Skip to main content

Communication Contention Reduction in Joint Scheduling for Optical Grid Computing

(Invited Paper)

  • Conference paper
Book cover Networks for Grid Applications (GridNets 2008)

Abstract

Optical network, which can provide guaranteed quality of service (QoS) connections, is considered as a promising infrastructure for grid computing to solve more and more complex scientific problems. When optical links are regarded as resources and jointly scheduled with other grid resources, communication contention must be taken into consideration for efficient task scheduling. This paper models the optical grid computing as a communication-aware Directed Acyclic Graph (DAG) scheduling problem. To reduce the communication contention, we propose to use hop-bytes metric (HBM) heuristic to select computing resource. Simulation results show that the HBM approach combined with the adaptive routing scheme can achieve better performance in terms of normalized schedule length and link utilization.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-02080-3_28

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Froster, I., Grossman, R.: Data integration in a bandwidth-rich world. Commun. ACM 46, 50–57 (2003)

    Article  Google Scholar 

  2. Veeraraghavan, M., et al.: On the use of connection-oriented networks to support grid computing. IEEE Commun. Mag. 44, 118–123 (2006)

    Article  Google Scholar 

  3. Barker, K.J., et al.: On the Feasibility of Optical Circuit Switching for High Performance Computing Systems. Supercomputing (2005)

    Google Scholar 

  4. Simeonidou, D., et al.: Optical network infrastructure for grid, Global Grid Forum Document, GFD.36. Grid High Performance Networking Group (2004)

    Google Scholar 

  5. Baroncelli, F., et al.: A Service Oriented Network Architecture suitable for Global Grid Computing. In: Conference on Optical Network Design and Modeling (2005)

    Google Scholar 

  6. Figueira, S., et al.: DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks. In: IEEE International Symposium on Cluster Computing and the Grid (2004)

    Google Scholar 

  7. Lehman, T., et al.: DRAGON: A Framework for Service Provisioning in Heterogeneous Grid Networks. IEEE Commun. Mag. 44, 84–90 (2006)

    Article  Google Scholar 

  8. Zheng, X., Veeraraghavan, M., Rao, N.S.V., Wu, Q., Zhu, M.: CHEETAH: Circuit-switched high-speed end-to-end transport architecture testbed. IEEE Commun. Mag. 43, 11–17 (2005)

    Article  Google Scholar 

  9. Smarr, L.L., et al.: The OptIPuter. Commun. ACM 46(11), 59–67 (2003)

    Article  Google Scholar 

  10. Sarkar, V.: Partitioning and Scheduling Parallel Programs for Execution on Multiprocessors. MIT, Cambridge (1989)

    MATH  Google Scholar 

  11. Topcuoglu, H., et al.: Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE Trans. on Parallel Distrib. Syst. 13, 3 (2002)

    Article  Google Scholar 

  12. Wu, M.Y., et al.: Hypertool: a programming and aid for message-passing systems. IEEE Trans. Parallel Distrib. Syst. 1, 330–343 (1990)

    Article  Google Scholar 

  13. Yang, T., et al.: DSC: scheduling parallel tasks on an unbounded number of processors. IEEE Trans. Parallel Distrib. Syst. 5, 951–967 (1994)

    Article  Google Scholar 

  14. Kwok, K., Ahmad, I.: Link Contention-Constrained Scheduling and Mapping of Tasks and Messages to a Network of Heterogeneous Processors. Cluster Computing 3, 113–124 (2000)

    Article  Google Scholar 

  15. Wang, Y., et al.: Joint scheduling for optical grid applications. Journal of Optical Networking 6, 3 (2007)

    Article  Google Scholar 

  16. Agarwal, T., et al.: Topology-aware Task Mapping for Reducing Communication Contention on Large Parallel Machines. In: IEEE Parallel and Distributed Processing Symposium (2006)

    Google Scholar 

  17. Beaumont, O., et al.: A Realistic Model and an Efficient Heuristic for Scheduling with Heterogeneous Processors. In: Proc. 11th Heterogeneous Computing Workshop (2002)

    Google Scholar 

  18. Sinnen, O., Sousa, L.A.: Communication contention in task scheduling. IEEE Trans. Parallel Distrib. Syst. 16, 503–515 (2005)

    Article  Google Scholar 

  19. He, E., et al.: AR-PIN/PDC: Flexible Advance Reservation of Intradomain and Interdomain Lightpaths. In: IEEE Global Telecommunications Conference (2005)

    Google Scholar 

  20. Zang, H., et al.: Dynamic Lightpath Establishment in Wavelength-Routed WDM Networks. IEEE Commun. Mag. 39, 100–108 (2001)

    Article  Google Scholar 

  21. Das, I.: Multi-Objective Optimization (1997), http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/multiobj/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Jin, Y., Wang, Y., Guo, W., Sun, W., Hu, W. (2009). Communication Contention Reduction in Joint Scheduling for Optical Grid Computing. In: Vicat-Blanc Primet, P., Kudoh, T., Mambretti, J. (eds) Networks for Grid Applications. GridNets 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02080-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02080-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02079-7

  • Online ISBN: 978-3-642-02080-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics