous message passing, which
can simulate communication channels, and has a shared-memory multiproces-
sor runtime [8]. Haskell as a pure functional language focuses on deterministic
parallel graph reduction rather than task interaction, but does provide a MVar

primitive akin to a one-place buffered communication channel [22]. However,
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while both Erlang and Haskell provide support for lightweight concurrency, nei-
ther runtime (as tested), employs a work-stealing scheduler or lock-free algo-
rithms between communicating concurrent elements.

Concurrent ML (CML) is another functional language which provides light-
weight concurrency primitives [36]. It implements channels and message passing
using continuations on top of Standard ML. We excluded it from our comparisons
as CML was not originally intended for multiprocessor execution. A successor
language to CML, Manticore, attempts to address heterogeneous parallelism [16].
Manticore is still in the design and implementation phases and this prevented
us making any performance comparisons.

In summary, the runtime presented in this paper provides multi-core schedul-
ing for lightweight concurrent communicating processes which can be defined and
reconnected at program run time. In doing so it provides support for process-
oriented programming multi-core systems not provided by other frameworks for
lightweight concurrency.

7 Conclusions

We have implemented a multicore scheduler for fine-grain concurrent software
developed using process-oriented programming. Process-oriented designs have a
high degree of inter-process communication, and involve many more processes
than physical processors. We address this in our runtime design by ensuring that:

– The serialisation bottleneck of a global run queue is avoided by scheduling
processes independently on each core.

– Cache utilisation is improved by batching communicating processes.
– No programmer intervention is required to achieve multicore execution of

process-oriented designs. Processes and batches are automatically distributed
and migrated between processor cores.

– Contention within the scheduler is reduced using lock-free algorithms.
– Lock-free algorithm performance is optimised by minimising the number of

atomic instructions, particularly in hot paths.

The performance results presented in this paper show that by addressing these
points our runtime has significantly better performance than a number of other
frameworks for implementing process-oriented designs. Specially, our runtime
brings the performance of process-oriented software close to that of optimised
multithreaded implementations.

Using the runtime presented in this paper, process-oriented design can be ap-
plied to develop software for multicore systems without the associated complex-
ities and hazards of threads, locks and shared-memory. Furthermore, we expect
refinements of our runtime design to be able to allow unmodified process-oriented
software to fully utilise hardware parallelism in future generations of multicore
processors [5, 31, 33, 43].
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8 Future Work

As presented, our runtime does not provide any asynchronous communication
mechanism. Instead, we implement asynchronous messaging using buffer pro-
cesses on synchronous channels. While this design decision was influenced by the
target occam-π, a language with no asynchronous communication primitives, it
may be that asynchronous communication warrants direct implementation. An
investigation of the impact of asynchronous communication on the performance
and expressibility of complex systems simulations is required. It should also be
noted that there is an argument for synchronous channels being easier for devel-
opers to reason about and formally verify.

Further benchmark comparisons of our work are required to provide a com-
prehensive picture of performance. In particular, research into process-oriented
implementations of other common benchmark suites is part of our future work.
One possibility is to reimplement benchmarks developed for stream programs,
such as the StreamIt benchmark suite [20, 29] - although, as noted in section 6,
these do not deal with the dynamic nature of process creation and communica-
tion in process-oriented programs.
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