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Abstract. In this paper we argue that maximum expected utility is a
suitable framework for modeling a broad range of decision problems aris-
ing in pattern recognition and related fields. Examples include, among
others, gaze planning and other active vision problems, active learn-
ing, sensor and actuator placement and coordination, intelligent human-
computer interfaces, and optimal control. Following this remark, we
present a common inference and learning framework for attacking these
problems. We demonstrate this approach on three examples: (i) active
sensing with nonlinear, non-Gaussian, continuous models, (ii) optimal
experimental design to discriminate among competing scientific models,
and (iii) nonlinear optimal control.

1 The Principle of Maximum Expected Utility

Broadly speaking, utility reflects the preferences of an agent. That is, if outcome
01 is preferred to o9 (i.e. 01 = 02), we say that o1 has higher utility than oy. More
formally, let 01 = 0o denote weak preference, 0; >~ 02 denote strong preference
and o1 ~ 0 denote indifference. Define a lottery to be a random set of outcomes
with corresponding probabilities: I = [(01,p1), (02,p2), .- -, (0k, Pr)], Where the
probabilities satisfy p; > 0 and Zf p; = 1 as usual. Now consider the following
axioms:

1. Completeness: Yoy, 02, we have 01 > 02, 03 > 01 Or 01 ~ 05.

2. Transitivity: If o1 > oy and 02 > 03, then o1 > o3.

3. Substitutability: If o; ~ os, then for all sequences of outcomes os, ..., 0k
and sets of probabilities p, ps,...,pr for which p + Zf:s p; = 1, we have
[(01717)5 (037103), ) <0k7pk)] ~ [(02,]7), (037]7)7 R (07€7p/€)]'

4. Decomposability: Let P;(0;) be the probability that outcome o; is selected
by lottery . If for all o;: P, (0;) = Py, (0;), then Iy ~ Is.

5. Monotonicity: If o; > 02 and p > ¢, then [(01, p), (02, 1—p)] = [(01, q), (02, 1—
q)]-

6. Continuity: If o > o0s and 0y > o3 then Jp € [0,1] such that oy ~
[(01,])), (037 1 - p)]

Using these axioms, von Neumann and Morgenstern [16] proved the following
fundamental result showing the existence of utility:



Theorem 1. If a preference relation = satisfies axioms 1 to 6 above, then there
exists a function u mapping outcomes to the real line with the properties that:

1. u(o1) > u(o2) iff 01 = 02
2. u([(01,p1), (02,02), - -, (0, p1)]) = S, u(0;)p;.

Expected utility does therefore arise as a rational consequence of fairly unassail-
able axioms. An agent expecting to behave optimally must maximize its expected
utility; see [14] for a more comprehensive treatment.

Following this result, it is reasonable that our goal in decision making under
uncertainty be one of finding an optimal strategy 7* that maximizes the expected
utility U(m) of the agent:

7" = argmax U(nw), with U(n) = /u(x,w)p(m\w) dx (1)

™

Note, we are integrating over all possible unknown states x (that is we are con-
sidering all possible worlds and weighting them according to how likely we deem
them). U(w) then describes how useful we expect the outcomes of adopting a
policy to be based on the current beliefs encoded in p(x|7). In the MEU view, we
are assuming that we can solve the joint maximization and integration problem.
In general we can’t do this and are forced to make approximations. Theories
that take into account these approximations have appeared under the umbrella
of bounded rationality. The application domain of the MEU principle is very
broad. The principle can be used to guide the placement and control of a net-
work of sensors in a changing environment, to decide what data must be gathered
to improve a classifier, to plan a sequence of gazes to dynamically understand a
visual scene, to plan the trajectory of a robot so as to minimize resources, and
so on. In this paper, we will present an inference and learning approach for solv-
ing MEU problems. This single approach will suffice to solve difficult nonlinear,
non-Gaussian problems arising in myopic and sequential (multi-stage) decision
making. We discuss these two problems in the following subsections.

1.1 Myopic Decision Making

We will illustrate myopic decision making in the context of Bayesian experimen-
tal design. We don’t lose much generality doing this because Bayesian experimen-
tal design is a broad field of study that is applicable to many problems, including
active vision, sensor network management and active learning. We assume that
we have a measurement model p(y|6, 7) of experimental outcomes y € Y given a
design 7 as well as a prior p(#) on the model parameters § € ©. The prior could
be based on expert knowledge or previous experiments. We recover the general
model presented in the previous section by noting that « = {y, 6}.

The model parameters as well as future observations are unknown so we
have to integrate out over their probability distributions. (In the simple case of
learning a regression function or a classifier, which is widely studied in active



learning, © would correspond to the predictors (inputs) and y to the correspond-
ing covariates (outputs).) The general goal is then to choose the optimal design
m* € RP, which maximizes the expected utility

Ur)= / / uly, m,0) p(O)p(y]8, ) dy db (2)

with respect to some measure of utility u(y, 7, ). When the model parameters
are the objects of interest, which will be the case in Section 3.1, the negative
posterior entropy is commonly chosen as the utility function. That is, one aims
to maximize

u(y, 7, 0)= / POy, mlog p(8' |y, 7)d8.

This measures how concentrated the belief distribution over the parameters is
after conducting an experiment with design 7 and observing outcome y. Note
the difference between 6 and 6’ here. 6 represents the true model parameters
of the possible world under consideration in which the hypothetical experiment
is conducted. The outcome y is generated according to p(y|0, 7). p(6'|y, 7) then
is the belief distribution over the model parameters that we would have after
observing y. Note that this particular utility function does not actually depend
on . It merely measures how peaked the posterior belief p(6'|y, ) is, not how
close it is to the ‘real’ 6. In the case of a linear-Gaussian model, this entropy
based utility function is referred to as Bayesian D-optimality [1].

In general, the choice of utility function should reflect the objective of the
experiment as well as costs and risks related to the experiment as well as possible.
For example in a medical trial the goal might be to gain the maximum amount
of information about the effects of a new drug while at the same time keeping
the risk of people dying (or suffering severe side effects) to a minimum and also
minimizing the monetary cost of the trial. The utility function would then consist
of several terms representing these (possibly conflicting) objectives. Another
interesting choice of utility is given in Section 3.2 of this paper.

1.2 Sequential Decision Making

In the previous section, we only considered integrating over the outcome at the
next step of decision making. In general, we would like to plan several steps
ahead. This type of planning can be modeled with a Markov decision process
(MDP); illustrated in Figure 1. Here we are integrating over an infinite sequence
20:00 = {20,21,---}, where each z, = (sp,an,r,) represents a tuple of state,
action, and reward at time n.

The design parameter 7 in this setting determines a policy for choosing an
action a,, based on the current state s, according to p(an|sn, ). Given a policy,
the states and rewards of the Markov process evolve according to an initial-state
model: s9 ~ u(sp), a transition model: s,+1 ~ p(Sn11|Sn,an), and rewards:
Tr ~ P(Tn|Sn, an). We can then define the utility function for a single trajectory
as its discounted reward, u(zo.00) = Y pe V" Tn- Intuitively the discount factor



Fig. 1. A graphical model depicting the random variables for an MDP.

v € [0, 1] emphasizes immediate rewards over more distant future rewards. Our
goal is then to find the policy 7* which maximizes this expected utility:

U(Tf) = / lz ’yn Tn] p(ZO:oo‘ﬂ-) dzO:oo-
n=0

This integration problem is made difficult, however, by the fact that zg..o is an
infinite dimensional object.

Following [15], it is possible to move the expectation inside the summation
and rewrite the expected utility as

U(ﬂ') = (1 - '7)71 Z/Tnp(n’ ZO:n|7T) dzo:n
n=0

where this expectation is taken with respect to the trans-dimensional distribution

n

p(n, zo:n|m) = (1 =) 7" p(20|m) HP(ZJ‘|ZJ‘—177T)- (3)

With this formulation we are still integrating! over an infinite-dimensional quan-
tity, but now we have broken this into a joint integral where one of our random
variables is the dimensionality n. Note, however, that the general form of Equa-
tion (1) can be recovered by letting = (n, 2¢.,) and defining our utility as the
final reward in each finite-length trajectory wu(n, zo.n) = n.

It is also possible to further generalize this model to take into account
situations where the states s, are not visible, and instead some observations
Yn ~ D(Yn|Sn) are given. This model, known as a partially observable MDP
(POMDP), is a much more difficult problem and is not one currently tackled by
this framework.

2 A Common Solution Framework

The joint optimization and nested integration problem in equation (1) is com-
putationally challenging. For this reason, much of the research in experimental

! We note that the sum over n is really an integral over the natural numbers.



design and control has focused on the simple linear-Gaussian models, for which
closed form solutions exist [2,3]. Recently, however, there has been a flurry of
work applying inference and learning techniques to more difficult nonlinear prob-
lems. In the context of control this seems to have originated with [4], although
only immediate rewards are considered, thus making it perhaps more applica-
ble to the setting of myopic experimental design. In this section we will focus
on a promising sample-based technique originating in the experimental design
literature [10].

One possible strategy for solving these problems involves sampling policies 7
and hidden states = from the artificial target distribution

h(m,x) o< u(z, ) p(x|r). (4)

We can see by marginalizing over x that this produces a distribution

h(m) /’U,({,CJT) p(z|r)de = U(r)

proportional to the expected utility. In order to sample from this distribution we
must assume that u(z, 7) is positive and finite but this is easy to ensure so long
as the utility is bounded. We may also be required to introduce a prior p(w) to
ensure that this distribution is well defined, but typically a uniform distribution
over some bounded region is sufficient.

If U(x) happens to have a strongly dominant and highly peaked mode around
the global maximum 7*, we can justify sampling from (4) and deriving a point
estimate by averaging these samples. In the context of sequential decision making
this is the approach taken in [6]. However, in general the assumption of such a
favorable U (7) is unrealistic, and applying this strategy to a multimodal or fairly
flat utility landscape will yield poor estimates.

Other strategies involve discretizing the policy space R?P and approximating
the integrals with direct Monte Carlo methods. However, these approaches are
expensive and inadequate for high dimensional spaces. To eliminate the need for
discretization, Miiller et al. [10] proposed a Markov chain Monte Carlo anneal-
ing technique for simultaneous maximization and integration. They define the
following artificial target distribution

J
hy(m,x1.5) H u(m, z;)p(x;|m)

j=1

Marginalizing this distribution over the unknown outcomes and parameters gives

hy(m) = // hy(m,xy.5)dxy.g = // ]j w(m, z;)p(z;|m) de.s

J J
— U(x) / / [T wtr)p(aslm) oy = [0 = 07 (o).



For large exponents J, the probability mass of this distribution will concentrate
on the global maximum for 7*. However, because the modes of this distribution
will typically be narrow and widely separated for large J, sampling from this
distribution using Markov chain Monte Carlo techniques directly is difficult. We
must therefore take a simulated annealing approach in which we start sampling
from U”(m) for J = 1 and slowly increase this exponent over time according
to some annealing schedule. Increasing J slowly enough allows the chain to
efficiently explore the whole parameter space before becoming more constrained
to the major modes.

In order to apply this technique to problems of sequential decision mak-
ing we must use reversible jump MCMC [5] to sample from trans-dimensional
distributions such as (3); see [6,7] for more details on applying these ideas to
control problems. In the myopic experimental design setting we advise the use
of sequential Monte Carlo samplers [8] (see also Figure 2).

3 Demonstrations

3.1 Active Sensing Example

As a first example we study a synthetic problem that, despite its apparent sim-
plicity, exhibits complex multi-modality. In particular, we address the problem
of inferring the parameters of a sine wave. This non-linear experimental design
example is motivated by the problem of scheduling expensive astronomical ob-
servations [9]. The sine wave is parameterized by 6 = {A,w, p} where A is the
amplitude, w the frequency and p the phase

y=f(mAw,p)+e=Asin(rw+p) +e.

Here € denotes the normally distributed measurement noise. The objective is to
find the optimal location 7* along the x-axis at which to make the next noisy y
measurement in order to maximally reduce uncertainty about the parameters 6.
In the example shown in Figure 2, two prior observations have already been made
and the design problem consists of choosing the optimal third measurement. That
is, the prior belief p(f) here is actually the posterior parameter distribution after
these first two measurements. Figure 2(a) shows some sine waves corresponding
to samples from this p(#), visualizing the belief about possible sine waves.

The corresponding expected utility function U(w) shown in Figure 2(b) is
proportional to the uncertainty about y at a given point 7 along the x-axis.
This function is highly multi-modal, with most of the modes having similar
magnitudes. However exponentiating this function to a power of 50 concentrates
most of the probability mass on the major mode, so that samples distributed
proportional to this function provide a good basis for estimating 7*. When using
a single MCMC chain using the approach of [10], the chain often gets trapped in
the minor modes, as can be seen in Figure 2(c). The interaction between multiple
particles in the SMC samplers algorithm we proposed in [8] helps avoid this and
yields a much better estimate as shown in Figure 2(d).
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Fig. 2. Plot (a) shows sine waves visualizing the belief after 2 initial observations. The
corresponding expected utility U(w) for the maximum entropy criterion from Equa-
tion 1.1 is shown as a dashed blue line in (b) while U(7)%® is displayed in solid red.
Plot (c) presents a histogram of the final samples of 100 independent MCMC chains us-

ing the approach of [10] when annealing to U (7)"°, while (d) shows the result achieved
using 100 interacting particles using our SMC samplers algorithm proposed in [8].

3.2 Experimental Design to Choose Among Scientific Models

Often in science and economics, several mathematical models are proposed for
describing a common phenomenon. It is therefore important to have a sound
mechanism for gathering evidence so as to validate the various model options
and assess their merits. For example, in mathematical psychology — a branch
of psychology concerned with the mathematical modeling of various aspects of
human cognitive performance — researchers have proposed the use of automatic
experimental design techniques to find the most plausible model from a set
of model alternatives [11]. In this domain, the goal is to choose an optimal
experiment for maximally discriminating among several given models. Since such
experiments tend to be very costly and work intensive, it is crucial to carefully
design them to gain the most information from them and make the most efficient
use of the resources involved.

There exists a large body of research in psychology on how we remember
and/or forget things. Typically this research involves experiments in which sub-
jects initially memorize some material (such as word lists) and are subsequently
tested for recall after several different time intervals. A survey of many such stud-
ies is presented in [13]. The percentage of recalled items monotonically decreases
over time according to a function of roughly logarithmic shape. The question



that researchers in mathematical psychology are interested in is exactly which
mathematical function best describes human retention performance.

Following [11], we are concerned in this example with differentiating among
two previously proposed models. More specifically, we assume that a trial in
which a single item has to be recalled after time ¢ is repeated n times. The
probability that a subject will remember k out of the possible n objects is given
by the Binomial distribution: p(k|n, p) = (})p*(1 — p)"".

The two models considered for predicting the probability of retention p after
elapsed time ¢ have 2 parameters ¢ = {a,b}. The first is an exponential model,
pu. (t,¢) = a e~ while the second one is a power model pyy, (t,¢) = a (t+1)7°.

In our example, the goal will be to compute the optimal 2 point design
T = t1.0 = {t1,t2}. That is, we need to choose the two time lags after which the
subject’s retention will be tested. We are seeking the design that will allow us to
best distinguish between the two models. We adopt a Bayesian model comparison
criterion for our utility function. The utility of an experiment with design t1.o
and experiment outcomes k1.0 is given by the posterior marginal probability of
the true model M which generated the data

2
u(ti2, ko, M) = p(Mt1:2, ki:2) o /Hp(kj|napM(tjv¢))p(¢|M) do
j=1

where p(¢|M) is the prior on the parameters for the model under consideration;
In our experiments we used an empirical prior based on data from a previously
conducted study [12]. Intuitively, an experiment is of high utility if we strongly
favor the true model after observing the experiment outcome.

To compute the expected utility according to Equation (2) we need to inte-
grate over the unknown model parameters 6, wich in this case consist of {M, ¢}
as well as over the possible experiment outcomes y = k1.o. The expected utility
of an experiment design t¢;.5 is then

Ulti2) = % > /U(t1;2, k12, M) p (k1:2n, pa(ti2, ¢)) p (4| M) dkr:2 d
Me{M,,M,}

As in Section 3.1 we are using an SMC samplers approach, employing a sys-
tem of interacting particles to efficiently sample from U (t1.2|n)1%°. The resulting
samples as well as the derived optimal design are shown in Figure 3.

3.3 Control Example: Particles with Force-Fields

Consider a physical system consisting of particles moving in a 2-dimensional
space. The particles are released from some stochastic start region, fall down-
wards under the force of gravity, and are slowed by a frictional force resisting
movement. At each discrete time step the particles receive some reward based
on their current position and the position and velocity are then updated using
a simple forward simulation. The goal is to direct the particles, using additional
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Fig. 3. Figure (a) shows the computed optimal design for discriminating between
the power and exponential model for explaining human memory performance;
the two black bars are the optimal time points for testing a subject’s retention.
For illustration we show fits of the two models (red and blue curve) to an example
subject’s data from a previous study [12] (black dots). Figure (b) visualizes both
U (t1.2|n) (background colors) as well as the final samples from U (t1.2|n)!%° (black
points) that the optimal design in (a) was derived from.

forces, through high reward regions of the state space in order to maximize their
expected utility.

The four-dimensional state-space in this problem consists of a particle’s posi-
tion and velocity s, = (p,p) for p € R?, and actions a,, consist of external forces
acting on the particles. In particular, we will use a policy defined by a set of
“repellers” which push each particle directly away from themselves with a force
inversely proportional to their distance from the particle. More precisely, the
force acting on a particle at position p is given by a, = f=(p) = >, wiﬁ,
where this policy is parameterized by © = {(¢1,w1),...} for repeller centers ¢;
and strengths w;. Example trajectories for different policies are shown in Fig-
ure 4. In these examples rewards r,, are defined using a simple Gaussian defined
over the particles’ position p.

This model is particularly interesting because it is highly multimodal with
large flat regions in the expected utility surface. In Figure 4(b) we can see one
policy which very quickly moves particles into the reward region. A better policy
can be seen in 4(c), in which one repeller is used to direct particles towards the
reward region while another repeller slows particles so that they stay in this
region as long as possible. This better policy is the one ultimately found by the
procedure described in this paper.
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