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Abstract

The aim of this paper is to explore the properties of terminal Wiener index,
which is recently proposed by Gutman et al [3], and show the fact that there
exist pairs of trees and chemical trees which can not be distinguished by it.
We give some general methods to construct equiseparable pairs and compare
the methods in the case of Wiener index. More specifically, we show that
terminal Wiener index is degenerative to some extent.
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1. Introduction

There are many chemical indices proposed as molecular-structure descrip-
tors until now, one of the oldest and well studied chemical index is theWiener
index which was given by Wiener [4] in 1947. It can be expressed as:

W (G) =
∑

1≤i<j≤n

d(vi, vj) (1)

where d(vi, vj) is the distance between vertices vi and vj in a graph G, the
summation goes over all pairs of vertices of the given graph. For trees, Wiener
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got a very useful formula to calculate the Wiener index:

W (T ) =
∑
e∈T

n1(e|T ) · n2(e|T ) (2)

where n1(e|T ) and n2(e|T ) are the number of vertices of T , lying on the two
sides of e. The summation on the right-hand side of the equation goes over
all edges of the tree T . Obviously, if the tree T has n vertices, then for all of
its edges,

n1(e|T ) + n2(e|T ) = n

Based on Wiener index, a general index called Variable Wiener Index has
been proposed [5, 6]:

Wλ(T ) =
∑
e∈T

[n1(e|T ) · n2(e|T )]λ (3)

where λ is an adjustable parameter.
Definition 1 [1]: Assuming n1(e|T ) ≤ n2(e|T ), two trees T ′ and T ′′

of order n are said to be equiseparable if their edges e′1, e
′
2, · · · , e′n−1 and

e′′1, e
′′
2, · · · , e′′n−1 can be labeled so that the equality n1(e

′
i|T ′) = n1(e

′′
i |T ′′)

holds for all i = 1, 2, · · · , n− 1.
Wiener index has been extensive used in Computational Biology, Pre-

liminary screening of drugs and Complex Network. For example, it is a
measurement of average distance in network [7, 8]. In the design of econom-
ical networks, spanning trees of connected graph with smallest Wiener index
are very important in practice [9]. In Chemistry, Wiener index measures the
van der Waals surface area of an alkane molecule, which explains the correla-
tions found between W and a great variety of physico-chemical properties of
alkanes [10]. But if two or more chemical trees are equiseparable, then those
compounds will have similar physico-chemical properties which can not be
distinguished by Wiener index. It is a main drawback of many chemical
index structure-descriptors.

Gutman et al [1] pointed out that there does exist pairs of isomeric alkanes
whose variable Wiener index coincide for all values of the parameter λ. Some
former studies [1, 11] showed how to construct such equiseparable chemical
trees. As another point of view, Vukic̆ević and Gutman [2] gave a proof on
almost all trees and chemical trees2 have equiseparable mates.

2A tree is a chemical tree if its maximum degree is at most 4.

2



In [12], Smolenskii et al made use of terminal distance matrices to encode
molecular structures. The proposed reduced vector is less degenerative than
some other molecular codes. Based on those applications, Gutman et al
[3] proposed the concept of Terminal Wiener Index, which equals to the
summation of distance between all pairs of pendent vertices3 of trees, i.e.

TW (T ) =
∑

1≤i<j≤k

d(vi, vj) (4)

where vi and vj are pendent vertices of tree T , d(vi, vj) is the distance between
them, and the sum goes over all pairs of such pendent vertices.

Similar to the proof of (2), Gutman got another way to calculate the
terminal Wiener index.

TW (T ) =
∑
e∈T

p1(e|T ) · p2(e|T ) (5)

where p1(e|T ) and p2(e|T ) are the number of pendent vertices of T , lying on
the two sides of e, and the summation embraces all the n− 1 edges of T . We
will use p1(e), p2(e) instead of p1(e|T ), p2(e|T ) when there is no confusion.

Similar to Wiener index, we define the variable terminal Wiener index so
that it can have more molecular-structure descriptive power.

Definition 2: Variable terminal Wiener index is defined as follows:

TWλ(T ) =
∑
e∈T

[p1(e) · p2(e)]λ (6)

where λ is an adjustable parameter.
Unfortunately, with this more powerful index, there still exist pairs of

trees and chemical trees whose variable terminal Wiener index coincide for
all values of the parameter λ. We can see it from the example in Figure 1,
where T1 and T2 have same variable terminal Wiener index, 5 · 2λ.

Based on this fact, we define the equiseparability w.r.t. terminal Wiener
index.

Definition 3: Assuming p1(e) ≤ p2(e), two trees T ′ and T ′′ of order n
with the same number of pendent vertices are said to be equiseparable w.r.t.
terminal Wiener index if their edges e′1, e

′
2, · · · , e′n−1 and e′′1, e

′′
2, · · · , e′′n−1 can

3In this paper, pendent vertices indicate leaves of the tree.
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be labeled so that the equality p1(e
′
i|T ′) = p1(e

′′
i |T ′′) holds for all i =

1, 2, · · · , n− 1.
We see that equiseparable trees w.r.t. terminal Wiener index have equal

terminal Wiener indices, variable terminal Wiener indices (for all λ).
In Section 2, we explore different rules for constructing equiseparable

trees w.r.t Wiener index and terminal Wiener index. In Section 3, we give
a formal proof of the fact that terminal wiener index has the degenerative
phenomenon as the wiener index.

2. Rules for constructing equiseparable trees with respect to ter-
minal Wiener index

First, we show that the methods of constructing equiseparable trees w.r.t
Wiener index in [1, 11] can be extended to construct equiseparable trees w.r.t
terminal Wiener index.

In [1], Gutman got some rules for constructing equiseparable chemical
trees w.r.t. Wiener index. But they are in fact special cases of the method
obtained in [11], which can be stated as:

Theorem 1 [11]: Let T , X and Y be arbitrary trees, each with more
than two vertices. Let the tree T1 be obtained from T by identifying the
vertices u and s, and by identifying the vertices v and t. Let T2 be obtained
from T by identifying the vertices u and t, and by identifying the vertices v
and s. Then if X and Y have equal number of vertices, the trees T1 and T2

are equiseparable. See Fig.2.
If we revise the condition felicitously, then Theorem 1 can be extended

to construct equiseparable trees w.r.t. terminal Wiener index.
Theorem 2: Let trees T1 and T2 be constructed the same as they are in

Fig.2. If px − ps = py − pt, then the trees T1 and T2 are equiseparable w.r.t.
terminal Wiener index. px and py denote the number of pendent vertices of
fragments X and Y , respectively. ps is equal to 1 if s is a pendent vertex of
X, otherwise it is equal to 0. pt is defined similar to ps.
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Proof: We prove it by classifying the edges of T1 and T2 into four types
and each type of edges satisfy Definition 3.

(1) For edges belonging to T , lying on the same side of u and v. For
example, edge e′ of T1 and e′′ of T2, both lying on the left of u. We have
p1(e

′|T1) = p1(e
′′|T2) = p1(e|T ), p2(e′|T1) = p2(e

′′|T2) = p2(e|T )+px+py−k,
where k is a constant which equals the number of pendent vertices among
{u, v, s, t}. So this type of edges can be labeled so that p1(e

′|T1) = p1(e
′′|T2)

always holds. The same applies to edges lying on the right of v.
(2) For edges belonging to X. Obviously there is a bijection between the

edges of fragment X of T1 and the edges of fragment X of T2, so this type of
edges can also be labeled so that p1(e

′|T1) = p1(e
′′|T2) always holds.

(3) For edges belonging to Y . It is the same as case (2).
(4) For edges belonging to T , lying between the vertices u and v. Accord-

ing to whether vertices u, v, s, t are pendent vertices of their corresponding
fragments, this case can be divided into 24 = 16 subcases. We only check
three typical subcases here, others can be proved similarly.

(4.1) None of them is pendent vertex.
Then we have p1(e

′|T1) = p1(e|T ) + px, p2(e
′|T1) = p2(e|T ) + py and

p1(e
′′|T2) = p1(e|T ) + py, p2(e

′′|T2) = p2(e|T ) + px. Combined with ps = 0
and pt = 0, we get that the equality px − ps = py − pt implies the edges lying
between u and v satisfy Definition 3.
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(4.2) One of them is pendent vertex, for example, s is a pendent vertex
of X.

Then we have p1(e
′|T1) = p1(e|T ) + px − 1, p2(e

′|T1) = p2(e|T ) + py and
p1(e

′′|T2) = p1(e|T )+py, p2(e
′′|T2) = p2(e|T )+px−1. Combined with ps = 1

and pt = 0, we get that the equality px − ps = py − pt implies the edges lying
between u and v satisfy Definition 3.

(4.3) Two of them are pendent vertices, for example, s is a pendent vertex
of X while v is a pendent vertex of T .

Then we have p1(e
′|T1) = p1(e|T ) + px − 1, p2(e

′|T1) = p2(e|T ) + py − 1
and p1(e

′′|T2) = p1(e|T ) + py, p2(e
′′|T2) = p2(e|T ) + px − 2. Combined with

ps = 1 and pt = 0, we get that the equality px − ps = py − pt implies the
edges lying between u and v satisfy Definition 3.

After checking all 16 subcases we get that edges lying between u and v
can be labeled so that p1(e

′|T1) = p1(e
′′|T2) always holds.

Aggregating these four cases, we can see that if px − ps = py − pt, then
p1(e

′
i|T ′) = p1(e

′′
i |T ′′) holds for all i = 1, 2, · · · , n−1, which implies that trees

T1 and T2 are equiseparable.
On the other hand, trees are equiseparable w.r.t. Wiener index does not

imply they are equiseparable w.r.t. terminal Wiener index, since that the
terminal Wiener index is the sum of the distance between all pairs of pendent
vertices but not pairs of vertices. For example, the trees T1 and T2 in Fig.3
are equiseparable w.r.t. Wiener index but not equiseparable w.r.t terminal
Wiener index. So, it is worth to find some general rules for constructing
equiseparable trees w.r.t terminal Wiener index only.

The following theorem and corollary are rules to construct equiseparable
trees w.r.t terminal Wiener index but not Wiener index.

Theorem 3: Let Z be an arbitrary tree, u is a vertex of Z, tree T1 is
obtained by identifying the vertices u and i, T2 is obtained by identifying the
vertices u and j. If X and Y have equal number of pendent vertices, then
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the trees T1 and T2 are equiseparable. See Fig.4.
Proof: Suppose the number of pendent vertices of fragments X, Y and

Z are px, py and pz, respectively. If u is a pendent vertex of Z then k is equal
to 1, otherwise k is equal to 0.

For each pair of edges e′ of T1 and e′′ of T2 which lying on the left of
vertex i, the number of pendent vertices sit on the two sides of these edges
are px and py + pz − k, respectively. So the edges lying on the left of vertex
i can be labeled so that p1(e

′
i|T1) = p1(e

′′
i |T2) always holds.

The same applies to the edges which lying on the right of vertex j and
belonging to fragment Z, so we only need to consider the edges lying between
vertices i and j.

For the edge e′ of T1 which lying between i and j, the number of pendent
vertices sit on the two sides of e′ are px+ pz −k and py; For the edge e

′′ of T2

which lying between i and j, the number of pendent vertices sit on the two
sides of e′′ are px and py + pz − k.

Since px = py, we can label the edges e′1, e
′
2, · · · , e′n−1 of T1 and e′′1, e

′′
2, · · · , e′′n−1

of T2, so that the equality p1(e
′
i|T1) = p1(e

′′
i |T2) holds for all i = 1, 2, · · · , n−1.

Therefore T1 and T2 are equiseparable w.r.t. terminal Wiener index.
Note that since TW (T ) only depends on the distance between pairs of

pendent vertices, the position of fragment Z can be arbitrary lying on the
path from 1 to k. But for Wiener index, things are different. Fragments X
and Y having equal number of vertices is not sufficient for equiseparability
when fragment Z moving arbitrary between vertex i and j, we can see it
from two trees in Fig.1.

Theorem 3 can be extended to the circumstances when they are more
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than one fragment on the path from 1 to k.
Corollary 1: If the fragments X and Y have equal number of pendent

vertices, the fragments Z1, Z2, · · · , Zt moving without changing the distance
between them, then the resulting two (chemical) trees are equiseparable w.r.t.
terminal Wiener index. See Fig.5 for illustration.

The proof of Corollary 1 is omitted here.

3. Degeneracy of terminal Wiener index

Vukic̆ević and Gutman [2] developed a powerful technic to prove almost
all trees and chemical trees have equiseparable mates w.r.t. Wiener index,
the proof of the chemical trees case is omitted since it is more complicated
than the case of trees. In this section, we show that the terminal Wiener
index is degenerative by proving almost all chemical trees have equiseparable
mates.

Let T be an n-vertex tree with k (2 ≤ k ≤ n − 1) pendent vertices,
e1, e2, · · · , en−1 are its edges. We can relate T to a sequence φ(T ) as follows.
Assume that for each edge ei of tree T , p1(ei|T ) ≤ p2(ei|T ). Let tj(T ) among
the numbers p1(ei|T ), i = 1, 2, · · · , n− 1, be equal to j, j = 1, . . . , ⌊k/2⌋. In
other words, tj(T ) is the number of edges such that the number of pendent
vertices lying on one side of ei that are less than the other side, is equal to
j. Then the ordered ⌊k/2⌋-tuple of integers (either positive or zero)

φ(T ) = (t1(T ), t2(T ), · · · , t⌊k/2⌋(T ))
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is called the separation sequence of T .
Remark: (i) The separation sequence φ(T ) = (t1(T ), t2(T ), · · · , t⌊k/2⌋(T ))

does not dependent on the labeling of the edges of T ;
(ii) Since an n-vertex tree T with k pendent vertices has n − 1 edges,∑⌊k/2⌋

j=1 tj(T ) = n− 1;
(iii) Let T1 and T2 be two n-vertices trees with k pendent vertices. By

Definition 3, T1 and T2 are equiseparable if and only if φ(T1) = φ(T2), i.e.,
two n-trees with the same number of pendent vertices are equiseparable if
and only if their separation sequence coincide.

Theorem 4: The terminal Wiener index is degenerative in the sense that
almost all chemical trees have equiseparable mates.

Proof: Let CTn be the set of chemical trees of order n, and Un and CUn

the sets of trees and chemical trees of order n having no equiseparable mates,
respectively. Let |S| denote the number of elements in set S. Then what we
need to prove is

lim
n→∞

|CUn|
|CTn|

= 0.

We first give an upper bound of |CUn|. It is obviously that |CUn| ≤ |Un|.
Let Un,k be the set of trees with n vertices and k pendent vertices having

no equiseparable mates. Then Un = Un,2 ∪ Un,3 ∪ · · · ∪ Un,⌊k/2⌋, and |Un| ≤
n−1∑
k=2

|Un,k|.

Let A be the set of ordered ⌊k/2⌋-tuples of nonnegative integers whose

sum is equal to n − 1. Then |A| =

(
⌊k/2⌋+ n− 2
⌊k/2⌋ − 1

)
according to the

standard result of Combinatorics.
Now, let φ : Un,k → A and φ(T ) is the separation sequence of T for

any T ∈ Un,k. By Remark (iii), φ is injective, and we have |Un,k| ≤ |A| =(
⌊k/2⌋+ n− 2
⌊k/2⌋ − 1

)
.

So, we have an upper bound on |Un|,

|Un| ≤
n−1∑
k=2

|Un,k| ≤
n−1∑
k=2

(
⌊k/2⌋+ n− 2
⌊k/2⌋ − 1

)
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=


2

(n−3)/2∑
k=1

(
k + n− 2

k − 1

)
+

(n−1
2

+ n− 2
n−1
2

− 1

)
for n is odd;

2

n
2
−1∑

k=1

(
k + n− 2

k − 1

)
for n is even

by employing combinatorial recursive formula, we get

|CUn| ≤ |Un| ≤


2

(n−1)/2∑
k=1

(
k + n− 2

k − 1

)

2

n
2
−1∑

k=1

(
k + n− 2

k − 1

) ≤


2

(3n−3
2

n−3
2

)
for n is odd;

2

(3n−4
2

n−4
2

)
for n is even

For |CTn|, Otter [13] obtained an asymptotic value for the number of
trees Tn,m of order n and maximum degree m, i.e., for 3 ≤ m < ∞,

|Tn,m| ∼
β3 · am−3

4
√
π · α−2.5

αn

n2.5

where α, β and am−3 are constant for any fixed m. Specifically, for m = 4,
i.e., for chemical trees, α = 2.81546, β = 3.08039, a1 = 2.11742. Hence we
get

|CTn| ∼ k · αn

n2.5
, k = 0.65632, α = 2.81546

Obviously, |CTn| is exponential on n. Then we have

lim
n→∞

|CUn|
|CTn|

= 0.
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