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Abstract. A new reduction on the size of the search space for cocyclic
Hadamard matrices over dihedral groups D4t is described, in terms of the
so called central distribution. This new search space adopt the form of a
forest consisting of two rooted trees (the vertices representing subsets of
coboundaries) which contains all cocyclic Hadamard matrices satisfying
the constraining condition. Experimental calculations indicate that the
ratio between the number of constrained cocyclic Hadamard matrices
and the size of the constrained search space is greater than the usual
ratio.
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1 Introduction

Since Hadamard matrices (that is, {1, −1}-square matrices whose rows are pair-
wise orthogonal) were introduced at the end of the XIXth century, the interest in 
their construction has grown substantially, because of their multiple applications 
(see [7] for instance).

For this reason, many attempts and efforts have been devoted to the design 
of good construction procedures, the latest involving heuristic techniques (see 
[5], [1], [4] for instance). Even alternative theoretical descriptions characteriz-
ing Hadamard matrices have been proposed (for instance, Ito’s works involving 
Hadamard graphs [11] in the middle eighties, and Hadamard groups [6,12] more 
recently). But no matter what one may think, Hadamard matrices keep on being 
elusive anyway.

The point is that though it may be easily checked that the size of a Hadamard 
matrix is to be 2 or a multiple of 4, there is no certainty whether such a Hadamard 
matrix exists for every size 4t. This is the  Hadamard conjecture, which remains  
unsolved for more than a century.

In fact, the design of a procedure which outputs a Hadamard matrix of the 
desired size has shown to be as important as solving the Hadamard conjecture 
itself.

� All authors are partially supported by the research projects FQM–296 and P07-
FQM-02980 from Junta de Andalućıa and MTM2008-06578 from Ministerio de Cien-
cia e Innovación (Spain). 



In the early 90s, a surprising link between homological algebra and Hadamard
matrices [9] led to the study of cocyclic Hadamard matrices [10]. The main
advantages of the cocyclic framework are that:

– On one hand, the Hadamard test for cocyclic matrices [10] runs in O(t2)
time, better than the O(t3) algorithm for usual (not necessarily cocyclic)
Hadamard matrices.

– On the other hand, the search space reduces drastically, though it still is
often of exponential size (see [4,2] for details).

Among the groups for which cocyclic Hadamard matrices have been found, it
seems that dihedral groups D4t are more likely to give a more density of cocyclic
Hadamard matrices, even for every order multiple of 4 (see [8,3,2] for instance).

Unfortunately, the task of explicitly construct cocyclic Hadamard matrices
over D4t is considerably difficult, since the search space inherits a exponential
size. New ideas dealing with this problem are welcome.

The purpose of this paper is to describe a new reduction on the size of the
search space for cocyclic Hadamard matrices over dihedral groups D4t. The key
idea is exploiting the notions of i-paths and intersections introduced in [2], in
order to design a forest consisting of two rooted trees (the vertices representing
subsets of coboundaries) which contains all cocyclic Hadamard matrices sat-
isfying the so called central distribution. We will explain these notions in the
following section.

We organize the paper as follows. Section 2 is devoted to preliminaries on
cocyclic matrices. Section 3 describes the new search space for cocyclic Hadamard
matrices over D4t. We include some final remarks and comments.

2 Preliminaries on Cocyclic Matrices

Consider a multiplicative group G={g1 =1, g2, . . . , g4t}, not necessarily abelian.
A cocyclic matrix Mf over G consists in a binary matrix Mf = (f(gi, gj)) coming
from a 2-cocycle f over G, that is, a map f : G × G → {1,−1} such that

f(gi, gj)f(gigj , gk) = f(gj , gk)f(gi, gjgk), ∀ gi, gj, gk ∈ G.

We will only use normalized cocycles f (and hence normalized cocyclic matrices
Mf), so that f(1, gj) = f(gi, 1) = 1 for all gi, gj ∈ G (and correspondingly
Mf = (f(gi, gj)) consists of a first row and column all of 1s).

A basis B for 2-cocycles over G consists of some representative 2-cocycles
(coming from inflation and transgression) and some elementary 2-coboundaries
∂i, so that every cocyclic matrix admits a unique representation as a Hadamard
(pointwise) product M = M∂i1

. . . M∂iw
· R, in terms of some coboundary ma-

trices M∂ij
and a matrix R formed from representative cocycles.

Recall that every elementary coboundary ∂d is constructed from the charac-
teristic set map δd : G → {±1} associated to an element gd ∈ G, so that

∂d(gi, gj) = δd(gi)δd(gj)δd(gigj) for δd(gi) =
{−1 gd = gi

1 gd �= gi
(1)



Although the elementary coboundaries generate the set of all coboundaries, they
might not be linearly independent (see [3] for details). Moreover, since the ele-
mentary coboundary ∂g1 related to the identity element in G is not normalized,
we may assume that ∂g1 /∈ B.

The cocyclic Hadamard test asserts that a cocyclic matrix is Hadamard if and
only if the summation of each row (but the first) is zero [10]. In what follows,
the rows whose summation is zero are termed Hadamard rows.

This way, a cocyclic matrix Mf is Hadamard if and only if every row (Mf )i

is a Hadamard row, 2 ≤ i ≤ 4t.
In [2] the Hadamard character of a cocyclic matrix is described in an equivalent

way, in terms of generalized coboundary matrices, i-walks and intersections. We
reproduce now these notions.

The generalized coboundary matrix M̄∂j related to a elementary coboundary
∂j consists in negating the jth-row of the matrix M∂j . Note that negating a row
of a matrix does not change its Hadamard character. As it is pointed out in [2],
every generalized coboundary matrix M̄∂j contains exactly two negative entries
in each row s �= 1, which are located at positions (s, i) and (s, e), for ge = g−1

s gi.
We will work with generalized coboundary matrices from now on.

A set {M̄∂ij
: 1 ≤ j ≤ w} of generalized coboundary matrices defines an

i-walk if these matrices may be ordered in a sequence (M̄l1 , . . . , M̄lw) so that
consecutive matrices share exactly one negative entry at the ith-row. Such a
walk is called an i-path if the initial and final matrices do not share a common
−1, and an i-cycle otherwise. As it is pointed out in [2], every set of generalized
coboundary matrices may be uniquely partitioned into disjoint maximal i-walks.

From the definition above, it is clear that every maximal i-path contributes
two negative occurrences at the ith-row. This way, a characterization of
Hadamard rows (consequently, of Hadamard matrices) may be easily described
in terms of i-paths.

Proposition 1. [2] The ith row of a cocyclic matrix M = M∂i1
. . .M∂iw

· R is
Hadamard if and only if

2ci − 2Ii = 2t − ri (2)

where ci denotes the number of maximal i-paths in {M̄∂i1
, . . . , M̄∂iw

}, ri counts
the number of −1s in the ith-row of R and Ii indicates the number of positions
in which R and M̄∂i1

. . . M̄∂iw
share a common −1 in their ith-row.

From now on, we will refer to the positions in which R and M̄∂i1
. . . M̄∂iw

share
a common −1 in a given row simply as intersections, for brevity.

We will now focus on the case of dihedral groups.

3 Cocyclic Matrices over D4t

Denote by D4t the dihedral group ZZ2t ×χ ZZ2 of order 4t, t ≥ 1, given by the
presentation

< a, b|a2t = b2 = (ab)2 = 1 >



and ordering

{1 = (0, 0), a = (1, 0), . . . , a2t−1 = (2t− 1, 0), b = (0, 1), . . . , a2t−1b = (2t− 1, 1)}
In [6] a representative 2-cocycle f of [f ] ∈ H2(D4t, ZZ2) ∼= ZZ3

2 is written inter-
changeably as a triple (A, B, K), where A and B are the inflation variables and
K is the transgression variable. All variables take values ±1. Explicitly,

f(ai, ajbk) =
{

Aij , i + j < 2t,
AijK, i + j ≥ 2t,

f(aib, ajbk) =
{

AijBk, i ≥ j,
AijBkK, i < j,

Let β1, β2 and γ denote the representative 2-cocycles related to (A, B, K) =
(−1, 1, 1), (1,−1, 1), (1, 1,−1) respectively.

A basis for 2-coboundaries is described in [2], and consists of the elementary
coboundaries {∂a, . . . , ∂a2t−3b}. This way, a basis for 2-cocycles over D4t is given
by B = {∂a, . . . , ∂a2t−3b, β1, β2, γ}.

Computational results in [6,2] suggest that the case (A, B, K) = (1,−1,−1)
contains a large density of cocyclic Hadamard matrices.

Furthermore, as it is pointed out in Theorem 2 of [2], cocyclic matrices over
D4t using R = β2γ are Hadamard matrices if and only if rows from 2 to t are
Hadamard, so that the cocyclic test runs four times faster than usual.

From now on, we assume that R = Mβ2 · Mγ =
(

A A
B −B

)
for

A =

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 ··· −1
... ··· ···

...
1 −1 · · · −1

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

1 −1 · · · −1
...

. . . . . .
...

1
. . . −1

1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ (3)

Now we would like to know how the 2-coboundaries in B have to be combined
to form i-paths, 2 ≤ i ≤ t. This information is given in Proposition 7 of [2].

Proposition 2. [2] For 1 ≤ i ≤ 2t, a maximal i-walk consists of a maximal
subset in

(M∂1 , . . . , M∂2t) or (M∂2t+1 , . . . , M∂4t)

formed from matrices (. . . , Mj, Mk, . . .) which are cyclically separated in i − 1
positions (that is j ± (i − 1) ≡ k mod 2t).

Notice that since ri = 2(i − 1) for 2 ≤ i ≤ t, the cocyclic Hadamard test
reduces to check whether ci − Ii = t − i + 1, for 2 ≤ i ≤ t. Thus ci uniquely
determines Ii and reciprocally, 2 ≤ i ≤ t.

In fact, the way in which intersections may be introduced at the ith-row is
uniquely determined. More explicitly

Lemma 1. The following table gives a complete distribution of the coboundaries
in B which may create an intersection at a given row. For clarity in the reading,
we note the generalized coboundary M̄∂i simply by i:



row coboundaries
2 2t, 2t + 1
3 2, 2t− 1, 2t, 2t + 1, 2t + 2

4 ≤ k ≤ t 2, . . . , k − 1, 2t − k + 2, . . . , 2t + k − 1, 4t − k + 2, . . . , 4t − 2

Proof
It may be seen by inspection, taking into account the distribution of the negative
occurrences in R and the form of the generalized coboundary matrices. 
�
Lemma 2. In particular, there are some coboundaries which do not produce
any intersection at all, at rows 2 ≤ k ≤ t, which we term free intersection
coboundaries. More concretely,

t coboundaries
2 2, 3, 6

t > 2 t, t + 1, 3t, 3t + 1

Proof
It suffices to take the set difference between B and the set of coboundaries used
in the lemma above. 
�
Lemma 3. Furthermore, the following table distributes the coboundaries which
produce a intersection at every row, so that coboundaries which produce the same
negative occurrence at a row are displayed vertically in the same column.

row coboundaries

2 2t 2t + 1

3 2t-1
2t

2
2t + 1 2t+2

4 ≤ k ≤ t 2t-k+2
2t − k + 3

2
. . .
. . .

2t − 1
k − 2

2t

k-1

2t + 1

4t-k+2
2t + 2

4t − k + 1
. . .
. . .

2t + k − 3
4t − 2 2t + k − 2 2t+k-1

Proof
It may be seen by inspection. 
�
Remark 1. Notice that:

– The set of coboundaries which may produce an intersection at the ith-row is
included in the analog set corresponding to the (i + 1)th-row.

– The boxed coboundaries do not produce any intersection at the precedent
rows.

Now one could ask whether cocyclic Hadamard matrices exist for any formal
distribution of pairs (ci, Ii) satisfying the relations ci−Ii = t−i+1, for 2 ≤ i ≤ t.
Actually, this is not the case.

Proposition 3. Not all of the formal sequences [(c2, I2), . . . , (ct, It)] satisfying
ci − Ii = t − i + 1 give rise to cocyclic Hadamard matrices over D4t, for t ≥ 3.



Proof
Proposition 10 of [2] bounds the number w of coboundaries in B to multiply with
R so that a cocyclic Hadamard matrix is formed, so that t − 1 ≤ w ≤ 3t + 2.

In particular, for t ≥ 6, we know that 5 ≤ w. Consequently, the case I2 =
. . . = It = 0 is not feasible, since from Lemma 2 we know that only up to 4
coboundaries may be combined so that no intersection is generated at any row.

This proves the Lemma for t ≥ 6. We now study the remaining cases.
Taking into account that 0 ≤ Ii ≤ ri = 2i − 2, we may have a look in the

way in which cocyclic Hadamard matrices are distributed regarding the number
of intersections Ii, for those groups D4t for which the whole set of cocyclic
Hadamard matrices have been computed until now. These are precisely t =
2, 3, 4, 5.

For t = 2, we formally have 3 solutions for the equation c2 − I2 = 1,

c2 1 2 3
I2 0 1 2

Each of these solutions gives rise to some cocyclic Hadamard matrices Mf ,

I2 0 1 2
|Mf | 4 10 2

For t = 3, we formally have 15 solutions for the system
{

c2 − I2 = 2
c3 − I3 = 1 coming

from the combination of any solution of each of the equations

c2 2 3 4
I2 0 1 2

c3 1 2 3 4 5
I3 0 1 2 3 4

Only 9 of the 15 hypothetical solutions are real solutions (there are no combi-
nations of coboundaries meeting the other 6 “theoretical” solutions), distributed
in the following way:

(I2, I3) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)
|Mf | 6 10 2 8 20 8 2 10 6

For t = 4, we formally have 105 solutions for the system

⎧⎨
⎩

c2 − I2 = 3
c3 − I3 = 2
c4 − I4 = 1

coming

from the combination of any solution of each of the equations

c2 3 4 5
I2 0 1 2

c3 2 3 4 5 6
I3 0 1 2 3 4

c4 1 2 3 4 5 6 7
I4 0 1 2 3 4 5 6

Only 36 of the 105 hypothetical solutions are real solutions, distributed in the
following way:



(I2, I3, I4) (0, 0, 2) (0, 1, 1) (0, 1, 2) (0, 1, 3) (0, 1, 4) (0, 2, 2) (0, 2, 3) (0, 2, 4) (0, 2, 5)
|Mf | 8 6 18 18 6 12 12 24 12

(I2, I3, I4) (0, 3, 3) (0, 3, 4) (1, 0, 3) (1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4) (1, 1, 5) (1, 2, 1)
|Mf | 4 8 12 18 12 8 4 6 4

(I2, I3, I4) (1, 2, 2) (1, 2, 3) (1, 2, 4) (1, 2, 5) (1, 3, 2) (1, 3, 3) (1, 3, 4) (1, 4, 3) (2, 1, 2)
|Mf | 24 72 24 4 12 32 20 20 2

(I2, I3, I4) (2, 2, 1) (2, 2, 2) (2, 2, 3) (2, 2, 4) (2, 3, 2) (2, 3, 3) (2, 1, 3) (2, 1, 4) (2, 1, 5)
|Mf | 6 6 2 12 24 12 12 24 12

For t = 5, we formally have 945 solutions for the system

⎧⎪⎪⎨
⎪⎪⎩

c2 − I2 = 4
c3 − I3 = 3
c4 − I4 = 2
c5 − I5 = 1

coming

from the combination of any solution of each of the equations

c2 4 5 6
I2 0 1 2

c3 3 4 5 6 7
I3 0 1 2 3 4

c4 2 3 4 5 6 7 8
I4 0 1 2 3 4 5 6

c5 1 2 3 4 5 6 7 8 9
I4 0 1 2 3 4 5 6 7 8

Only 153 of the 945 hypothetical solutions are real solutions,

(I2, I3, I4, I5) (0, 0, 1, 3) (0, 0, 2, 3) (0, 1, 1, 4) (0, 1, 2, 2) (0, 1, 2, 3) (0, 1, 2, 4)
|Mf | 4 12 3 6 12 21

(I2, I3, I4, I5) (0, 1, 2, 5) (0, 1, 3, 2) (0, 1, 3, 3) (0, 1, 3, 4) (0, 1, 3, 5) (0, 1, 3, 6)
|Mf | 6 6 12 21 21 9

(I2, I3, I4, I5) (0, 1, 3, 7) (0, 1, 4, 3) (0, 1, 4, 4) (0, 1, 4, 5) (0, 1, 4, 6) (0, 1, 4, 7)
|Mf | 3 6 3 9 18 6

(I2, I3, I4, I5) (0, 2, 0, 2) (0, 2, 1, 2) (0, 2, 1, 3) (0, 2, 1, 4) (0, 2, 2, 2) (0, 2, 2, 3)
|Mf | 2 4 2 2 4 12

(I2, I3, I4, I5) (0, 2, 2, 4) (0, 2, 3, 2) (0, 2, 3, 3) (0, 2, 3, 4) (0, 2, 3, 5) (0, 2, 3, 6)
|Mf | 4 8 8 24 14 2

(I2, I3, I4, I5) (0, 2, 4, 4) (0, 2, 4, 5) (0, 2, 4, 6) (0, 2, 5, 4) (0, 3, 2, 5) (0, 3, 3, 2)
|Mf | 12 26 4 4 2 2

(I2, I3, I4, I5) (0, 3, 3, 3) (0, 3, 3, 4) (0, 3, 3, 5) (0, 3, 4, 2) (0, 3, 4, 3) (0, 3, 4, 4)
|Mf | 7 6 6 1 4 5

(I2, I3, I4, I5) (0, 3, 4, 5) (0, 3, 5, 4) (1, 0, 1, 4) (1, 0, 2, 2) (1, 0, 2, 3) (1, 0, 2, 4)
|Mf | 6 1 2 4 2 4

(I2, I3, I4, I5) (1, 0, 4, 2) (1, 0, 4, 3) (1, 0, 4, 4) (1, 0, 5, 4) (1, 1, 1, 3) (1, 1, 1, 4)
|Mf | 4 2 4 2 6 3

(I2, I3, I4, I5) (1, 1, 2, 3) (1, 1, 2, 4) (1, 1, 2, 5) (1, 1, 2, 6) (1, 1, 3, 2) (1, 1, 3, 3)
|Mf | 7 14 22 8 4 16

(I2, I3, I4, I5) (1, 1, 3, 4) (1, 1, 3, 5) (1, 1, 3, 6) (1, 1, 3, 7) (1, 1, 4, 3) (1, 1, 4, 4)
|Mf | 20 8 16 16 5 10

(I2, I3, I4, I5) (1, 1, 4, 5) (1, 1, 4, 6) (1, 1, 5, 3) (1, 1, 5, 4) (1, 2, 1, 3) (1, 2, 1, 4)
|Mf | 18 8 2 1 4 8



(I2, I3, I4, I5) (1, 2, 2, 2) (1, 2, 2, 3) (1, 2, 2, 4) (1, 2, 2, 5) (1, 2, 3, 2) (1, 2, 3, 3)
|Mf | 4 16 28 16 24 20

(I2, I3, I4, I5) (1, 2, 3, 4) (1, 2, 3, 5) (1, 2, 4, 2) (1, 2, 4, 3) (1, 2, 4, 4) (1, 2, 4, 5)
|Mf | 32 56 4 12 24 24

(I2, I3, I4, I5) (1, 2, 5, 4) (1, 3, 1, 2) (1, 3, 1, 3) (1, 3, 1, 4) (1, 3, 2, 2) (1, 3, 2, 3)
|Mf | 8 1 3 2 8 16

(I2, I3, I4, I5) (1, 3, 2, 4) (1, 3, 2, 5) (1, 3, 3, 3) (1, 3, 3, 4) (1, 3, 3, 5) (1, 3, 4, 2)
|Mf | 10 6 24 32 16 8

(I2, I3, I4, I5) (1, 3, 4, 3) (1, 3, 4, 4) (1, 3, 4, 5) (1, 3, 5, 2) (1, 3, 5, 3) (1, 3, 5, 4)
|Mf | 16 22 10 3 9 6

(I2, I3, I4, I5) (1, 4, 1, 3) (1, 4, 2, 3) (1, 4, 2, 4) (1, 4, 3, 3) (1, 4, 3, 4) (1, 4, 4, 3)
|Mf | 2 6 6 16 8 6

(I2, I3, I4, I5) (1, 4, 4, 4) (1, 4, 5, 3) (2, 1, 2, 3) (2, 1, 2, 4) (2, 1, 2, 5) (2, 1, 2, 6)
|Mf | 6 2 2 1 3 6

(I2, I3, I4, I5) (2, 1, 2, 7) (2, 1, 3, 2) (2, 1, 3, 3) (2, 1, 3, 4) (2, 1, 3, 5) (2, 1, 3, 6)
|Mf | 2 2 4 7 7 3

(I2, I3, I4, I5) (2, 1, 3, 7) (2, 1, 4, 2) (2, 1, 4, 3) (2, 1, 4, 4) (2, 1, 4, 5) (2, 1, 5, 4)
|Mf | 1 2 4 7 2 1

(I2, I3, I4, I5) (2, 2, 1, 4) (2, 2, 2, 4) (2, 2, 2, 5) (2, 2, 2, 6) (2, 2, 3, 2) (2, 2, 3, 3)
|Mf | 4 12 26 4 8 8

(I2, I3, I4, I5) (2, 2, 3, 4) (2, 2, 3, 5) (2, 2, 3, 6) (2, 2, 4, 2) (2, 2, 4, 3) (2, 2, 4, 4)
|Mf | 24 14 2 4 12 4

(I2, I3, I4, I5) (2, 2, 5, 2) (2, 2, 5, 3) (2, 2, 5, 4) (2, 2, 6, 2) (2, 3, 1, 4) (2, 3, 2, 2)
|Mf | 4 2 2 2 3 3

(I2, I3, I4, I5) (2, 3, 2, 3) (2, 3, 2, 4) (2, 3, 2, 5) (2, 3, 3, 2) (2, 3, 3, 3) (2, 3, 3, 4)
|Mf | 12 15 18 6 21 18

(I2, I3, I4, I5) (2, 3, 3, 5) (2, 3, 4, 5) (2, 4, 2, 3)
|Mf | 18 6 12


�Attending to the tables above, we conclude that, for 2 ≤ t ≤ 5, there is a
large density of cocyclic Hadamard matrices in the case ci = t for 2 ≤ i ≤ t,
that is, (I2, . . . , It) = (1, . . . t − 1). We call this case the central distribution for
intersections and i-paths on D4t.

We include now a table comparing the number central of cocyclic Hadamard
matrices in the central distribution with the proportion % = |Mf |

cases of the amount
|Mf | of cocyclic Hadamard matrices over D4t by the total number cases of valid
distributions of intersections (I2, . . . , It). The last column contains the number
of cocyclic Hadamard matrices of the most prolific case:

t cases |Mf | % central best
2 3 16 5.33 10 10
3 9 72 8 20 20
4 36 512 14.22 72 72
5 153 1400 9.15 32 56



It seems then reasonable trying to constraint the search for cocyclic Hadamard
matrices over D4t to the central distribution case.

The search space in the central distribution (I2, . . . , It) = (1, . . . , t−1) may be
represented as a forest of two rooted trees of depth t−1. We identify each level of
the tree to the correspondent row of the cocyclic matrix at which intersections are
being counted, so that the roots of the trees are located at level 2 (corresponding
to the intersections created at the second row of the cocyclic matrix).

This way the level i contains those coboundaries which must be added to the
father configuration in order to get the desired i− 1 intersections at the ith-row,
for 2 ≤ i ≤ t.

The root of the first tree is ∂2t, whereas the root of the second tree is ∂2t+1,
since from Lemma 1 these are the only coboundaries which may give an inter-
section at the second row.

As soon as one of these coboundaries is used, the other one is forbidden, since
otherwise a second intersection would be introduced at the second row.

Now one must add some coboundaries to get two intersections at the third row.
Since ∂2t is already used and ∂2t+1 is forbidden, there are only 3 coboundaries
left (those boxed in the table of Lemma 3).

Successively, in order to construct the nodes at level k, one must add some
of the correspondent boxed coboundaries of the table of Lemma 3, since the
remaining coboundaries are either used or forbidden.

We include the forests corresponding to the cases t = 2, 3, 4 for clarity.

t trees

2
Level 2 4 5

3

Level 2

Level 3

6

5 8 (2,5,8)

Level 2

Level 3

7

2 5 8

4

8

7 10 (2,7,10)

6 11 14 (3,6,11) (3,6,14) (3,11,14) 6 11 14 (3,6,11) (3,6,14) (3,11,14) 6 11 14 (3,6,11) (3,6,14) (3,11,14) 

Level 2

Level 3

Level 4

9

2 7 10

3 6 11 (14,3,6) (14,3,11) (14,6,11) 3 6 11 (14,3,6) (14,3,11) (14,6,11) 3 6 11 (14,3,6) (14,3,11) (14,6,11) 

Level 2

Level 3

Level 4



Every branch ending at level t gives a cocyclic matrix meeting the desired dis-
tribution of intersections (I2, . . . , It). Now one has to check whether any of the 16
possible combinations with the free intersection coboundaries {∂t,∂t+1,∂3t,∂3t+1}
of Lemma 2 gives rise to a cocyclic Hadamard matrix (that is, to the desired
distribution of i-paths, (c2, . . . , ct) = (t, . . . , t)).

We now give some properties of the trees above.

Proposition 4. In the circumstances above, it may be proved that

1. The skeleton (i.e., the branches, forgetting about the indexes of the cobound-
aries used) of the trees related to D4t are preserved to form the levels from
2 to t corresponding to the trees of D4(t+1).

2. Among the boxed coboundaries {∂2t−k+2, ∂k−1, ∂4t−k+2, ∂2t+k−1 to be added
at level k of the trees, precisely one of them removes an intersection, whereas
the remaining three adds one intersection each.

3. At each level, either just one or exactly three boxed coboundaries must be
used, there is no other possible choice in order to meet the desired amount
of intersections.

4. Consequently, a branch may be extended from level k to level k + 1 if and
only if k − hk ∈ {−1, 1, 3}, where hk denotes the number of intersections
inherited from level k to level k + 1.

5. Branches ending at levels above level t will never give rise to cocyclic Hadamard
matrices meeting the central distribution. This will be more frequent the greater
t is.

6. Both trees may have branches ending at level t which may not produce any
cocyclic Hadamard matrix at all. This will be more frequent the greater t is.

Proof
Most of the properties are consequences of the results explained in Lemma 1
through Lemma 3, and are left to the reader.

Property 3 comes as a result of a parity condition: there must be an odd
number of intersections at odd levels, and an even number of intersections at
even levels. Since boxed coboundaries either add an intersection each, or just
one of them removes an intersection (added by a coboundary previously used),
the parity condition leads to the result.

Concerning Property 5, we give a branch not reaching the last level for t = 9:

level 2 3 4 5 6 7 8
cob. 18 17 21 4, 22, 33 32 6, 13, 24 12, 25, 30

Concerning Property 6, we give a branch reaching the last level for t = 9, which
do not give rise to any cocyclic Hadamard matrix at all:

level 2 3 4 5 6 7 8 9
cob. 19 17 21 22 14 6, 24, 31 12, 25, 30 29


�
So far, it is evident that the above trees reduce the search space for cocyclic
Hadamard matrices over D4t, constraining the solutions to the central distribu-
tion case.



There is only one question left. Is the new proportion ratioc of cocyclic
Hadamard matrices in the central distribution case by the size of the reduced
space greater than the proportion ratiog of general cocyclic Hadamad matrices
by the size of the general search space?

It seems so, attending to the table below (we have followed the calculations
of [2] about the size of the general search space in D4t).

t |Mf | g. size ratiog |Mf | central size ratioc

2 16 32 0.5 10 16 0.625
3 72 492 0.146 20 96 0.208
4 512 8008 0.063 72 576 0.125

We claim that developing a heuristic search in the forest described above will
produce some cocyclic Hadamard matrices over D4t more likely than any other
technique applied till now to the general case.

This will be the goal of our work in the near future.
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