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Universidad Politécnica de Valencia
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Abstract. Information fusion is currently a very active research topic
aimed at improving the performance of biometric systems. This paper
proposes a novel method for optimizing the parameters of a score fusion
model based on maximizing an index related to the Area Under the ROC
Curve. This approach has the convenience that the fusion parameters are
learned without having to specify the client and impostor priors or the
costs for the different errors. Empirical results on several datasets show
the effectiveness of the proposed approach.

1 Introduction

Biometrics is currently a very active area of research due to the numerous ap-
plications it offers. By biometrics it is meant the automatic identification of a
person by means of an anatomical or behavioral characteristic such as a facial
image or a fingerprint. A method for improving the performance of biometric
systems is to fuse information from several sources. This information can be
fused at different levels, which can be at the sensor, feature, match score or
decision levels. This work is focussed at match score fusion.

In the literature numerous score fusion approaches have been proposed. These
can be categorized into two groups, which are the non-training based methods
and the training based methods [1]. The non-training methods assume that the
output of the individual matchers are the posterior probabilities that the pattern
belongs to the claimed identity. Because this assumption is not generally true a
previous normalization step is required [2]. The training based methods as the
name suggest requires a training step. Among these are all of the methods which
treat the fusion as a classification problem [3–5].

A significant drawback that the classification approach to score fusion has,
is that these methods tend to minimize the classification error. However, the
standard way of comparing biometric systems is by using a ROC curve. This
way it is not necessary to specify which are the client and impostor priors or
what are the costs for each of the possible errors of the system, values which are
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difficult to estimate and vary depending on the application. From this perspec-
tive, minimizing the classification error may not improve the performance in the
practice. The Area Under the ROC Curve (AUC) summarizes the ROC curve,
and this can be a better measure for assessing biometric systems without having
to specify the priors or costs [6]. Motivated by this idea, in this work we propose
to learn the parameters of a score fusion model by maximizing the AUC. In the
literature there are several works on maximizing the AUC, due to lack of space
we limit ourselves to referencing a few [7–9].

The rest of the paper is organized as follows. The next section defines a score
fusion model and derives an algorithm which optimizes the model parameters by
maximizing the AUC. The experimental results are presented in section 3 and
the final section draws the conclusions and directions for future research.

2 Score Fusion by Maximizing the AUC

As was explained in the previous section, the AUC is an adequate measure to
assess the quality of a biometric system without having to specify the client and
impostor priors or the costs for the different errors. Motivated by this evidence,
we propose to derive an algorithm that learns the parameters of a score fusion
model by maximizing the AUC. In order to do this we have to address two
tasks, the first one is to define a model that fuses scores according to some
parameters, and second is to optimize the parameters of the model so that the
AUC is maximized.

To choose the model for score fusion we have taken into account the following
criteria. The model should be capable of weighting the different scores giving
more or less importance to each of them. Also, the model should be able to handle
scores with arbitrary input ranges. Finally the model should have few parameters
so that they can be well estimated evading the small sample size problem. A
simple method that fulfills the previous requirements is to first normalize the
scores so that they are all in a common range and afterwards combine linearly
the normalized scores.

2.1 Score Normalization

In the literature several methods for score normalization can be found, for a
review of the most used ones in biometric fusion refer to [2]. The normalization
we have chosen is based on the tanh-estimators which is somewhat insensitive to
the presence of outliers [2]. This normalization is a nonlinear transformation of
the score using a sigmoid function and it depends on two parameters, the sigmoid
slope and its displacement. The slope determines how fast is the transition from
zero to one, and the displacement indicates at what value the sigmoid is in the
midpoint of the transition. The sigmoid normalization is given by

φu,v(z) =
1

1 + exp[u(v − z)]
, (1)

where u and v are the slope and the displacement of the sigmoid respectively.
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2.2 Score Fusion Model

To be able to represent the model mathematically first we need to state some
definitions. Let z be an M -dimensional vector composed of the M scores we
want to fuse z1, . . . , zM . Furthermore let Φu,v(z) be a vector composed of the
normalized scores φ(z1, u1, v1), . . . , φ(zM , uM , vM ) and the vectors u and v be
a more compact representation of the sigmoid slopes u1, . . . , uM and displace-
ments v1, . . . , vM . As mentioned earlier, the model is a linear combination of the
normalized scores, then we denote the score weights by w1, . . . , wM which are
also represented more compactly by the vector w.

The input scores can be either similarity or distance measures, however the
sigmoid normalization can transform all of the scores to be similarity measures
by having a positive or negative slope. Given that all the normalized scores are
similarity measures, if they contain discriminative information then they should
have a positive contribution to the final score, otherwise they should not have
any contribution. Therefore without any loss of generality we can restrict the
weights to being positive, wm ≥ 0 for m = 1 . . . M . On the other hand, scaling
the fused score does not have any effect on its discrimination ability, thus we can
further restrict the weights so that their sum equals the unity,

∑M

m=1 wm = 1.
Note that given the two restrictions, the fused score has the nice property of
being a value between zero and one.

The score fusion model is given by:

fu,v,w(z) = wT Φu,v(z) . (2)

The parameters of the model are u, v, w ∈ R
M , which means that in total there

are 3M parameters that need to be estimated.

2.3 AUC Maximization

Although there are few parameters to be estimated in the score fusion model
(2), it can be highly computationally expensive to obtain an adequate estimation
and clearly brute force is not advisable. Therefore our aim is an index that is
directly related to the AUC and use an optimization procedure to maximize it.

Among the different alternatives to compute the AUC the one that lends
itself for the simplest optimization process is the one known as the Wilcoxon-
Mann-Whitney statistic:

A =
1

PN

P
∑

p=1

N
∑

n=1

H(xp − yn) , (3)

where P and N are the number of client and impostor samples respectively, and
H() is the Heaviside step function which has a value of zero or one for negative
and positive numbers respectively, and a value of 1/2 at zero.

The expression in equation (3) is not differentiable, therefore inspired on the
same ideas as in [10, 11], the Heaviside step function can be approximated using
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a sigmoid function. Doing this approximation and using the score fusion model
(2), leads to the following optimization index:

J(u,v,w) =
1

PN

P
∑

p=1

N
∑

n=1

Sβ

(

wT
(

x̂p − ŷn

)

)

, (4)

where the hat indicates that the sore is normalized, i.e. x̂p = Φu,v(xp) and
ŷn = Φu,v(yn), and the sigmoid function is defined by

Sβ(z) =
1

1 + exp(−βz)
. (5)

Care must be taken not to confuse this sigmoid function, which is used for AUC
maximization, with the sigmoid used for score normalization from equation (1).

To maximize the index (4) we propose to use a batch gradient descent pro-
cedure. To this end, we take the partial derivatives of the index with respect to
the parameters obtaining:

∂J

∂u
= w •

1

PN

P
∑

p=1

N
∑

n=1

S′

β

(

wT
(

x̂p − ŷn

)

)

•

(

(xp − v) • Φ′(xp) − (yn − v) • Φ′(yn)

)

;

∂J

∂v
= w • u •

1

PN

P
∑

p=1

N
∑

n=1

S′

β

(

wT
(

x̂p − ŷn

)

)

•

(

Φ′(yn) − Φ′(xp)

)

;

∂J

∂w
=

1

PN

P
∑

p=1

N
∑

n=1

S′

β

(

wT
(

x̂p − ŷn

)

)(

x̂p − ŷn

)

.

(6)

The big dot • indicates a Hadamard or entry-wise product, S′

β() is the derivative
of the sigmoid function (5) and the elements of the vectors Φ′(xp) and Φ′(yn)
are given by

φ′(z) =
exp[u(v − z)]

(1 + exp[u(v − z)])2
. (7)

Finally the corresponding gradient ascend update equations are

s(t+1) = s(t) + γ
∂J

∂s

(t)

, (8)

where s = {u,v,w} and γ is the learning rate. After each iteration the weights
are renormalized so that the restrictions of being positive and sum to unity are
met.
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This approach to maximization of the AUC has been previously mentioned
in the work of Yan et al. [7], however they report having significant numerical
problems for values of β > 2, in which case the sigmoid function is a poor
estimate of the step function. Our experience differs completely from this notion,
being the optimization quite stable for higher values of β on several data sets.

2.4 Notes on the Implementation of the Algorithm

The algorithm has a very high computational cost which makes it unpractical for
large datasets. However there are several approaches that can be used to speed
up the computation without sacrificing performance. For most of the client and
impostor score pairs the derivative of the sigmoid function is practically zero.
Therefore in each iteration a large amount of pairs can be discarded depending
on their relative difference. Another approach could be to use the stochastic
gradient ascend instead of the batch. This reduces significantly the amount of
iterations that the algorithms needs to converge.

2.5 Extensions of the Algorithm

An initial clarification must be made. Although in this paper a score fusion
model is defined and optimized, the maximization by AUC is a general approach
which can be applied to other models and other problems different from score
fusion. Furthermore the proposed score fusion model is very simple and linear
and therefore it is unable to handle complex distributions. Depending on the
problem, improvements to the model must be made.

Up to this point, the proposed model has very few parameters, and it is a
simple linear combination of normalized scores. The algorithm can be extended
to be nonlinear, it is as straight forward as adding new virtual scores which are
a nonlinear combination of the original scores. This nonlinear extension can also
be useful to increase the number of parameters of the score fusion model and
thus it increases its representation capability.

Along with the research on biometric score fusion there is another related
topic. This topic is the use of quality measures to determine how confident a
biometric score is. This information can greatly improve the recognition accu-
racy of the systems if they are taken into account during the fusion. An approach
to integrate the quality measures into the proposed model could be to include
these values as if they were other scores like it is done in [12]. However the qual-
ity values can mean different things under different circumstances [5], making
this approach unsatisfactory. A simple and better approach would be to include
the quality measures as scores but removing the restriction of the weight being
positive. This way the quality can reward or penalize the final score depending
on the circumstance.
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3 Experiments

The proposed approach was evaluated using three publicly available datasets.
The first dataset was the LP1 set of scores obtained from the XM2VTS face
and voice multimodal database [13]. This dataset includes eight biometric scores
per claim, five for face images and the remaining three for speech. The experi-
mentation protocol for this dataset is clearly defined, first there is an evaluation
set, which is used to optimize the fusion parameters, and then there is a test
set which is used to assess the performance. In total the evaluation set has 600
client and 40k impostor claims, and the test set has 400 client and around 112k
impostor claims.

The other two datasets used in the experiments were the Multimodal and the
Face datasets from the NIST Biometric Scores Set - Release 1 (BSSR1) [14]. The
Multimodal dataset is composed of four scores per claim, two correspond to face
matchers and the other two to the right and left index fingerprints for the same
matcher. This dataset has 517 client and around 267k impostor claims. Finally
the Face dataset is composed of two scores per claim, each one for a different
face matcher. In this case there are 6k client and 1.8M impostor claims. For
these datasets there is no experimentation protocol defined. In our experiments
we did a repeated hold-out using half of the data for training and the other half
for test, and repeated 20 times.

The results of the experiments for the test sets are summarized in the table 1.
For each dataset three results are presented. The first one is for the single matcher
which obtained the best result without doing score fusion. The second result is
the best one obtained by trying among several baseline techniques. The baseline
techniques tried were the sum, product, min and max rules, each one either with
z-score or maxmin normalization. The final result is for our technique (SFMA).
For each dataset and method the table presents three performance measures, the
AUC given as a percentage of the total area, the Equal Error Rate (EER) and
the Total Error Rate at a False Acceptance Rate of 0.01% (TER@FAR=0.01%).
The 95% confidence intervals are included for the BSSR1 datasets.

On biometric research papers it is common to plot either a ROC or a DET
curve to compare various systems. Nonetheless these curves do not take into ac-
count how the thresholds are selected, making the comparison of systems some-
what unreliable. In this paper we have opted to use the Expected Performance
Curves (EPC) [15], which plots the HTER using a threshold (θ̂α) obtained on
a development set by arg min(θα) = αFAR + (1 − α)FRR. The parameter α is
a value between zero and one which weights the importance of the errors. The
EPC curves for two of the datasets are presented in figure 1.

The results for the proposed technique are very promising. In all of the
datasets SFMA improves the AUC even though the maximization was done
on the training set, this suggests that the technique has good generalization
capability. Only the TER@FAR=0.01% for the BSSR1 Face dataset is slightly
worse than Sum Rule with z-score, however this is an extreme operating point.
For this dataset the improvement is significant for a wide range of operating
thresholds as can be observed on its EPC curve.
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Dataset Method

AUC EER TER@

(%) (%) FAR=0.01%

(%)

XM2VTS
(LP1)

Best Matcher 99.917 1.14 15.0
Sum Rule/z-score 99.973 0.56 3.0
SFMA 99.997 0.28 1.0

BSSR1
(Multimodal)

Best Matcher 98.84 ±0.10 4.67 ±0.23 26.8 ±1.07
Sum Rule/z-score 99.99 ±0.00 0.50 ±0.07 3.2 ±0.41
SFMA 99.99 ±0.00 0.50 ±0.18 1.5 ±0.25

BSSR1
(Face)

Best Matcher 65.39 ±1.07 5.26 ±0.05 28.9 ±0.27
Sum Rule/z-score 98.62 ±0.03 5.09 ±0.03 24.2 ±0.31
SFMA 99.07 ±0.03 4.25 ±0.05 25.3 ±0.33

Table 1. Summary of score fusion results on different datasets.
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Fig. 1. Expected Performance Curves of the fusion algorithms for (a) XM2VTS LP1
and (b) BSSR1 Face.

4 Conclusions

This paper presented a novel method for optimizing the parameters of a score
fusion model based on maximizing an index related to the Area Under the ROC
Curve (AUC). A score fusion model based on a linear combination of normalized
scores was chosen and the AUC optimization procedure was derived for it.

The proposed algorithm was empirically evaluated using three publicly avail-
able datasets, the XM2VTS LP1, the BSSR1 Multimodal and the BSSR1 Face.
The results show that the technique works as expected. The AUC is iteratively
improved by the algorithm and the result generalizes well to new data. Also, by
maximizing the AUC, specific operating points on the ROC curve also improve
without having to choose which one will be used in the final system.

Several research topics are left for future work. One topic is to analyze the
computational cost of the algorithm. To speedup the algorithm some approxima-
tions can be made and a stochastic gradient ascend procedure can be employed.
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Therefore the question remains about how much time is required by the algo-
rithm and how much do the approximations affect the results. For future work
also is how to integrate quality measures into the score fusion model and how
does the algorithm perform using this type of information. Another topic to
work on is using the AUC maximization for other problems, such as biometric
verification or biometric sample quality estimation.
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