Skip to main content

Optimal Bipartite Ramanujan Graphs from Balanced Incomplete Block Designs: Their Characterizations and Applications to Expander/LDPC Codes

  • Conference paper
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5527))

Abstract

We characterize optimal bipartite expander graphs and give necessary and sufficient conditions for optimality. We determine the expansion parameters of the BIBD graphs and show that they yield optimal expander graphs that are also bipartite Ramanujan graphs. In particular, we show that the bipartite graphs derived from finite projective and affine geometries yield optimal Ramanujan graphs. This in turn leads to a theoretical explanation of the good performance of a class of LDPC codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: Eigenvalues and expanders. Combinatorica 6, 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE Trans. on Inform. Theory 38(2), 509–516 (1992)

    Article  MATH  Google Scholar 

  3. Alon, N., Lubotzky, A., Wigderson, A.: Semi-direct product in groups and zig-zag product in graphs: Connections and applications. In: Proc. of the 42nd FOCS, pp. 630–637 (2001)

    Google Scholar 

  4. Barg, A., Zemor, G.: Error exponent of expander codes. IEEE Trans. Inform. Theory 48(6), 1725–1729 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass, H.: The Ihara-Selberg zeta function of a tree lattice. International Journal of Mathematics 3(6), 717–797 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  7. Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. Academic Press, London (1979)

    MATH  Google Scholar 

  8. David Forney, G.: Codes on graphs: recent progress. Phys. A 302(104), 1–13 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frey, B.J., Koetter, R., Forney, G.D., Kschischang, F.R., McEliece, R.J., Spielman, D.A. (eds.): Special Issue on Codes on Graphs and Iterative Algorithms. IEEE Trans. Inform. Theory 47 (2001)

    Google Scholar 

  10. Friedman, J. (ed.): Expanding Graphs. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 10. AMS (1993)

    Google Scholar 

  11. Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, Boca Raton (1993)

    MATH  Google Scholar 

  12. Guo, Q., Janwa, H.: Some properties of the zig-zag product of graphs. In: Presented at the 2nd NASA-EPSCoR meeting, November 10 (2003) (preprint)

    Google Scholar 

  13. Guruswami, V., Indyk, P.: Expander-Based Construction of Efficiently Decodable Codes. In: 42nd IEEE Symposium on Foundation of Computer Science, October 14-17, p. 658 (2001)

    Google Scholar 

  14. Hall Jr., M.: Combinatorial Theory, 2nd edn. Wiley Interscience in discrete Mathematics. Kluwer, Dordrecht (2003); Høholdt, T., Justesen, J.: Graph codes with Reed-Solomon component codes (submitted)

    Google Scholar 

  15. Høholdt, T., Justesen, J.: Graph codes with Reed-Solomon component codes. In: Proc. ISIT 2006, pp. 2002–2006 (2006)

    Google Scholar 

  16. Høholdt, T., Justesen, J.: Iterated analysis of iterated hard decision decoding of product codes with Reed-Solom component codes. In: Proc. ITW 2007 (September 2007)

    Google Scholar 

  17. Høholdt, T., Janwa, H.: Characterization of some optimal expander graphs and their application to expander/LDPC codes (in preparation)

    Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  19. Janwa Jr., H.: ‘‘Relations among Expander Graphs, Codes, Sequence Design, and Their Applications. In: Proceedings of the 4th World Multi-conference on Systemics, Cybernetics and Informatics (SCI 2000 and ISAS 2000), Orlando Florida, July 23-26, vol. XI, pp. 122–124 (2000)

    Google Scholar 

  20. Janwa, H.: New (Explicit) Constructions of Asymptotic Families of Constant Degree Expander Graphs from Algebraic Geometric (AG) Codes and Their Applications to Tanner Codes. ABSTRACTS OF THE AMS 26(1), 197 (2005); Joint AMS annual Meeting, Atlanta, 2005; Special session on Algebraic Geometry and Codes

    Google Scholar 

  21. Janwa, H.: New Constructions of Sparse Quasi-Random Graphs (in preparation)

    Google Scholar 

  22. Janwa, H.: Further examples of Ramanujan graphs from AG codes (2003) (in preparation)

    Google Scholar 

  23. Janwa, H.: Covering radius of codes, expander graphs, and Waring’s problem over finite fields (in preparation)

    Google Scholar 

  24. Janwa, H.: A graph theoretic proof of the Delsarte bound on the covering radius of linear codes (preprint)

    Google Scholar 

  25. Janwa, H.: Good Expander Graphs and Expander Codes: Parameters and Decoding. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 119–128. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Janwa, H., Lal, A.K.: ‘‘On Expander Graphs: Parameters and Applications (January 2001) (submitted), arXiv:cs.IT/04060-48v1

    Google Scholar 

  27. Janwa, H., Lal, A.K.: On Tanner Codes: Parameters and Decoding. Applicable Algebra in Engineering, Communication and Computing 13, 335–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Janwa, H.: Explicit Constructions of Asymptotic Families of Constant Degree Expander Graphs from Algebraic Geometric (AG) Codes. Congressus Numerantium 179, 193–207 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Janwa, H., Lal, A.K.: On the Generalized Hamming Weights and the Covering Radius of Linear Codes. LNCS, vol. 4871, pp. 347–356. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  30. Janwa, H., Mattson Jr., H.F.: ‘‘The Projective Hypercube and Its Properties and Applications. In: Proceedings of the 2001 International Symposium on Information Theory (ISIT 2001), Washington D.C., USA (June 2001)

    Google Scholar 

  31. Janwa, H., Moreno, O.: Strongly Ramanujan graphs from codes, polyphase-sequences, and Combinatorics. In: Proceedings of the International Symposium on Information Theory (ISIT 1997), Ulm, Germany, p. 408 (1997)

    Google Scholar 

  32. Janwa, H., Moreno, O.: New Constructions of Ramanujan Graphs and Good Expander Graphs from Codes, Exponential Sums and Sequences. IMA Summer Program on Codes, Systems and Graphical Models (August 1999)

    Google Scholar 

  33. Janwa, H., Moreno, O.: Elementary constructions of some Ramanujan graphs. Congressus Numerantium (December 1995)

    Google Scholar 

  34. Janwa, H., Moreno, O.: ‘‘Coding theoretic constructions of some number theoretic Ramanujan graphs. Congressus Numerantium 130, 63–76 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Janwa, H., Moreno, O.: ‘‘Expander Graphs, Ramanujan Graphs, Codes, Exponential Sums, and Sequences (to be submitted)

    Google Scholar 

  36. Janwa, H., Moreno, O., Kumar, P.V., Helleseth, T.: Ramanujan graphs from codes over Galois Rings (in preparation)

    Google Scholar 

  37. Janwa, H., Rangachari, S.S.: Ramanujan Graphs. Lecture Notes. Preliminary Version (July 1994)

    Google Scholar 

  38. Kou, Y., Lin, S., Fossorier, M.P.C.: Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inform. Theory 47(7), 2711–2736 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, S., Kou, Y.: A Geometric Approach to the Construction of Low Density Parity Check Codes. In: Presented at the IEEE 29th Communication Theory Workshop, Haynes City, Fla., May 7-10 (2001)

    Google Scholar 

  40. Lin, S., Kou, Y., Fossorier, M.: Finite Geometry Low Density Parity Check Codes: Construction, Structure and Decoding. In: Proceedings of the ForneyFest. Kluwer Academic, Boston (2000)

    Google Scholar 

  41. Li, W.-C.W.: Character sums and abelian Ramanujan graphs. Journal of Number Theory 41, 199–217 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lubotzky, A.: Discrete Groups, Expanding Graphs and Invariant Measures. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  43. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan Graphs. Combinatorica 8, 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Margulis, G.A.: Explicit group theoretic constructions of combinatorial schemes and their applications for construction of expanders and super-concentrators. Journal of Problems of Information Transformation, 39–46 (1988)

    Google Scholar 

  45. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. 155(1), 157–187 (2002)

    Google Scholar 

  46. Richardson, T., Urbanke, R.: The capacity of low-density parity check codes under message-passing decoding. IEEE Trans. Inform. Theory 47(2), 569–618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inform. Theory 47(2), 619–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rosenthal, J., Vontobel, P.O.: Construction of LDPC Codes using Ramanujan Graphs and Ideas from Margulis. In: Allerton Conference (2000)

    Google Scholar 

  49. Roth, R.M., Skachek, V.: Improved nearly MDS codes. IEEE Trans. on Inform. Theory 52(8), 3650–3661 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sarnak, P.: Some Applications of Modular Forms. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  51. Sarnak, P.: What is... an Expander. Notices of the AMS 51(7), 762–763 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Shokrollahi, A.: Codes and graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 1–12. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  53. Sipser, M., Spielman, D.A.: Expander codes. Codes and complexity. IEEE Trans. Inform. Theory 42(6, part 1), 1710–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  54. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE Trans. on Inform. Theory 42(6), 1710–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tanner, R.M.: Explicit concentrators from generalized N-gons. SIAM J. of Discrete and Applied Mathematics 5, 287–289 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  56. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  57. Tanner, R.M.: Minimum-distance bounds by graph analysis. IEEE Trans. Inform. Theory 47(2), 808–821 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zemor, G.: On Expander Codes. IEEE Trans. Inform. Theory. IT-47(2), 835–837 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Høholdt, T., Janwal, H. (2009). Optimal Bipartite Ramanujan Graphs from Balanced Incomplete Block Designs: Their Characterizations and Applications to Expander/LDPC Codes. In: Bras-Amorós, M., Høholdt, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2009. Lecture Notes in Computer Science, vol 5527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02181-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02181-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02180-0

  • Online ISBN: 978-3-642-02181-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics