Skip to main content

Graph-Based Representation of Symbolic Musical Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5534))

Abstract

In this work, we present an approach that utilizes a graph-based representation of symbolic musical data in the context of automatic topographic mapping. A novel approach is introduced that represents melodic progressions as graph structures providing a dissimilarity measure which complies with the invariances in the human perception of melodies. That way, music collections can be processed by non-Euclidean variants of Neural Gas or Self-Organizing Maps for clustering, classification, or topographic mapping for visualization. We demonstrate the performance of the technique on several datasets of classical music.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birmingham, W., Dannenberg, R., Pardo, B.: Query by humming with the vocalsearch system. Commun. ACM 49(8), 49–52 (2006)

    Article  Google Scholar 

  2. Cataltepe, Z., Yaslan, Y., Sonmez, A.: Music genre classification using midi and audio features. EURASIP Journal on Advances in Signal Processing, Article ID 36409 (2007)

    Google Scholar 

  3. Cilibrasi, R., Vitányi, P.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cilibrasi, R., Vitányi, P., de Wolf, R.: Algorithmic clustering of music based on string compression. Computer Music Journal 28(4), 49–67 (2004)

    Article  Google Scholar 

  5. Cruz-Alcázar, P.P., Vidal, E.: Two grammatical inference applications in music processing. Applied Artificial Intelligence 22(1&2), 53–76 (2008)

    Article  Google Scholar 

  6. Di Lorenzo, P., Di Maio, G.: The hausdorff metric in the melody space: A new approach to melodic similarity. In: ICMPC (2006)

    Google Scholar 

  7. Dorrell, P.: What Is Music?: Solving a Scientific Mystery. Lulu(print on demand) (2005)

    Google Scholar 

  8. Eerola, T., Toiviainen, P.: MIDI Toolbox: MATLAB Tools for Music Research. University of Jyvaskyla (2004)

    Google Scholar 

  9. Hammer, B., Hasenfuss, A.: Relational neural gas. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 190–204. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Hammer, B., Hasenfuss, A.: Relational neural gas. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 190–204. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Klapuri, A., Davy, M. (eds.): Signal Processing Methods for Music Transcription. Springer, New York (2006)

    Google Scholar 

  12. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  13. Londei, A., Loreto, V., Belardinelli, M.O.: Musical style and authorship categorization by informative compressors. In: Proc. ESCOM Conference (2003)

    Google Scholar 

  14. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  15. Pardo, B., Birmingham, W.P.: Algorithms for chordal analysis. Computer Music Journal 26(2), 27–49 (2002)

    Article  Google Scholar 

  16. Pinto, A., van Leuken, R.H., Demirci, M.F., Wiering, F., Veltkamp, R.C.: Indexing music collection through graph spectra. In: Proceedings of the International Conference of Music Information Retrieval (2007)

    Google Scholar 

  17. Romming, C.A., Selfridge-Field, E.: Algorithms for polyphonic music retrieval: The hausdorff metric and geometric hashing. In: Proceedings of the International Conference of Music Information Retrieval (2007)

    Google Scholar 

  18. Ruppin, A., Yeshurun, H.: Midi music genre classification by invariant features. In: Proceedings of the International Conference of Music Information Retrieval (2006)

    Google Scholar 

  19. Ukkonen, E., Lemström, K., Maekinen, V.: Geometric algorithms for transposition invariant content-based music retrival. In: Proceedings of the International Conference of Music Information Retrieval (2003)

    Google Scholar 

  20. Woodruff, J., Pardo, B.: Using pitch, amplitude modulation, and spatial cues for separation of harmonic instruments from stereo music recordings. EURASIP Journal on Advances in Signal Processing, Article ID 86369 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mokbel, B., Hasenfuss, A., Hammer, B. (2009). Graph-Based Representation of Symbolic Musical Data. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics