Skip to main content

A Systems Theory Approach to Periodically Time-Varying Convolutional Codes by Means of Their Invariant Equivalent

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5527))

Abstract

In this paper we construct (n,k,δ) time-variant convolutional codes of period τ. We use the systems theory to represent our codes by the input-state-output representation instead of using the generator matrix. The obtained code is controllable and observable. This construction generalizes the one proposed by Ogasahara, Kobayashi, and Hirasawa (2007). We also develop and study the properties of the time-invariant equivalent convolutional code and we show a lower bound for the free distance in the particular case of MDS block codes.

This work was partially supported by Spanish grants MTM2008-06674-C02-01 and MTM2008-06674-C02-02.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B.M.: Linear Systems Analysis and Decoding of Convolutional Codes. Ph.D thesis, Department of Mathematics, University of Notre Dame, Indiana, USA (June 1999)

    Google Scholar 

  2. Antsaklis, P.J., Michel, A.N.: Linear Systems. McGraw-Hill, New York (1997)

    Google Scholar 

  3. Balakirsky, V.B.: A necessary and sufficient condition for time-variant convolutional encoders to be noncatastrophic. In: Cohen, G.D., Litsyn, S., Lobstein, A., Zémor, G. (eds.) Algebraic Coding 1993. LNCS, vol. 781, pp. 1–10. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Climent, J.J., Herranz, V., Perea, C.: A first approximation of concatenated convolutional codes from linear systems theory viewpoint. Linear Algebra and its Applications 425, 673–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Climent, J.J., Herranz, V., Perea, C.: Linear system modelization of concatenated block and convolutional codes. Linear Algebra and its Applications 429, 1191–1212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dholakia, A.: Introduction to Convolutional Codes with Applications. Kluwer Academic Publishers, Boston (1994)

    Book  MATH  Google Scholar 

  7. Grasselli, O.M., Longhi, S.: Finite zero structure of linear periodic discrete-time systems. International Journal of Systems Science 22(10), 1785–1806 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hautus, M.L.J.: Controllability and observability condition for linear autonomous systems. Proceedings of Nederlandse Akademie voor Wetenschappen (Series A) 72, 443–448 (1969)

    MathSciNet  MATH  Google Scholar 

  9. Hutchinson, R., Rosenthal, J., Smarandache, R.: Convolutional codes with maximum distance profile. Systems & Control Letters 54(1), 53–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johannesson, R., Zigangirov, K.S.: Fundamentals of Convolutional Coding. IEEE Press, New York (1999)

    Book  MATH  Google Scholar 

  11. Justesen, J.: New convolutional code constructions and a class of asymptotically good time-varying codes. IEEE Transactions on Information Theory 19(2), 220–225 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levy, Y., Costello Jr., D.J.: An algebraic approach to constructing convolutional codes from quasicyclic codes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 14, 189–198 (1993)

    Article  MATH  Google Scholar 

  13. Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Transactions on Information Theory 19(1), 101–110 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. McEliece, R.J.: The algebraic theory of convolutional codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 1065–1138. Elsevier, North-Holland, Amsterdam (1998)

    Google Scholar 

  15. Mooser, M.: Some periodic convolutional codes better than any fixed code. IEEE Transactions on Information Theory 29(5), 750–751 (1983)

    Article  MATH  Google Scholar 

  16. O’Donoghue, C., Burkley, C.: Catastrophicity test for time-varying convolutional encoders. In: Walker, M. (ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 153–162. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Ogasahara, N., Kobayashi, M., Hirasawa, S.: The construction of periodically time-variant convolutional codes using binary linear block codes. Electronics and Communications in Japan, Part 3 90(9), 31–40 (2007)

    Article  Google Scholar 

  18. Rosenthal, J.: An algebraic decoding algorithm for convolutional codes. Progress in Systems and Control Theory 25, 343–360 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Rosenthal, J.: Connections between linear systems and convolutional codes. In: Marcus, B., Rosenthal, J. (eds.) Codes, Systems and Graphical Models. The IMA Volumes in Mathematics and its Applications, vol. 123, pp. 39–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Applicable Algebra in Engineering, Communication and Computing 10, 15–32 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosenthal, J., Schumacher, J., York, E.V.: On behaviors and convolutional codes. IEEE Transactions on Information Theory 42(6), 1881–1891 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rosenthal, J., York, E.V.: BCH convolutional codes. IEEE Transactions on Information Theory 45(6), 1833–1844 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tanner, R.M.: Convolutional codes from quasicyclic codes: A link between the theories of block and convolutional codes. Technical Report USC-CRL-87-21 (November 1987)

    Google Scholar 

  24. Thommesen, C., Justesen, J.: Bounds on distances and error exponents of unit memory codes. IEEE Transactions on Information Theory 29(5), 637–649 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. York, E.V.: Algebraic Description and Construction of Error Correcting Codes: A Linear Systems Point of View. Ph.D thesis, Department of Mathematics, University of Notre Dame, Indiana, USA (May 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Climent, JJ., Herranz, V., Perea, C., Tomás, V. (2009). A Systems Theory Approach to Periodically Time-Varying Convolutional Codes by Means of Their Invariant Equivalent. In: Bras-Amorós, M., Høholdt, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2009. Lecture Notes in Computer Science, vol 5527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02181-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02181-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02180-0

  • Online ISBN: 978-3-642-02181-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics