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Abstract   Proteins are sequences of amino acids bound into a linear chain that 
adopt a specific folded three-dimensional (3D) shape. This specific folded shape 
enables proteins to perform specific tasks. The protein structure prediction (PSP) 
by ab initio or de novo approach is promising amongst various available computa-
tional methods and can help to unravel the important relationship between se-
quence and its corresponding structure. This article presents the ab initio protein 
structure prediction as a conformational search problem in low resolution model 
using genetic algorithm. As a review, the essence of twin removal, intelligence in 
coding, the development and application of domain specific heuristics garnered 
from the properties of the resulting model and the protein core formation concept 
discussed are all highly relevant in attempting to secure the best solution.  

1 Introduction  

Ab initio protein structure prediction (PSP) is an important and very challenging 
interdisciplinary problem encompassing biochemistry, biophysics, structural biol-
ogy, molecular biology and computational biology to give just a couple of exam-
ples. Structure prediction, especially in revealing the relationship between se-
quences and protein folding is the key to combating many diseases and the 
development of several crucial biotechnological applications and the ab initio ap-
proach in this regard offers great hope for improving the human condition. More 
than half of the dry weight of a cell is made up of proteins of various shapes and 
sizes and protein’s specific folded three-dimensional (3D) shape (Fig. 1) enables it 
to perform specific tasks. From the computing point of view, the exciting investi-
gations concerning proteins is not necessarily about these molecules carrying out 
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vital tasks but mainly about the process of its acquiring various shapes, i.e. protein 
folding problem, which enable it to perform the specific tasks. To solve the PSP 
problem, among other approaches nondeterministic searching approach Genetic 
Algorithms are found promising [1, 2, 3]. On the other hand, to model and to han-
dle the complexity of the protein folding the low resolution model found [4, 5, 6] 
to be effective exploring the vast and convoluted search space in a reasonable time 
scale. The low resolution model aids in providing a valuable theoretical insight 
which is otherwise often very hard to extract in the high resolution model.  

 
 

 

 
 

 

                        
 
 
              

(a) (b) (c) 

Fig. 1. Nature’s 3D folded protein process (a) primary sequence of amino acid (b) complex 
folding process (c) folded protein [7].  

Folding Process 
(in nature) 

 
In this article, we prefer to provide a review to show how novel techniques can 

improve GA to handle the low resolution based PSP problem, which is yet too 
complex to be solved. Thus in Section 2, the conformational complexity of protein 
structure prediction has been discussed. Section 3 describes the modelling issue of 
the computational protein structure prediction. Section 4 discusses novel computa-
tional techniques to cope the low resolution model. The preference of the face-
centred-cube (FCC) lattice configuration for the PSP problem has been advocated 
in Section 5 and in Section 6 a novel model, named hHPNX model, has been pre-
sented which can remove some limitations of the existing HP and HPNX model 
and thus provides better predictions. Finally, Section 7 draws the conclusions. 

2 Conformational Complexity  

Amongst the 20 different amino acids, any two can join themselves by forming 
peptide bond thus resulting in an amide plane (Fig. 2). Formation of peptide bonds 
and properties of amide plane are very important in providing specific shape to a 
specific polypeptide chain formed from the amino acid concatenation. The amide 
plane is rigid and dihedral angles, ϕ  and ψ  provide flexibility in mobility about 

,2π  around the N-Cα and Cα-C connecting axis. Each of the amino acids can have 
large number of torsion angles χ (see Fig. 2) depending on the length of the side 
chain, however here we assume two per amino acid. To estimate the complexity 
and to test the feasibility of an exhaustive search algorithm can be considered by 
all possible combinations of the shape parameters (e.g., dihedral and torsion dis-
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crete angles); if there are n numbers of residues in a particular sequence, the total 
number of conformations ( ) can be expressed as: TotC

≈TotC ( )( )( )nn 221)1(2121 ......... n )1(ϕ χχχψψψϕϕ ××××××××× −  (1) −

.5≈

However, in practice for sterical disallowance, due to the shape and size of the 
atoms and their positioning, some reduction in the degree of freedom is possible, 
which is commonly depicted by the Ramachandran plot [8]. Even though, the 
search space remains astronomically large. For example, with tremendous simpli-
fication, assume each amino having only three discrete angles with three degrees 

of freedom, a 50 residue-long protein sequence will have ≈ possible con-
formations. Now, typically a computer capable of searching conformations 

per second would require  years to confirm the best search result. 

)503(3 ×

200≈
618661

 

 
Fig. 2. A schematic of a portion of the [Met]-enkephalin [9] molecule’s concatenated 
amino acid sequence, “…- glycine – phenylalanine - methionine”, showing the formation of 
rigid amide plane (virtually shown using shaded plane) and the side-chains of the corre-
sponding amino-acids. The mobility of the sequence is mostly due to the angles, indicated 
by φ and ψ over the connection between N-Cα and Cα-C. The side chain torsion angle is 
shown by χ. 

Along with the conformational search complexity, in reality, there are also 
other forces [10] such as hydrophobic interaction, hydrogen bonding and electro-
static forces together with Van der Waals interactions, disulphate bridge, so on 
serve to influence the final 3D conformation. We discuss the existing conforma-
tional investigation techniques in two categories next.  
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2.1 Non-Computational Techniques  

Non-computational or experimental techniques such as X-ray crystallography 
(XC) [11] and nuclear magnetic resonance (NMR) spectroscopy methods are used 
for PSP. They are very time consuming, expensive and labour intensive [12]. 
Moreover, the NMR becomes less accurate for longer sequence and the crystalli-
zation for XC process may force the protein to have a non-native structure [13].  

2.2 Computational Techniques  

The computational approaches have the potential to correlate and predict the pri-
mary sequence of a protein to its structure thus can overcome the aforementioned 
difficulties associated with the experimental approaches. So, there has been sig-
nificant research interest [7] into application of computational approaches for pro-
tein structure prediction. Approaches such as homology modelling [14] (which is 
based on the similarity comparison of the sequence) and threading [15] (which is a 
process to thread together likely short sub-conformation of the corresponding sub-
sequence) are based on the database of protein sequences and their corresponding 
structure. However, as these methods depend on the availability of similar se-
quence samples in the database, their results may become unconvincing for dis-
similar sequences [4, 5] and they become less accurate for longer sequences as the 
formation of the whole conformation derived from its sub-conformations is less 
likely to match the native conformation because more dissimilarity is added be-
tween similar fragments [16, 17]. 

Consequently, the ab initio (meaning ‘from the origin’) or de novo approach 
predict folded protein’s 3D structure from its primary sequence alone [18] based 
on intrinsic properties (namely, hydrophobic and hydrophilic) of amino acids. The 
concept of ab initio folding is based on the Anfinsen’s thermodynamic hypothesis, 
which assumes [19, 20] that the native state of the folded protein is the global free 
energy minimum. Together with Levinthal Paradox which Cyrus Levinthal postu-
lated [21], in what it is popularly known as that, “the proteins fold into their spe-
cific 3D conformations in a time-span far shorter than it would be possible for pro-
tein molecules to actually search the entire conformational space for the lowest 
energy state. However, in contrast protein cannot sample all possible conforma-
tions while folding, and hence folding cannot be a random process which leads to 
conclude that folding pathways must exist”, which motivates the ab initio based 
computation. However, in practice, as ab initio approach is computationally inten-
sive, usually short protein sequences have been simulated at the atomic level, 
mostly using simplified low-resolution model and simple fitness function. Some 
methods are hierarchical [9, 19, 22] in that they begin with a simplified lattice rep-
resentation and end with an atomistic detailed molecular dynamics simulation [23, 
24]. With further advancement, the energy functions include atom-based poten-
tials from molecular mechanics packages [25] such as CHARMM, AMBER [26] 
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and ECEPP [27]. While ab initio is the most computationally demanding of the 
three computational approaches, it conversely also is the most promising in pro-
viding reliability, accuracy, usability and flexibility in checking the functional di-
vergence of a protein by modifying its structure and sequence. 

3 Models for Structure Prediction  

The most appropriate approach for protein modeling would be to simulate the ac-
tual folding process which occurs in nature [28], such as molecular dynamics 
(MD) (which is based on collaborative motion and energy of the molecules in a 
protein sequence) [29, 30, 31]. However, this is infeasible for two reasons: 

i) The computation time even for a moderately-sized folding transition ex-
ceeds the feasible range even using the current best capable machines 
applying molecular dynamics principles.  

ii) The forces involved in the stability of the protein conformation are cur-
rently not modeled with sufficient accuracy.  

Thus, to handle the complexities for PSP, models of different resolutions are ap-
plied, which help transform the continuous large conformational landscape into a 
reduced and discrete search landscape, reducing the timescale of protein motion 
and makes the sampling of the landscape more feasible. Also, the modeling chro-
nology from low to high considers the backbone modeling first and then subse-
quently the side-chain packing and extended modeling. In low resolution models, 
more atoms are grouped together, especially from the same amino acid and then 
treated as a single entity. The most simplified paradigm is the lattice model which 
focuses only upon hydrophobicity by dividing the amino acids into two parts: hy-
drophobic (H) and hydrophilic or polar (P) thereby leads to its popular appella-
tion of the HP model [32, 33]. The lattice can have several regular shapes with 
varying numbers of neighboring residues either in 2D or 3D, such as square, cu-
bic, triangular, face-centered-cube (FCC) [22, 34], or any of the Bravais Lattices. 
Conversely, the off-lattice model [35, 36] relaxes the regular lattice structure and 
both lattice and off-lattice normally start with backbone modeling and then in-
crease the resolution, breaking the residues into further smaller constituents or 
considering the inclusion of side-chains. In the side-chain-only [37] (SICHO) ap-
proach, the side chains are initially constructed ahead of the main chain, with the 
argument being that interactions within proteins are due to different characteris-
tics of the side chain, while the interactions of the main chain are rather more ge-
neric. CABS (an acronym for Cα-β and Side group) [38] is a relatively high resolu-
tion lattice model which assumes a lattice confined Cα representation of the main 
chain backbone, with 800 possible orientations of the Cα–Cα vectors. The lattice 
spacing of the underlying simple cubic lattice is assumed to be 0.61Å. The model 
assumes four united atoms (interaction centres) per residue: α-carbon, centre of 
the virtual Cα–Cα bond (serving as a centre of interactions for the peptide bonds), 
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Cβ (see Fig. 2) and where applicable, the centre of mass of the side-group. While 
the coordinates of the α-carbons are restricted to the underlying lattice, the coor-
dinates of the remaining united atoms are off-lattice and defined by the Cα-
coordinates and the amino acid identities. The force-field of this model consists of 
several potentials that mimic averaged interactions in globular proteins. Finally, 
the direct all-atom [12, 39] model considers all the atoms including the forces. 
The finest possible model applies the theories of Quantum Mechanics (QM) with 
the principal simulation paradigm, especially for the all-atom model, being based 
upon the thermodynamics hypothesis, namely that the stable structure corresponds 
to the global free energy minimum. The computation to find the most stable en-
ergy-free state is based on MD [12, 30] using the collaborative motion and energy 
of the molecules involved from the protein and solvent. In MD simulation [40], 
the system is given an initial thermal energy and the molecules are allowed to 
move in accordance with MD principles. After a short time delay, typically 

to  seconds, forces are used to calculate the new position of the atoms, 
which produces the atomic coordinates as a function of time. IBM’s Blue Gene 
[40, 41] project involved such an effort with peta-FLOP capability (1015 floating 
point operation per seconds). This is still however, many orders of magnitude 
lower than the requirement for a realistic solution.  

1510− 410−

With the objective of successfully building an effective computational strategy 
to unravel the complexities of the sequence-to-folding relationship, even using the 
well-established HP model, an efficient and robust solution has still to be devel-
oped. In highlighting the various computational intelligence approaches for ab ini-
tio PSP, the next section focuses mainly upon the low resolution HP model. 

The HP Model 

The HP model introduced by Dill [32, 33] is based on the fact that the hydropho-
bic interactions dominate protein folding. The Hs form the protein core freeing up 
energy, while the Ps, have an affinity with the solvent and so tend to remain in the 
outer surface. For PSP, protein conformations of the sequence are placed as a self-
avoiding walk (SAW) on a 2D or 3D lattice. The energy of a given conformation 
is defined as a number of topological neighbouring (TN) contacts between those 
Hs, which are not sequential with respect to the sequence.  

PSP is formally defined as: for an amino-acid sequence , a 

conformation c needs to be formed whereby , energy 

 [42], where n is the total amino acids in the se-

quence and  is the set of all valid (i.e., SAW) conformations of s. If the num-

ber of TNs in a conformation c is q then the value of  is defined as  

and the fitness function is . The optimum conformation will have maxi-

mum possible value of |F|. In a 2D HP square lattice model (Fig. 3. (a)), a non-
terminal and a terminal residue, both having 4 neighbours can have a maximum of 

nsssss ,,,, 321 =
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2 TNs and 3 TNs respectively. In a 2D FCC HP model (Fig. 3. (b)), a non-terminal 
and a terminal residue both having 6 neighbours can have a maximum of 4 TNs 
and 5 TNs respectively. 

Many of the successful PSP software such as ROSETTA [4, 43], PROTINFO 
[44, 45], TASSER [46] use various resolution of models embedded into the hier-
archical paradigm [6, 46−49] to cope with the high computational complexity. The 
low resolution model can be used to determine the backbone of the 3D conforma-
tion and can passes it to the next step for further expansion.  

 

  
(a) (b)

Fig. 3. Conformations in the 2D HP model shown by a solid line. (a) 2D square lattice hav-
ing fitness = - (TN Count) = -9. (b) 2D FCC lattice having fitness = -15. ‘ ’ indicates a 
hydrophobic and ‘ ’ a hydrophilic residue. The dotted line indicates a TN. Starting resi-
due is indicated by ‘1’. 

4 Search Algorithms 

The PSP in HP lattice model has been proven to be NP-complete [50, 51], which 
implies that neither a polynomial time nor an exhaustive search [52−55] method-
ology is feasible. Thus the non-deterministic search techniques have dominated at-
tempts, of which there are ample approaches such as, Monte Carlo (MC) simula-
tion, Evolutionary MC (EMC) [56, 57], Simulated Annealing (SA), Tabu search 
with Genetic Algorithm (GTB) [58] and Ant Colony Optimization [42], though be-
cause of their simplicity and search effectiveness, Genetic Algorithm (GA) [1− 3, 
7, 9, 59, 60] is one of the most attractive [2, 59]. Therefore, we focus on GA and 
we starts with preliminaries on GA associated with PSP problem in low resolu-
tion.  

4.1 Underlying Principle of Nondeterministic Search and GA 
Preliminaries 

The algorithm shown in Fig. 4. provides a generic framework for the nondetermin-
istic search approaches. 
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Fig. 4. Template for a nondeterministic search approach. 

1. Initial random solution generated randomly or, using domain knowledge. 
2. Obtain new solution ( newS ) from the current single solution ( currS ) or pool 

of solutions using special operator/operation defined by individual approaches. 
3. Assess the quality or the fitness F of S . new

4. IF F indicates improved solution accept newS , ELSE accept/reject based on 

special criteria. 
5. IF END-OF-SOLUTION is not reached THEN go back to Step 2. 

 

  
(a) (b) 

Fig. 5. An example showing (a) 1-point crossover, (b) mutation by 1 bit flipping. 

 
 

 
 

(a) (b) 

Fig. 6. An example of mutation operation [2]. Dotted lines indicate TN. Residue number 11 
is chosen randomly as the pivot. For the move to apply, a 180° rotation alters (a) with F = -
4 to (b) F = -9. ‘ ’ indicates mutation residue. 

 
Nondeterministic approaches can vary base on the steps shown in Fig. 4. For 

instance, Hill Climbing approach [61] starts (step 1) with a random bit string and 
then obtains (in step 2) a set of neighboring solutions by single bit flipping of the 
current solution. Then, the best is keep as the new current solution and the process 
is repeated until the stop criterion is met. SA uses the same framework, but differs 
in its acceptance criteria (step 4): When the new solution is not better than the cur-
rent, the algorithm can still accept it based upon some randomly defined criteria. 
GA uses a pool of solution (step 2), named population and obtains new solution by 
crossover (see Fig. 5 (a)) and mutation (see Fig. 5 (b)) operators. In the PSP con-
text, mutation is a pivot rotation (see Fig. 6) which is also followed in crossover 
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operation (see Fig. 7). 
 

 

 
  

(a) (b) (c) 

Fig. 7. An example of crossover operation [2]. Conformations are randomly cut and pasted 
with the cut point chosen randomly between residues 14 and 15. The first 14 residues of (a) 
are rotated first and then joined with the last 6 residues of (b) to form (c), where fitness, F = 
-9. ‘ ’ is indicating crossover positions. 

 
GAs optimize the effort of testing and generating new individuals if their repre-

sentation permits development of building blocks (schemata), a concept formal-
ized in the Schema Theorem [1, 61−70]. In each generation of a GA, the fitness of 
the entire population is evaluated by selecting multiple individuals from the cur-
rent population based on their fitness before crossover is performed to form a new 
population. The ith chromosome  is selected based on the fitness  with the 

proportionate selection 

iC if

( )ff i , where f  is the average fitness of the population. 

Parents then produce off-spring by crossover at a rate  for the population of 

size , thus forming the next generation. Mutation is applied on the popula-

tion of generated off-spring at a rate  and the selection probability of any off-

spring or chromosome is again 

cp

zPop

mp

( )ffi . A small percentage, typically between 5% 

and 10% of elite chromosomes (those having higher fitness), are copied to the next 
generation to retain potential solutions. The remaining chromosomes (if they ex-
ist), which are unaffected by crossover, mutation or elitism operations are then 
moved to the next generation. 

Throughout this article, a short sequence will imply a sequence with (  
indicates the number of residues in a sequence or the protein length), a moderate 
length will imply  and long sequences will imply . 

25<n n

5025 <≤ n 50≥n

4.2 Incorporating Intelligence into the GA 

The fundamental basis of the GA, the schema theorem, supports that schema fit-
ness with above average values in the population will more likely be sustained as 
generations proceed and as a consequence the similarity [61, 64, 71−73] of chro-
mosomes grows within the population, thus grows twins (same or similar chromo-
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somes) leading lower variations within the population. The existence of twins  and 
the requirement for their removal in a GA is not new, as their growth was consid-
ered in evaluating the cost of duplicate or identical chromosomes in [72]. It sug-
gested starting each chromosome with different patterns to avoid twins, but if twin 
growth is inherent in a GA search, then the effect of initialization using different 
patterns will decline relatively quickly for long converging problems. Also, [61] 
advocated that if a population comprised all unique members, tests need to be con-
tinually applied to ensure identical chromosomes did not breed. If chromosome 
similarities within population do not grow, then the GA may not converge as the 
search process effectively remains random rather than stochastic, while if similari-
ties grow, then finding a non-similar chromosome to mate with clearly becomes 
more scarce because of the inevitable occurrence of twins, and the increasingly 
high cost of finding dissimilar chromosomes in a lengthy convergence process.  

 

 
Fig. 8. The probability of a chromosome  (with fitness ) being selected by roulette 

wheel selection, is . So, for a population of eight chromosomes having fit-

nesses 8, 6, 6, 6, 6, 6, 4 and 1 for example, the proportionate selection probability of the 
first chromosome will be , and similarly , …, . The 

fallacy is, from the pie-chart, we see the fitness 6 occupies 68% in total (assume chromo-
somes having the same fitness are identical), so the effective selection probability is, 

 or, 70% instead of 14%. 
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To solve, the need for twin removal was originally highlighted in [73]. The 
study however, was confined to the detection and removal of identical chromo-
somes only. Recently, in [71], the notion of twins was broadened by introducing 
chromosome correlation factor (CCF) [71] which defines the degree of similarity 
existing between chromosomes, and it was shown that by removing chromosomes 
having a similarity value greater than or equal to specific value of CCF during the 
search process enables the GA to continue seeking potential PSP solutions to pro-
vide superior results and helps overcome fallacious effect (see Fig. 8) of the selec-
tion procedure. 
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Table 1. Benchmark protein sequences for 2D HP model 

Length Sequences   Ref. 

50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 [74]  

60 P2H3PH8P3H10PHP3H12P4H6PH2PHP [74]  

64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 [74]  

85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H [75]  

100a 
6P1H1P2H5P3H1P5H1P2H 4P2H2P2H1P5H1P10H1 
P2H1P7H11P7H2P1H1P3H6P1H1P2H 

[75]  

100b 
3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6H9P1H1P2H1P11H2P3H1P2H1P1
H2P1H1P3H6P3H 

[75]  

‘H’ and ‘P’ in the sequence indicate hydrophobic and hydrophilic amino acid, respectively. 

Outcome of the Twin Removal 

Simulations were undertaken both with (CCF  1) and without the twin (WT) 
removal strategy implemented in the population, with in the former case, the twin 
removal being performed after the crossover and mutation operations. In every 
generation, twins were removed in all runs for a range of CCF settings from r = 
1.0 (identical chromosomes) down to r = 0.5 (the least chromosome similarity, 
i.e., 0.5≤ CCF≤ 1.0) in steps of 0.1. Following twin removal from a population, 
the gap was filled by randomly generated chromosomes. The default GA parame-
ters [71] for all experiments were set for population size, crossover, mutation and 
elitism rates as 200, 0.8, 0.05 and 0.05, respectively, and the 2D square HP lattice 
model was applied to the various benchmark sequences (Table 1). The corre-
sponding results are displayed in Table 2, indicate that twin removal with r = 0.8, 
i.e., having 80% and above similarity being removed, has obtained the best per-
formance. Introduction of the twin removal helps improved generically.  

≤

 

Table 2. Run results for 5 iterations of PSP for various sequences using GA. Each iteration 
has maximum generation = 6000, the average fitness of the runs is shown below. 

Length WT r =1.0 r = 0.9 r = 0.8 r = 0.7 r = 0.6 r = 0.5 

60 -29.4 -32.6 -33.4 -33.8 -32.2 -32.4 -32.6 

64 -29.4 -34.2 -35 -37 -35.4 -34 -32.2 

85 -42.2 -45 -47 -46.8 -46.2 -45 -44.4 

100a -38.6 -39.4 -42.4 -43 -42.4 -42.4 -40.8 

100b -37.4 -40.4 -42.6 -44.8 -42.8 -42.2 -42  
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4.3 Intelligence in Chromosomal Encoding 

The encoding used in the HP lattice models was mainly isomorphic, which add 
unwanted variations for the same solution (conformation). Non-isomorphic encod-
ing scheme [76] further constrains the search space, aids convergence and similar-
ity comparisons are made easier while applying a twin removal and removes im-
plicit controlling of the crossover and mutation rates (see Fig. 12), thus provides 
superior results. 
 

  
(a) (b)

Fig. 9. Absolute moves (a) 2D square lattice based representation and (c) 3D cube lattice 
based representation. (b) Coordinate frame used for encoding. 

 
In the literature, four different encoding strategies have been reported [76]: i) 

Direct coordinate presentation, ii) Absolute encoding, iii) Relative encoding and 
iv) Non-isomorphic encoding. Rather than using a binary string, preference to use 
conformations themselves is known as direct coordinate presentation. 

 

     

(a) (b) (c) (d) (e) 

Fig. 10. The relative moves in 3D, namely (a) Straight / Forward (S or F) (b) Left (L) (c) 
Right (R) (d) Up (U) and (e) Down (D). However, Backward (B) move does not need a self 
avoiding walk.  

 
Absolute encoding [34, 42, 77−79] replaces the direct coordinate presentation 

with letters representing directions with respect to the lattice structure. The permit-
ted moves for absolute encoding are: f (forward), l (left), r (right), b (back), u (up) 
and d (down) (see Fig. 9), while u and d indicate +z and –z direction respectively. 

A conformation c in 2D with n residues could be  while in 3D it 

would be . Alternatively, in relative encoding the move direc-

tion is defined relative to the direction of the previous move as shown in Fig. 10, 
rather than relative to the axis defined by the lattice. These moves are lattice 
automorphic [34], with the initial move always expressed by F (forward). A con-

formation c of n residues in 2D and 3D could then be and 

{ } 1,,, −∈ nbrlfc

∈ Fc

{ 1,,,,, −∈ ndubrlfc }

{ } 2,, −nRL
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{ 2,,,, −∈ nDURLFc } , respectively. Relative encoding (Fig. 10) was developed 

with a view to improving presentation over absolute encoding with pivot mutation 
being represented as the single locus or character alteration of a chromosome as 
shown in Fig. 11. 

  
(a)                                (b) 

Fig. 11. (a) Single mutation at residue number 6 (red colour) using absolute encoding using 
changes in genotype and in the corresponding phenotype is not a pivot rotation (b) Single 
mutation at residue 6 using relative coding results in true pivot rotation.  

 

 
                        (a)                                           (b)                                              (c) 

Fig. 12. The cross-exchange indicated by the dotted contour in the identical conformations 
(a) and (b) result conformation in (c), which can also be constructed from (a) or (b) by ap-
plying mutation (i.e. pivot rotation) at residue number 5. Hence, the crossover can result 
equivalent to the mutation operation for identical parents. 

 
It is clear that the coordinates of a rotating object change so direct coordinate 

presentation is inherently isomorphic. Moreover as shown in Fig. 13 and Fig. 14, 
absolute and relative encodings are also isomorphic. Thus, a non-isomorphic en-
coding algorithm is essentially proposed in [76] by assigning a fixed directions for 
a growing chain based upon the first occurrences of the move in a particular di-
mension. The direction from first residue towards the second is marked ‘1’ and the 
reverse is marked ‘2’, which defines the complete move in 1-dimension. The first 
occurrence of a direction perpendicular to the 1-dimension is marked as ‘3’ and 
the reverse as ‘4’, which completes the moves in 2-dimensions. The first occur-
rence of the move perpendicular to the plane formed by ‘1’ and ‘3’ moves is 
marked as ‘5’ and the reverse as ‘6’, which finally defines the moves in 3-
dimensions.  
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Fig. 13. Absolute encoding is isomorphic. For six directions, namely +x, -x, +y, -y, +z and -
z,  different genotypes are possible for a given 3D conformation.  )46(24 ×=

 

 

Fig. 14. Relative encoding is isomorphic. Four variations shown in 3D by rotating around 
axis formed by 1-2 connecting line, but no variation achieved by the change in direction (x 
or y or z). 

4.4 Domain Knowledge Based Heuristic  

Despite the aforementioned improvements, PSP remains an intractable problem 
because during the search, the solution becomes phenotypically more compact, 
thereby increasing the number of collisions [3, 57]. To solve, alternate operators 
and move sets have also been applied [75]. An operator that is able to move the in-
tended portion of the converging conformation with a predefined target, while 
concomitantly having minimal impact on the stable portion, exhibits considerable 
promise. One such operator, short pull move, or pull move was proposed by Lesh 
in the square 2D lattice model [75], which subsequently extended by Hoque et al. 
[3], with the introduction of the tilt move, which is applicable when other moves 
fail due to congestion. The tilt move however can disturb the stability more than 
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the pull move. A selective implementation of the move sets based on current sce-
nario could represent a powerful combination such as for instance, firstly attempt-
ing a diagonal move [3] and if this cannot be performed to reach a predefined goal 
then next applying a pull move and then a tilt move if the pull move perchance 
fails. Fig. 15 describes these moves in further detail. 

 

   
(a) (b) (c) 

Fig. 15. Various move operators (a) if ‘D’ is free, then ‘B’ can be move to ‘D’ via a diago-
nal move. (b) Before and after applying pull move is displayed. In first case ‘B’ can be 
pulled to ‘B´’ if ‘C´’ is free or ‘C’ is already at the position of ‘C´’ and the rest of the chain 
upto one end can be pulled until a valid conformation is reached. (c) Tilt move, ‘C’ and ‘D’ 
can be moved to ‘C´’ and ‘D´’ respectively and pull will propagate towards both ends. 

 

    

(a) (b) (c) (d) 

Fig. 16. The subsequence -123- in (a) need to remap to sub-conformation corresponds to –
HPPH-. If the position  is free then 2 can be placed at  and a pull (indicated in (a)) 
applied towards the higher indexed end. The pull moves 3 to 2, 4 to 3 and 5 to 4 and then 
finds a valid conformation without pulling further leaving (b). The |fitness| in (b) is in-
creased by 1. In (b) assume,  and 5  are free positions and the segment 3 to 6 can be 
recognized as –PHHP-. To enforce a mapping to highly probable sub-conformation, 4 and 5 
can be shifted to and  respectively applying a pull move which results (c). In (c), 8 
can pass through position 9, 10, 11 and results (d) and increases |fitness| by 1 further. The 
position of H-Core centre (HCC) (‘

2′

5′

2′

4′ ′

4′

’) is the arithmetic mean of the coordinates of all Hs. 

Lesh’s experiment demonstrates the superior performance in achieving the 
minimum energy conformation for longer sequences using the pull move in mov-
ing phonotypically compact conformation, but it also provides lessons that random 
application of the move can consume significant computational resources. Hoque 
et al, has subsequently proven that incorporating domain specific knowledge [3, 
80−82] with the move and their combinations afford considerable promise. As il-
lustrated in Fig. 16, the pull move in both 2D and 3D FCC model helps to improve 
the fitness. Furthermore, as the parity problem is absent in the FCC model, the 
pull move does not need to be moved diagonally [81, 82] to start as in an ordinary 
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pull because with more neighbours, the model is likely to get a valid conformation 
without the need to propagate the pull often upon the terminal residue.  

  
(a) (b) 

Fig. 17. Metaphoric HP folding kernels for (a) Cube 3D Lattice (b) 3D FCC lattice. 

 

     

(a) (b) (c) (d) (e) 

Fig. 18. Potential sub-conformation in 3D space for the subsequence. Sub-conformation in 
(a) relates to –HPH- ( ), (b) relates to –PHP- ( ) and (c) related to -HPPH- ( ). 

Further, both (d) and (e) relate to -PHHP- ( ). Symbol ●, ○ and 

pS1 HS1 PS2

HS2 , respectively indi-

cate an H, a P and the approximate position of HCC.  

 
Further, Hoque et al. [3, 80−82] conceptualised the folded protein as a three-

layered kernel (Fig. 17). The inner kernel, called the H-Core, is assumed compact 
and mainly formed of Hs while the outer kernel consists mostly of Ps. The H-Core 
[83] Centre is named HCC. The composite thin layer between the two kernels 
consists of those Hs that are covalent-bonded with Ps and is referred to as the HP-
mixed-layer. To integrate domain knowledge, Hoque et al, showed that the opti-
mal core for a square 2D [3], cube 3D [80], 2D FCC [81] and 3D FCC [82] lattice 
are square, cube and regular hexagon respectively, which concludes the optimal 
core that maximizes the |fitness| can be predicted based upon the properties and 
dimension of the model. To form the cavity of H-Core Hoque et al. further intro-
duced, motifs or sub-conformations based approach which are highly probable to a 
sub-sequence (defined in Fig. 13 for 2D FCC) are forced to re-map. The rationale 
is to form immediate TN and place P as far away as possible from HCC while 
concomitantly placing H as near as possible to the HCC. For the mapping, two 
broad categories of sub-sequences are defined;  and , where , 

where  is a natural number. These two categories completely cover the HP-
HgS PgS Ν∈g

Ν
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mixed-layer including outer kernel. Let  and  represent segments of H and 

P respectively. A segment refers to a contiguous string of length
HS PS

g , e.g.  

means -PHHP-, so  with the two boundary residues being of the opposite 

type. 

HS2

2=g

g is divided into even  and odd  numbers. For , , and 

, there are only a few possible sub-conformations, so only highly potential 

sub-conformations (Fig. 18) are chosen, based on embedded TN and core forma-
tion [83, 84] concepts. Collectively they are referred to as H-Core Boundary 
Builder Segments (HBBS) [3] and are mapped to potential sub-conformations 
which are known as H-Core Boundary Builder sub-Conformation (HBBC). HBBC 
forms part of a corner (especially when  and through the composition with 

other group having ) and an edge (especially when  and with the com-

position of the former group) of the H-Core boundary. The selection for mapping 
HBBC into HBBS is probabilistically applied while searching. 

eg o

1

g

=g

pS1

2=

HS1 PS2

HS2

2=g g

Formulation of Multi-Objectivity  

Combining the moves with domain knowledge, Hoque et al., formulated the pre-
diction into multi-objective optimization [3, 80−82] by combining an additional 
probabilistic constrained fitness (PCF) measure along with the original fitness. 
When searching for an optimum conformation, if any member of a HBBC corre-
sponds to the related sub-sequence exists PCF rewards otherwise penalizes the 
search.  

Implementation of the Heuristics in a way to Enable Backtracking Capacity 

Here aforementioned heuristics are combine strategically as: The conformational 
search process is divided into two alternative phases namely, Phase 1 (see (4)) in 
which F dominates PCF and starts building the core. In the alternate Phase 2 (see 
(4)), PCF dominates which covers the formation of an HP-mixed-layer, i.e. the 
Core boundary. The enforcement of HBBC is also performed in Phase 2, since 
PCF helps to sustain and stabilize any applied change. The HBBC mapping is per-
formed only if they are not found according to the likely sub-conformations for 
the corresponding sub-sequences. This may reduce the achieved fitness F, but it is 
expected that it will help reformulate a proper cavity that will maximize the H 
bonding inside the core, while shifting to the favorable Phase 1 will maximize F . 

As the phases alternate during the search process (using (3)), the impact becomes 
such that F and PCF come up with common goal that is more likely to be optimal. 
The total or combined fitness is defined as:  
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PCFtFtFitnessTotal ×+×= )()( βα  (2) 

where t is tth generation while search is carried out by the GA. To adjust the 
weights α  and β  to dominate F and PCF over each other, the oscillatory function 

)(tδ  shown in Fig. 17, is introduced. The setup maintains a variation in the ampli-

tude (A).  

 
Fig. 17. Plot of )(tδ function. 

 

ttAt m 0cos)cos1()( ωωδ +=  (3) 

where 0ωω <<m and t = number of generations. The assignment of α and β are as:   

Phase 1: 1)(),()( == ttt βδα , when 0)( >tδ  (4) 

Phase 2: )()(,1)( ttt δβα −== , when 0)( <tδ  (5) 

Transient Phase: 1:)(,1:)( == tt βα , when 0)( =tδ  (6) 

Typical parameter values for the )(tδ  function (see plot in Fig. 17) were set as 

follows: A = 30, mω = 0.004 and 0ω = 0.05. The choice of A came from 

( )llA PCF,Fmax2 ≥  where  and  respectively imply the upper bounds 

of F and PCF, which is predictable from the chosen model. The lower bound of F 
can be defined by (7) for 2D square and 3D cube HP lattice model and (8) for 2D 
FCC and 3D FCC model. 

lF lPCF

HTl nSeqOSeqEF +−= ]})[],[(min{dim**2  (7) 
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( )
HTHl nnF +×−= dim  (8) 

where in (7), and  indicate the number of even and odd indexed 

H residues in the sequence and indicates number of terminal H residue, where 

. The value of dim in (7) for 2D square and 3D cube HP lattice model 

is 1 and 2 respectively (and in (8) for 2D FCC and 3D FCC the values are 2 and 5 
respectively). The ‘min’ implies ‘minimum of’. The  in (8) indicates the total 

number of hydrophobic residues. Note, the minimum value of both

][SeqE ][SeqO

HTn

20 ≤≤
HTn

Hn

|)(| tα  and 

|)(| tβ  is 1 and so never becomes zero in (4), (5) and (6), thereby preserving the 

sub-conformation or schema possessing good features, that may have been created 
in the alternate phase. The search uses a simple GA (SGA) paradigm which is hy-
bridized (see Algorithm I) with the aforementioned move sets, PCF etc with a 
population size of 200 for all sequences. The elite rate = 0.1, crossover rate = 0.85, 
mutation rate = 0.5 and single point mutation by pivot rotation was applied. The 
implementation of both crossover and mutation operations were as in [2], but 
without any special treatment such as cooling. The roulette wheel selection proce-
dure was used. 

 
 

Algorithm-I: HGA for PSP 
Input :  Sequence S.  
Output:  Conformation with best fitness, F. 
  COMPUTE: PCF, A.    t = 0, F = 0  /* Gen. count and fitness initialization */ 
  Populate with random (valid) conformations based on S. 
WHILE  NOT Terminate Condition  
   { t = t + 1,  COMPUTE δ(t), α(t), β(t), TF 
    CROSSOVER and then MUTATION     
     IF δ(t) < 0 THEN  
        { FOR i =1 to population_size DO 
           Check chromosomei for any miss mapping of HBBC based on Model. 
          IF miss-mapping = TRUE THEN  
            {Re-map the sub-sequence to corresponding HBBC using move-sets.}}          
          COMPUTE: TF, SORT, KEEP Elite 

          F  Best fitness found from the population. } 
END. 

The experiment results were very impressive (see Table 3) and outperformed in 
all available low resolution models including square 2D [3], cube 3D [80], 2D 
FCC lattice [81] and 3D FCC lattice model [82]. This general concept is referred 
to as guided GA [3, 80] or hybrid GA [12, 81], and it importantly provides a intel-
ligent backtracking capability if any local minimum is assumed. Combining HGA 
with twin removal (as mentioned in Section 4.1) having r = 0.8, it was shown in 
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[82] to obtain best performance over the form of i) SGA, ii) SGA + r = 0.8 and iii) 
HGA - for the 3D FCC lattice model.  

Table 3. Performance comparison of nondeterministic search approaches [12] using 2D HP 
square lattice model. 

Length / Sequence 

G
G

A
 [

3]
  

G
T

B
 [

58
] 

 

E
M

C
 [

57
] 

 

G
A

 [
2]

  

M
C

 [
2]

  

C
I 

[8
5]

  

20 /  (HP)2PH(HP)2(PH)2HP(PH)2 -9 -9 -9 -9 -9 -9

24 /  H2P2HP2HP2(HPP)4H2 -9 -9 -9 -9 -9 -9

25 /  P2HP2H2P4H2P4H2P4H2 -8 -8 -8 -8 -8 -8

36 / P3(H2P2)2P2H7P2H2P4H2P2HP2 -14 -14 -14 -12 -13 -14

48 / (P2H)2(HP2)2P4H10P6(H2P2)2HP2H5 -23 -23 -23 -22 -20 -23

50 / H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 -21 -21 -21 -21 -21 -21

60 / P2H3PH8P3H10PHP3H12P4H6PH2PHP -36 -35 -35 -34 -33 -35

64 / 12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2 (HP)  2H12 -42 -39 -39 -37 -35 -40

 
As there could be a number of possible lattice structure or orientations [34], we 

next justify the preferred on for PSP problem (in Section 5) and modify the two 
bead HP model further to improve the prediction in Section 6. 

5 Preferred Lattice Structure for PSP 

A number of lattice models are used for studying the PSP problem. However, 
towards preferring a lattice structure or orientation in 3D for effectively mapping 
the real folded protein, we advocate the preference of the 3D face-centred-cube 
(FCC) orientation for the following reasons: 

i) Based on the full proof of Kepler Conjecture [86], a 3D FCC is proven to be 
the densest sphere packing orientation. It can provide densest protein core 
[87] while predicting a protein structure (though the protein core may not 
necessarily need to be in the most compact form [88]).  

ii) In 3D FCC orientation, a residue can have 12 neighbours in a 3D space [82]. 
Such orientation allows maximum excluded volume for offering densest 
compactness [3, 80, 81]. Therefore logically inferring, for a region with fixed 
volume, an FCC model has more option for placing a residue in suitable 
neighbouring position with respect to another residue than any other lattice 
models. A rudimentary example is, the FCC model is parity [88] problem 
free, whereas the square or the cube lattice is not.  
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iii) Therefore, within the lattice constraints, the FCC lattice can provide maxi-
mum degree of freedom and FCC can provide closest resemblance to the real 
or high resolution folding [3, 75, 80, 81]. 

 
In the FCC orientation, if its 12 neighbours are assumed to be covered with a 

thin outer layer, the overall structure resembles to a cuboctahedron [3, 80, 82] (see 
the shape of the inner kernel in Fig. 17 (b)), where a cuboctahedron has 14 faces, 6 
of them are square and 8 of them are equilateral triangle and it has 12 corners of 
vertices. 

6 hHPNX – an Extension of the HP Model 

For an effective and faster exploration of the PSP landscape, the lattice models 
are indispensable. However, this crucial HP model (i.e. for interaction potential, 
see Fig. 18 (a)) having two beads, produces relatively large number of degeneracy 
[89] (i.e., the chance of different possible conformations but having same ground 
state energy), consequently which can result in useful conformations being lost in 
the multitude. Second, the positions of polar segments (i.e. P) are not optimized 
[90], can result in deformed structures, especially if the segment is too long or lo-
cated at the end of the sequences. Thus necessarily a modification and an exten-
sion to the HP model, keeping  simplicity as much as possible, lead to proposing 
the HPNX model (for interaction potential, see Fig. 18 (b)), where a logical exten-
sion of the HP model being proposed [79, 89]. In the HPNX model, the splitting of 
P (polar) monomer of HP model is actually based on the variations of electric 
charge, namely positive (P), negative (N) and neutral (X) among amino acids. 

 

       

 

                                                  

          
              (a)                               (b)                                               (c)          

h H P N X  
 H P N X

h 2 -4 0 0 0 
H -4 0 0 0H P  H -4 -3 0 0 0 
P 0 1 -1 0H -1 0 P 0 0 1 -1 0 
N 0 -1 1 0P 0 0 N 0 0 -1 1 0 
X 0 0 0 0

X 0 0 0 0 0 

Fig. 18. Interaction potential matrixes of (a) HP (b) HPNX [89] and (c) hHPNX model. Nega-
tive entry indicates reward for being topological neighbors (TN) in the lattice model, whereas 
interaction for TN with positive value represents a penalty, ‘0’ indicates neutral (i.e., no) in-
teraction.  

 
However, based on many structural observation of a protein data sets Crippen 

proposed [91] a new potential interaction matrix as shown in Fig. 19 (a), where the 
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amino acids where divided into four different groups. Crippen emphasized the 
small set of particular group for the certainty of their distinguishing properties, 
namely Alanine (Ala or A) and Valine (Val or V). It has been detected [92] that 
this particular element of the matrix highlighted in Fig. 19 (a) was converted with 
few wrong entries by Bornberg [79] as shown in the matrix of Fig. 19 (b). and 
named YhHX matrix. 

 

                                    
 1 2 

 

 Y h H X  Y h H X 
3 4

Y 0 -1 -1 2 Y 0 -1 -1 2 
1 -0.012 -0.074 -0.054 0.123

h -1 -4 2 -2 h -1 -4 2 2 
2 -0.074 -0.317 0.1560.123 

H -1 -4 -3 0 H -1 -4 -3 0 
3 -0.054 -0.317 -0.263 -0.010 X 2 2 0 0 

                                              
(a)                                           (b)                               (c)     

Fig. 19. (a) Crippen’s matrix [91]; classifies amino acid contacts, presented using single let-
ter: 1 = {GYHSRNE}, 2 = {AV}, 3 = {LICMF} and 4 ={PWTKDQ}. (b) YhHX matrix as 
converted by Bornberg in [79] from Crippen’s matrix. Here, fq. implies the percentage of oc-
currence frequencies of amino acid for each of the four groups. (c) Corrected YhHX as it 
should have been considered in [79]. Blacked and shared entries in (a), (b) and (c) are the 
problem area. 

 

X 2 2 0 0 4 0.123 0.156 -0.010 -0.004
fq. 10 16 36 28 fq. 36 16 20 28 

The emphasised [91] small group {A, V} has highest frequency among proteins 
on an average compared to the occurrence frequencies of all the amino acids [93], 
and hence it is important to amend the incorrect conversion of the element (2, 2) 
of matrix in Fig. 19 (a) to element (2, 2) of matrix in Fig. 19 (b). The element de-
picts the ‘hh’ interaction of the YhHX matrix of Fig. 19 (b). Note that h ≡ {A, V}, 
should have been recorded as ‘2’ instead of this highlighted element being incor-
rectly shown as ‘-2’ in Fig. 19 (b) which can be easily observed comparing rest of 
the entries of the original matrix in Fig. 19 (a) with entries of the matrix in Fig. 19 
(b). Further, the frequencies, indicated by ‘fq.’ and the shaded elements shown in 
Fig. 19 (b), also need to be swapped. Moreover, the “10%” mentioned in the 
YhHX matrix needs to be corrected as 20%. The corrected matrix, incorporating 
all necessary changes, is shown in Fig. 19 (c). To incorporated further the essence 
of the HPNX model with the aforementioned correction, an hHPNX model has 
been proposed (see interaction potential, Fig. 18 (c)) [92]. In this hHPNX model 
basically the H of HP or HPNX model has been split into two by indicating h 

{A, V}, leaving the rest of the members of the H group as it is. ≡
To compare, HP, HPNX and hHPNX model, developed HGA (reported in Sec-

tion 4.3) was applied on sequences taken arbitrarily from Protein Databank (PDB) 
[94], measuring the models’ output using ‘alpha-carbon ( ) root-mean-square-

deviation’ (cRMSD) [34]. As expected, hHPNX performed the best [92]. 
αC
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6 Conclusions 

The ab inito protein structure prediction (PSP) is an important yet extremely 
challenging problem. It urges to involve a considerable amount of computational 
intelligence. Low resolution or simplified lattice models are very helpful in this 
regard to explore the search landscape of astronomical size in a feasible time 
scale. Due to the nature of the complex PSP problem, nondeterministic approaches 
such as genetic algorithm (GA), especially for its potential operators found to be 
relatively promising for conformational search. However, even GA often fails to 
provide reasonable outcome especially for longer sequences and also without the 
effectiveness in the conformational search in low resolution, the full-fledged pre-
diction, which encompasses low to high resolution modelling in a hierarchal sys-
tem, would suffer later on. Therefore, a way to improve the nondeterministic 
search (such as GA) for PSP, has been reviewed in the context of a twin removal 
within population, intelligent encoding for problem presentation, so on, which be-
come indispensable for providing further effectiveness. Domain knowledge based 
heuristics are shown very useful. Moreover, in the modelling point of view, sim-
plified model can be made further effective by preferring a lattice orientation, 
beads and contact potential that can map real folded protein closely possible.  
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