Skip to main content

The Glass Organ: Musical Instrument Augmentation for Enhanced Transparency

  • Conference paper
Book cover Smart Graphics (SG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5531))

Included in the following conference series:

Abstract

The Organ and Augmented Reality (ORA) project has been presented to public audiences at two immersive concerts, with both visual and audio augmentations of an historic church organ. On the visual side, the organ pipes displayed a spectral analysis of the music using visuals inspired by LED-bar VU-meters. On the audio side, the audience was immersed in a periphonic sound field, acoustically placing listeners inside the instrument. The architecture of the graphical side of the installation is made of acoustic analysis and calibration, mapping from sound levels to animation, visual calibration, real-time multi-layer graphical composition and animation. It opens new perspectives to musical instrument augmentation where the purpose is to make the instrument more legible while offering the audience enhanced artistic content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouillot, N., Wozniewski, M., Settel, Z., Cooperstock, J.R.: A mobile wireless augmented guitar. In: NIME 2007: Proc. of the 7th international conference on New interfaces for musical expression, Genova, Italy (June 2007)

    Google Scholar 

  2. Thompson, J., Overholt, D.: Sonofusion: Development of a multimedia composition for the overtone violin. In: Proc. of the ICMC 2007 International Computer Music Conference, Copenhagen, Denmark, vol. 2 (August 2007)

    Google Scholar 

  3. Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: TEI 2007: Proc. of the 1st international conference on Tangible and embedded interaction, pp. 139–146. ACM Press, New York (2007)

    Google Scholar 

  4. d’Alessando, C., Noisternig, M., Le Beux, S., Katz, B., Picinali, L., Jacquemin, C., Ajaj, R., Planes, B., Strurmel, N., Delprat, N.: The ORA project: Audio-visual live electronics and the pipe organ. In: ICMC 2009 (submitted, 2009)

    Google Scholar 

  5. Fels, S., Nishimoto, K., Mase, K.: Musikalscope: A graphical musical instrument. IEEE MultiMedia 5, 26–35 (1998)

    Article  Google Scholar 

  6. Lewis Charles Hill, I.: Synesthetic Music Experience Communicator. PhD thesis, Iowa State University, Ames, IA, USA (2006)

    Google Scholar 

  7. Levin, G., Lieberman, Z.: In-situ speech visualization in real-time interactive installation and performance. In: NPAR 2004: Proc. of the 3rd international symposium on Non-photorealistic animation and rendering, pp. 7–14. ACM Press, New York (2004)

    Google Scholar 

  8. Miranda, E.R., Wanderley, M.: New Digital Musical Instruments: Control And Interaction Beyond the Keyboard. Computer Music and Digital Audio Series. A-R Editions, Inc., Madison (2006)

    Google Scholar 

  9. Puckette, M.S.: Pure data: Another integrated computer music environment. In: Proc. International Computer Music Conference, pp. 37–41 (1996)

    Google Scholar 

  10. Gerzon, M.A.: Periphony: With-height sound reproduction. J. Audio Eng. Soc. 21(1), 2–10 (1973)

    Google Scholar 

  11. Noisternig, M., Sontacchi, A., Musil, T., Höldrich, R.: A 3D ambisonic based binaural sound reproduction system. In: Proc. AES 24th International Conference, Banff, Canada (2003)

    Google Scholar 

  12. Raskar, R., Beardsley, P.: A self-correcting projector. In: Proc. of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, pp. 504–508. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  13. Welch, P.: The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust AU 15, 70–73 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacquemin, C. et al. (2009). The Glass Organ: Musical Instrument Augmentation for Enhanced Transparency. In: Butz, A., Fisher, B., Christie, M., KrĂ¼ger, A., Olivier, P., TherĂ³n, R. (eds) Smart Graphics. SG 2009. Lecture Notes in Computer Science, vol 5531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02115-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02115-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02114-5

  • Online ISBN: 978-3-642-02115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics