
(draft)
Experimental analysis of insertion costs in a

näıve dynamic MDF-tree

Luisa Micó and Jose Oncina

Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante

P.O. box 99, E-03080 Alicante, Spain
{mico,oncina}@dlsi.ua.es
http://www.dlsi.ua.es

Abstract. Similarity search is a widely employed technique in Pattern
Recognition. In order to speed up the search many indexing techniques
have been proposed. However, the majority of the proposed techniques
are static, that is, a fixed training set is used to build up the index. This
characteristic becomes a major problem when these techniques are used
in dynamic (interactive) systems. In these systems updating the training
set is necessary to improve its performance. In this work, we explore the
surprising efficiency of a näıve algorithm that allows making incremental
insertion in a previously known index: the MDF-tree.

1 Introduction

In the area of similarity search techniques, the metric space searching is an arising
general approach that has received special attention. In this work we are inter-
ested in the most general case, when no assumption about the structure of the
prototypes (points) is made. Some examples are protein sequences (represented
by strings), skeleton of images (represented by trees or graphs), histograms of
images, etc.

Actually, many techniques have been proposed based on this approach (some
reviews can be found in [3][8][15]). These techniques, based on the use of any of
the elementary types of similarity queries, have been used in many applications.
For example, content based image retrieval [7], person detection or automatic
image annotation [13], texture synthesis, image colourisation or super-resolution
[1]. However, most of the existing techniques are static [14][2][10][11]. Then, the
insertion or deletion of one object in the index that has been built up in a
preprocessing step, requires a complete rebuild that is very expensive.

In recent years, an increasing attention on interactive systems has been ob-
served in the information technology society. In particular, during an interactive
operation, new samples (new information) should be added in an on-line training
process adapting the model to the present situation.

When the system is not interactive and a similarity search technique is ap-
plied, the index is not updated. In this case, the only overhead is the search
of the query in it. But, if the index should be modified with insertions and/or
deletions of new objects to improve the behaviour of the system, there are a new
overhead related to the updating of the index.

Some methods to speed up insertion/deletion points have been proposed.
Some of them are focused in dynamic indexing in secondary memory ([4]) and
others are focused to work in main memory [12]. In some cases, the dynamic ap-
proaches have been proposed based as modifications of a previous existing static
indexing algorithm but there are also techniques devised from the beginning as
dynamic such as the M -tree [5].

In this paper we analyse experimentally a näıve strategy to insert new sam-
ples in the Most Distant from the Father tree (MDF-tree). This type of structure
have been used in several hierarchical search procedures ([9],[6]) but no dynamic
approach has been proposed up to now for it.

2 New incremental indexing approximation

The MDF-tree is a binary indexing structure proposed and used in [9][6] based
on a hyperplane partitioning approach. The main characteristic of the method is
related to the selection of the representatives for the next partition. To build up
the tree, firstly a pivot is randomly selected as the root of the tree (first level).
After that, a new pivot, the most distant from the root, is selected and the
space is divided according the distances to both pivots. On the following levels
the space is recursively divided between the current pivot of the subspace repre-
sented by the node and the most distant pivot in the subspace. This procedure
is repeated until each internal node has only one object.

For each node, a representative (the pivot) and the covering radius (the
distance from the pivot to the most distant point in the subspace) is computed
and stored in the respective node. This procedure is described in the algorithm 1.

The function build(ℓ, S) takes as arguments the future representative of the
root node and the set of objects to include in the tree (excluding ℓ), and returns
the MDF-tree that contains S ∪ {ℓ}. The first time that build(ℓ,S) is called, ℓ

is a random object. In the algorithm MT represents the representative of T , rT

the covering radius, and TL (TR) the left (right) subtree of T .

Although several similarity search strategies can be applied, in this work we
are focused in nearest neighbour search. The search procedure consists on a first-
depth traversal through the tree, looking for the nearest neighbour. Given a node
in the tree, the search continues through the child node whose representative is
nearest to the query. Using different types of elimination rules, some branches of
the tree are bounded and the search ends when no more possibilities to explore
in the tree are possible. The last candidate is selected as the solution.

Algorithm 1: build(ℓ, S)

Data:
S ∪ {ℓ}: set of points to include in T

ℓ: future left representative of T

create MDF-tree T

if S is empty then
MT = ℓ

rT = 0
return T

end

rT = maxx∈S d(ℓ, S)
r = argmaxx∈S d(ℓ, S)
Sℓ = {x ∈ S|d(ℓ, x) < d(r, x)}
Sr = {x ∈ S|d(ℓ, x) ≥ d(r, x)} − {r}
TL = build(ℓ,Sℓ)
TR = build(r,Sr)
return T

Algorithm 2: insert(T , x)

Data:
T : MDF-tree
x: object to insert in T

if d(MT , x) > rT then
return build(MT , {s|s ∈ T} ∪ {x} − {MT })

end

if TL is empty then
return build(MT , {x})

end

dℓ = d(MTL
, x) // this distance computation can be avoided

dr = d(MTR
, x)

if dℓ < dr then
TL = insert(TL, x)

end

TR = insert(TR, x)
return T

2.1 Rebuilding the tree

A first possibility consists on rebuilding the tree T each time it is necessary when
an insertion is performed.

In this work we focus on a procedure to obtain incrementally the exact struc-
ture that will be obtained if a complete rebuild of the tree was made. Note that
in such case the performance of the algorithm when searching is exactly the same
as in the static case. Then no further research in search degradation performance
is needed.

We are going to study a näıve approach. When a new object is inserted first
we search the position where object should appear as pivot in a static built tree.
Then, the affected part of the tree is completely rebuilt.

This may seems a quite expensive strategy, but as the pivots are very unusual
objects (the farthest of its sibling pivot), big reconstructions of the tree happens
with a very low probability compensating its high cost.

Let T be the MDF-tree built using a sample set S. Let x be the new object
we are interested to include in the index, and let T ′ the MDF-tree built using
the sample set S ∪ {x}. The algorithm works rebuilding the subtree of T that is
different from T ′.

Let we denote by MT the representative of the root node of the MDF-tree
T , rT be its covering radius, and TL (TR) the left (right) MDF-subtrees of T .

We have several cases:

– If d(MT , x) > rT , T ′ differs from T in the root node because the object x is
selected in T ′ as the representative of the right node. Then the whole tree
T is rebuilt in order to include x.

– Otherwise, the roots of the trees T and T ′ are identical. Then we have two
cases:
• if d(MTL

, x) < d(MTR
, x) the object x should be inserted in the left tree

TL and then the tree T ′

R
is identical to TR.

• Conversely if d(MTL
, x) ≥ d(MTR

, x) the object should be inserted in TR

and the tree T ′

L
is identical to TL.

Algorithm 2 shows the insertion procedure.

3 Experiments

Some experiments have been developed in order to study the performance of the
new approach.

The experiments where performed by extracting 5, 10 and 15 dimensional
points from the unit hypercube with a uniform distribution.

First, in order to study the distribution of the number of distance compu-
tations when a new point is inserted, 10000 insertions of one point over a fixed
MDF-tree with sizes 100, 1000, and 10000 was made. The number of distance
computations were counted and its histogram was depicted in figure 1. We show
only the case for dimension 10, the other cases are similar.

It can be observed that, as expected, almost all the insertions causes very few
distance computations and, conversely, there are very few insertion that causes
a big number of distance computations.

It can also be observed that this figure is very far of a normal distribution,
then on the following experiments instead of using the variance we used the 95
percentile.

In the next experiment we have depicted the expected number of distance
(over 1000 repetitions) for inserting a point when the databases grows from 100
to 10000 in steps of 100. The 95 percentile is also depicted (fig. 2). That means

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000

fr
eq

ue
nc

y

distance computations

Histogram of distance computation caused by an insertion (dim = 10)

|DB| = 100
|DB| = 1000

|DB| = 10000

Fig. 1. Histogram of the distance computations caused by an insertion for 100, 1000,
and 10000 database sizes in dimension 10.

that although the expected number of distance computations is the line showed
by the average, in the 95% of the cases the number of distance computations is
bellow the line of the 95 percentile.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

di
st

an
ce

 c
om

pu
ta

tio
ns

DB size

distance computation caused by an insertion (dim = 5)

average
95 percentile

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000

di
st

an
ce

 c
om

pu
ta

tio
ns

DB size

distance computation caused by an insertion (dim = 10)

average
95 percentile

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2000 4000 6000 8000 10000

di
st

an
ce

 c
om

pu
ta

tio
ns

DB size

distance computation caused by an insertion (dim = 15)

average
95 percentile

Fig. 2. Average distance computations caused by an insertion for increasing size
database sets and for dimensions 5, 10, 15.

Although these results are quite preliminary, it can be seen that the distance
computations caused by an insertion seems to grow very slowly with the database
size.

4 Conclusions

We have proposed a näıve algorithm that allows the insertion in MDF-trees
avoiding (with high probability) a complete rebuilt of the tree. We have also
performed several artificial experiments to support this assertion.

In the future we plan to make more extensive experimentation and develop
some ideas in order to have a theoretical support of this result.

We also plan to relax the condition on maintaining the same tree as if all the
objects were inserted at once with the hope to decrease the number of distance
computations and the stability of the algorithm.

5 Acknowledgements

This work has been supported in part by grants DPI2006-15542-C04-01 from
the Spanish CICYT (Ministerio de Ciencia y Tecnoloǵıa), the IST Programme
of the European Community, under the Pascal Network of Excellence, IST-2002-
506778, and the program CONSOLIDER INGENIO 2010 (CSD2007-00018).

References

1. S. Battiato, G. Di Blasi, and D. Reforgiato. Advanced indexing schema for imaging
applications: three case studies. Image Processing, IET, 1(3):249–268, 2007.

2. S. Brin. Near neighbor search in large metric spaces. In Proceedings of the 21st

International Conference on Very Large Data Bases, pages 574–584, 1995.
3. E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching in metric

spaces. ACM Computing Surveys, 33(3):273–321, 2001.
4. Ada Wai chee Fu, Polly M. S. Chan, Yin ling Cheung, and Y. S. Moon. Dynamic

vp-tree indexing for n-nearest neighbor search given pair-wise distances. VLDB

Journal, 9:154–173, 2000.
5. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for simi-

larity search in metric spaces. In Proceedings of the 23rd International Conference

on VLDB, pages 426–435, Athens, Greece, 1997. Morgan Kaufmann Publishers.
6. Gómez-Ballester E., Micó L., and Oncina J. Some approaches to improve tree-

based nearest neighbour search algorithms. Pattern Recognition, 39(2):171–179,
February 2006.

7. G. Giacinto. A nearest-neighbor approach to relevance feedback in content based
image retrieval. In CIVR ’07: Proceedings of the 6th ACM international conference

on Image and video retrieval, pages 456–463, New York, NY, USA, 2007. ACM.
8. G.R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces.

ACM Trans. Database Syst., 28(4):517–580, 2003.
9. L. Micó, J. Oncina, and R.C. Carrasco. A fast branch and bound nearest neighbor

classifier in metric spaces. Pattern Recognition Letters, 17:731–73, 1996.

10. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour approxi-
mating and eliminating search algorithm (aesa) with linear preprocessing time and
memory requirements. Pattern Recognition Letters, 15:9–17, 1994.

11. G. Navarro. Searching in metric spaces by spatial approximation. VLDB Journal,
11(1):28–46, 2002.

12. G. Navarro and N. Reyes. Dynamic spatial approximation trees. J. Exp. Algorith-

mics, 12:1–68, 2008.
13. A. Torralba, R. Fergus, and W.T. Freeman. 80 million tiny images: A large data

set for nonparametric object and scene recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(11):1958–1970, 2008.
14. P.N. Yianilos. Data structures and algorithms for nearest neighbor search in gen-

eral metric spaces. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, pages 311–321, 1993.
15. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric

Space Approach. Springer, 2006.

