Skip to main content

Local Construction of Spanners in the 3-D Space

  • Conference paper
Book cover Distributed Computing in Sensor Systems (DCOSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5516))

Included in the following conference series:

Abstract

In this paper we present local distributed algorithms for constructing spanners in wireless sensor networks modeled as unit ball graphs (shortly UBGs) and quasi-unit ball graphs (shortly quasi-UBGs), in the 3-dimensional Euclidean space. Our first contribution is a local distributed algorithm that, given a UBG U and a parameter α < π/3, constructs a sparse spanner of U with stretch factor 1/(1 − 2sin(α/2)), improving the previous upper bound of 1/(1 − α) by Althöfer et al. which is applicable only when \(\alpha < 1/(1+2\sqrt{2}) < \pi/3\). The second contribution of this paper is in presenting the first local distributed algorithm for the construction of bounded-degree lightweight spanners of UBGs and quasi-UBGs.

The simulation results we obtained show that, empirically, the weight of the spanners, the stretch factor and locality of the algorithms, are much better than the theoretical upper bounds proved in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrière, L., Fraigniaud, P., Narayanan, L.: Robust position-based routing in wireless Ad Hoc networks with unstable transmission ranges. In: DIALM, pp. 19–27 (2001)

    Google Scholar 

  3. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brinkmann, G., Dress, A.W.M.: A constructive enumeration of fullerenes. J. Algorithms 23(2), 345–358 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chen, J., Jiang, A., Kanj, I., Xia, G., Zhang, F.: Separability and topology control of quasi unit disk graphs. In: Proceedings of INFOCOM, pp. 2225–2233 (2007)

    Google Scholar 

  6. Damian, M., Pandit, S., Pemmaraju, S.: Local approximation schemes for topology control. In: Proceedings of PODC, pp. 208–217 (2006)

    Google Scholar 

  7. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-D Euclidean space. In: Proceedings of SoCG, pp. 53–62 (1993)

    Google Scholar 

  8. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hales, T.C.: Sphere packings, vi. tame graphs and linear programs. Discrete & Computational Geometry 36(1), 205–265 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanj, I., Wiese, A., Zhang, F.: Computing the k-hop neighborhoods locally. Technique report #08-007, http://www.cdm.depaul.edu/research/Pages/TechnicalReports.aspx

  11. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: buckminsterfullerene. Nature 318, 162–163

    Google Scholar 

  12. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X.-Y., Song, W.-Z., Wang, W.: A unified energy-efficient topology for unicast and broadcast. In: MOBICOM, pp. 1–15 (2005)

    Google Scholar 

  14. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Malkevitch, J.: A note on fullerenes. Fullerenes, Nanotubes and Carbon Nanostructures 2(4), 423–426 (1994)

    Google Scholar 

  16. Peleg, D.: Distributed computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematis and Applications (2000)

    Google Scholar 

  17. Wiese, A., Kranakis, E.: Local construction and coloring of spanners of location aware unit disk graphs. In: WG, pp. 372–383 (2008)

    Google Scholar 

  18. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanj, I.A., Xia, G., Zhang, F. (2009). Local Construction of Spanners in the 3-D Space. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics