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Abstract

When we represent a network of sensors in Euclidean space by a graph,
there are two distances between any two nodes that we may consider. One
of them is the Euclidean distance. The other is the distance between the
two nodes in the graph, defined to be the number of edges on a shortest
path between them. In this paper, we consider a network of sensors placed
uniformly at random in a two-dimensional region and study two condi-
tional distributions related to these distances. The first is the probability
distribution of distances in the graph, conditioned on Euclidean distances;
the other is the probability density function associated with Euclidean
distances, conditioned on distances in the graph. We study these distri-
butions both analytically (when feasible) and by means of simulations.
To the best of our knowledge, our results constitute the first of their kind
and open up the possibility of discovering improved solutions to certain
sensor-network problems, as for example sensor localization.

Keywords: Sensor networks, Random geometric graphs, Distance distri-
butions.

1 Introduction

We consider a network of n sensors, each one placed at a fixed position in two-
dimensional space and capable of communicating with another sensor if and
only if the Euclidean distance between the two is at most R, for some constant
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radius R > 0. If δij denotes this distance for sensors i and j, then a graph
representation of the network can be obtained by letting each sensor be a node
and creating an edge between any two distinct nodes i and j such that δij ≤ R.
Such a representation is, aside from a scale factor, equivalent to a unit disk
graph [9].

Often n is a very large integer and the network is essentially unstructured,
in the sense that the sensors’ positions, although fixed, are generally unknown.
In domains for which this holds, generalizing the graph representation in such
a way that each node’s position is given by random variables becomes a crucial
step, since it opens the way to the investigation of relevant distributions related
to all networks that result from the same deployment process. Such a general-
ization, which can be done for any number of dimensions, is known as a random
geometric graph [32]. Similarly to the random graphs of Erdős and Rényi [13]
and related structures [29], many important properties of random geometric
graphs are known, including some related to connectivity and the appearance
of the giant component [1, 2, 3] and others more closely related to applications
[26, 18, 24].

One curious aspect of random geometric graphs is that, if nodes are posi-
tioned uniformly at random, the expected Euclidean distance between any two
nodes is a constant in the limit of very large n, depending only on the number
of dimensions (two, in our case) [6]. In this case, distance-dependent analyses
must necessarily couple the Euclidean distance with some other type of distance
between nodes. The natural candidate is the standard graph-theoretic distance
between two nodes, given by the number of edges on a shortest path between
them [7]. For nodes i and j, this distance is henceforth denoted by dij and
referred to simply as the distance between i and j.

Given i and j, the Euclidean distance δij and the distance dij between the
two nodes are not independent of each other, but rather interrelate in a complex
way. Our goal in this paper is to explore the relationship between the two
when all sensors are positioned uniformly at random in a given two-dimensional
region. Specifically, for i and j two distinct nodes chosen at random, we study
the probability that dij = d for some integer d > 0, given that δij = δ for some
real number δ ≥ 0. Similarly, we also study the probability density associated
with δij = δ when dij = d. Our study is analytical whenever feasible, but is also
computational throughout. Depending on the value of d, we are in a few cases
capable of providing exact closed-form expressions, but in general what we give
are approximations, either derived mathematically or inferred from simulation
data exclusively.

We remark, before proceeding, that we perceive the study of distance-related
distributions for random geometric graphs as having great applicability in the
field of sensor networks, particularly in domains in which it is important for
each sensor to have a good estimate of its location. In fact, of all possible appli-
cations that we normally envisage for sensor networks [15], network localization
is crucial in all cases that require the sensed data to be tagged with reliable in-
dications of where the data come from; it has also been shown to be important
even for routing purposes [23]. So, although we do not dwell on the issue of
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network localization anywhere else in the paper, we now digress momentarily to
clarify what we think the impact of distance-related distributions may be.

The problem of network localization has been tackled from a variety of per-
spectives, including rigidity-theoretic studies [14, 4], approaches that are pri-
marily algorithmic, either centralized [12, 34] or distributed [19, 31, 25, 27],
and others that generalize on our assumptions by taking advantage of sensor
mobility [21, 27] or uneven radii [22]. In general one assumes the existence of
some anchor sensors (regularly placed [8] or otherwise), for which positions are
known precisely, and then the problem becomes reduced to the problem of pro-
viding, for each of the other sensors, the Euclidean distances that separate it
from three of the anchors (its tripolar coordinates with respect to those anchors,
from which the sensor’s position can be easily calculated [37]).

Finding a sensor’s Euclidean distance to an anchor is not simple, though.
Sometimes signal propagation is used for direct or indirect measurement [5,
20, 33, 17, 36, 30], but there are approaches that rely on no such techniques
[28, 8, 31]. The latter include one of the most successful distributed approaches
[31], which nonetheless suffers from increasing lack of accuracy as sparsity or
irregularity in sensor positioning become more pronounced. The algorithm of
[31] assumes, for each anchor i, that each edge on any shortest path to i is
equivalent to a fixed Euclidean distance, which is estimated by i in commu-
nication with the other anchors and by simple proportionality can be used by
any node to infer its Euclidean distance to i. We believe that knowledge of
distance-related distributions has an important role to play in replacing this as-
sumption and perhaps dispelling the algorithm’s difficulties in the less favorable
circumstances alluded to above.

We proceed in the following manner. In Section 2 we give some notation
and establish the overall approach to be followed when pursuing the analytical
characterization of distance-related distributions. Then in Sections 3 through
5 we present the mathematical analysis of the d = 1 through d = 3 cases. We
continue in Section 6 with computational results related to d ≥ 1 and close in
Section 7 with some discussion and concluding remarks.

2 Overall approach

Let i and j be two distinct, randomly chosen nodes. For d > 0 an integer and
δ ≥ 0 a real number, we use Pδ(d) to denote the probability, conditioned on
δij = δ, that dij = d. Likewise, we use pd(δ) to denote the probability density,
conditioned on dij = d, associated with δij = δ. These two quantities relate
to each other in the standard way of combining integer and continuous random
variables [35].

If we assume that Pδ(d) is known for all applicable values of d and δ, then
it follows from Bayes’ theorem that

pd(δ) =
Pδ(d)p(δ)

P (d)
, (1)
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where p(δ) is the unconditional probability density associated with the occur-
rence of an Euclidean distance of δ separating two randomly chosen nodes
and P (d) is the unconditional probability that the distance between them is

d. Clearly, P (d) =
∫ dR

r=0
Pr(d)p(r)dr, since Pr(d) = 0 for r > dR. Moreover,

p(r) is proportional to the circumference of a radius-r circle, 2πr, which yields

pd(δ) =
Pδ(d)δ

∫ dR

r=0 Pr(d)rdr
. (2)

In view of Equation (2), our approach henceforth is to concentrate on calcu-
lating Pδ(d) for all appropriate values of d and δ, and then to use the equation
to obtain pd(δ). In order to calculate Pδ(d), we fix two nodes a and b such that
δab = δ and proceed by analyzing how the two radius-R circles (the one centered
at a and the one at b) relate to each other. While doing so, we assume that
the two-dimensional region containing the graph has unit area, so that the area
of any of its sub-regions automatically gives the probability that it contains a
randomly chosen node. We assume further that all border effects can be safely
ignored (but see Section 6 for the computational setup that justifies this).

3 The distance-1 and distance-2 cases

The case of d = 1 is straightforward, since dab = d if and only if δ ≤ R.
Consequently,

Pδ(1) =

{

1, if δ ≤ R;
0, otherwise

(3)

and, by Equation (2),

p1(δ) =

{

2δ/R2, if δ ≤ R;
0, otherwise.

(4)

For d = 2, we have dab = d if and only if δ > R and at least one node
k exists, with k /∈ {a, b}, such that δak ≤ R and δbk ≤ R. The probability
that this holds for a randomly chose k is given by the intersection area of the
radius-R circles centered at a and b, here denoted by ρδ. From [37], we have

ρδ =

{

2R2 cos−1 (δ/2R)− δ
√

R2 − δ2/4, if δ ≤ 2R;
0, otherwise.

(5)

Because any node that is not a or b may, independently, belong to such inter-
section, we have

Pδ(2) =

{

1− (1− ρδ)
n−2, if δ > R;

0, otherwise.
(6)

As for p2(δ), it is as given by Equation (2), equaling 0 if δ ≤ R or δ > 2R (we
remark that a closed-form expression is obtainable also in this case, but it is too
cumbersome and is for this reason omitted).

4



4 The distance-3 case: exact basis

The d = 3 case is substantially more complex than its predecessors in Section 3.
We begin by noting that dab = d if and only if the following three conditions
hold:

C1. δ > R.

C2. No node i exists such that both δai ≤ R and δbi ≤ R.

C3. At least one node k /∈ {a, b} exists, and for this k at least one node
ℓ /∈ {a, b, k}, such that δak ≤ R, δkℓ ≤ R, δbℓ ≤ R, δaℓ > R, and finally
δbk > R.

For each fixed k and ℓ in Condition C3, these three conditions result from the
requirement that nodes a, k, ℓ, and b, in this order, constitute a shortest path
from a to b.

If we fix some node k /∈ {a, b} for which δak ≤ R and δbk > R, the probability
that Condition C3 is satisfied by k and a randomly chosen ℓ is a function of
intersection areas of circles that varies from case to case, depending on the value
of δ. There are two cases to be considered, as illustrated in Figure 1. In the first
case, illustrated in part (a) of the figure, R < δ ≤ 2R and node ℓ is to be found
in the intersection of the radius-R circles centered at b and k, provided it is not
also in the radius-R circle centered at a. The intersection area of interest results
from computing the intersection area of two circles (those centered at b and k)
and subtracting from it the intersection area of three circles (those centered at
a, b, and k). The former of these intersection areas is given as in Equation (5),
with δbk substituting for δ; as for the latter, closed-form expressions also exist,
as given in [16]. The second case, shown in part (b) of Figure 1, is that of
2R < δ ≤ 3R, and then the intersection area of interest is the one of the circles
centered at b and k. Regardless of which case it is, we use σk

δ to denote the
resulting area. Thus, the probability that at least one ℓ exists for fixed k is
1− (1− σk

δ )
n−3.

Now let P ′
δ(3) be the probability that a randomly chosen k satisfies Con-

dition C3. Let also Kδ be the region inside which such a node can be found
with nonzero probability. If xk and yk are the Cartesian coordinates of node k,
then each possible location of k inside Kδ contributes to P ′

δ(3) the infinitesimal
probability [1− (1 − σk

δ )
n−3]dxkdyk. It follows that

P ′
δ(3) =

∫

k∈Kδ

[1− (1− σk
δ )

n−3]dxkdyk. (7)

There are three possibilities for the regionKδ, shown in parts (a) through (c)
of Figure 2 as shaded regions, respectively for R < δ ≤ R

√
3, R

√
3 < δ ≤ 2R,

and 2R < δ ≤ 3R. The shaded region in part (a) is delimited by four radius-R
circles, the ones centered at nodes a (above and below) and b (on the right)
and the ones centered at points D and E (on the left). As δ gets increased
beyond R

√
3—and, at the threshold, point D becomes collinear with point B
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a b

k

(a)

a b

k

(b)

Figure 1: Regions (shown in shades) whose areas yield the value of σk
δ for

R < δ ≤ 2R (a) and 2R < δ ≤ 3R (b).

and node b—we move into part (b) of the figure, where the shaded region is
now delimited on the left either by the radius-R circles centered at D and E
or by the radius-2R circle centered at b, depending on the point of common
tangent between each of the radius-R circles and the radius-2R circle. The next
threshold leads δ beyond 2R, and in part (c) of the figure the shaded region is
delimited on the left by the radius-2R circle centered at b, on the right by the
radius-R circle centered at a.

Figure 2 is also useful in helping us obtain a more operational version of the
expression for P ′

δ(3), to be used in Section 6. First we establish a Cartesian co-
ordinate system by placing its origin at node a and making the positive abscissa
axis go through node b. In this system, the shaded regions in all of parts (a)
through (c) of the figure are symmetrical with respect to the abscissa axis. If
for each value of xk we let y−k (xk) and y+k (xk) be, respectively, the minimum
and maximum yk values in the upper half of the shaded region for the value of
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a b

C

D

E

B

(a)

A

a b

C

D

E

B

(b)

A

a b

B

(c)

Figure 2: Regions (shown in shades) where node k can be found with nonzero
probability for R < δ ≤ R

√
3 (a), R

√
3 < δ ≤ 2R (b), and 2R < δ ≤ 3R (c).
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δ at hand, then

P ′
δ(3) = 2

∫ x+

k

xk=x−

k

∫ y+

k
(xk)

yk=y−

k
(xk)

[1− (1− σk
δ )

n−3]dxkdyk, (8)

where x−
k and x+

k bound the possible values of xk for the given δ.
All pertinent values of x−

k and x+
k , as well as of y

−
k (xk) and y+k (xk), are given

in Table 1, where δ− and δ+ indicate, respectively, the lower and upper limit
for δ in each of the three possible cases. This table’s entries make reference to
the abscissae of points A, B, C, and D (respectively xA, xB , xC , and xD) and
to the ordinate of point D (yD). These are given in Table 2.

5 The distance-3 case: approximate extension

Obtaining Pδ(3) from P ′
δ(3) requires that we fulfill the remaining requirements

set by Conditions C2 and C3 in Section 4. These are that no node exists in
the intersection of the radius-R circles centered at a and b and that at least one
node k exists with the properties given in Condition C3. While the probability
of the former requirement is simply (1 − ρδ)

n−2, expressing the probability of
the latter demands that we make a careful approximation to compensate for the
lack of independence of certain events with respect to one another.

For node i /∈ {a, b}, let ǫi stand for the event that Condition C3 does not hold
for k = i. Let also Qδ(ǫi) be the probability of ǫi and Qδ the joint probability
of all n − 2 events. Clearly, Qδ(ǫi) = 1 − P ′

δ(3) for any i and, for δ > R,
Pδ(3) = (1−Qδ)(1−ρδ)

n−2. Therefore, if all the n−2 events were independent
of one another, we would have

Qδ =
∏

i/∈{a,b}

Qδ(ǫi) = [1− P ′
δ(3)]

n−2 (9)

and, consequently,

Pδ(3) =

{

{1− [1− P ′
δ(3)]

n−2}(1− ρδ)
n−2, if δ > R;

0, otherwise.
(10)

However, once we know of a certain node i that Condition C3 does not hold
for it, immediately we reassess as less likely that the condition holds for nodes
in the Euclidean vicinity of i. The n− 2 events introduced above are then not
unconditionally independent of one another, although we do expect whatever
degree of dependence there is to wane progressively as we move away from node
i.

We build on this intuition by postulating the existence of an integer n′ < n−2
such that the independence of the n′ events not only holds but is also sufficient
to determine Pδ(3) as indicated above, provided the corresponding n′ nodes are
picked uniformly at random. But since this is precisely the way in which, by
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Table 1: Cartesian coordinates delimiting the upper halves of shaded regions in
Figure 2.

δ− δ+ x−

k
x+

k
y−

k
(xk) y+

k
(xk) Fig.

R R
√

3 xA xB yD −

√

R2
− (xk − xD)2 yD +

√

R2
− (xk − xD)2 2(a)

xB 0 yD −

√

R2
− (xk − xD)2

√

R2
− x2

k

0 xC 0
√

R2
− x2

k

xC xD

√

R2
− (xk − δ)2

√

R2
− x2

k

R
√

3 2R xA 0 yD −

√

R2
− (xk − xD)2 yD +

√

R2
− (xk − xD)2 2(b)

0 xB 0
√

4R2
− (xk − δ)2

xB xC 0
√

R2
− x2

k

xC xD

√

R2
− (xk − δ)2

√

R2
− x2

k

2R 3R xA xB 0
√

4R2
− (xk − δ)2 2(c)

xB R 0
√

R2
− x2

k

Table 2: Cartesian coordinates used in Table 1.

δ− δ+ xA xB xC xD yD Fig.

R R
√

3 δ/2−R
(

δ −
√

3(4R2
− δ2)

)

/4 δ −R δ/2
√

4R2
− δ2/2 2(a)

R
√

3 2R δ/2−R (δ2 − 3R2)/2δ δ −R δ/2
√

4R2
− δ2/2 2(b)

2R 3R δ − 2R (δ2 − 3R2)/2δ 2(c)
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assumption, sensors are positioned, it suffices that any n′ nodes be selected,
yielding

Pδ(3) =

{

{1− [1− P ′
δ(3)]

n′}(1− ρδ)
n−2, if δ > R;

0, otherwise.
(11)

Similarly to the previous cases, p3(δ) is given by Equation (2) and equals 0 if
δ ≤ R or δ > 3R.

It remains, of course, for the value of n′ to be discovered if our postulate is to
be validated. We have done this empirically, by means of computer simulations,
as discussed in Section 6.

6 Computational results

In this section we present simulation results and, for d = 1, 2, 3, contrast them
with the analytic predictions of Sections 3 through 5. The latter are obtained
by numerical integration when a closed-form expression is not available (the
case of d = 3 also requires simulations for finding n′; see below). For d > 3, we
demonstrate that good approximations by Gaussians can be obtained.

We use n = 1 000 and a circular region of unit area, therefore of radius
√

1/π ≈ 0.564, for the placement of nodes. Node a is always placed at the
circle’s center, which has Cartesian coordinates (0, 0), and all results refer to
distances to a. Our choice for the value of R depends on the expected number
of neighbors (or connectivity) of a node, which we denote by z and use as
the main parameter. Since z = πR2n for large n, choosing the value of z
immediately yields the value of R to be used. We use z = 3π and z = 5π,
which yield, respectively, R ≈ 0.055 and R ≈ 0.071. We note that both values
of z are significantly above the phase transition that gives rise to the giant
component, which happens at z ≈ 4.52 [11]. In all our experiments, then,
graphs are connected with high probability.

For each value of z, each simulation result we present is an average over 106

independent trials. Each trial uses a matrix of accumulators having n− 1 rows
(one for each of the possible distance values) and 1 000

√

1/π columns (one for
each of the 0.001-wide bins into which Euclidean distances are compartmental-
ized). A trial consists of: placing n− 1 nodes uniformly at random in the circle;
computing the Euclidean distance between each node and node a; computing
the distances between each node and node a (this is done with Dijkstra’s algo-
rithm [10]); updating the accumulator that corresponds to each node, given its
two distances. At the end of each trial, its contributions to Pδ(d) and pd(δ) are
computed, with d = 1, 2, . . . , n− 1 and δ ranging through the middle points of
all bins. If M is the matrix of accumulators, then these contributions are given,
respectively, by M(d, δ)/

∑

d′ M(d′, δ) and M(d, δ)/0.001
∑

δ′ M(d, δ′).
The case of d = 3 requires two additional simulation procedures, one for

determining simulation data for P ′
δ(3), the other to determine n′ for use in

obtaining analytic predictions for Pδ(3). The former of these fixes node b at
coordinates (δ, 0) and performs 107 independent trials. At each trial, two nodes
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are generated uniformly at random in the circle. At the end of all trials, the
desired probability is computed as the fraction of trials that resulted in nodes
k and ℓ as in Section 4.

The simulation for the determination of n′ is conducted for δ = 2R only,
whence ρδ = 0. This is the value of δ for which the results from the simulation
above for Pδ(3) and the analytic prediction for 1− [1−P ′

δ(3)]
n−2 differ the most

(data not shown). Moreover, as we will see shortly, the value of n′ we find using
this value of δ is good for all other values as well. The simulation is aimed at
finding the value of Qδ and proceeds in 109 independent trials. Each trial fixes
node b at (δ, 0) and places the remaining n− 2 nodes in the circle uniformly at
random. The fraction of trials resulting in no node qualifying as the node k of
Section 4 is the value of Qδ. We set n′ to be the m < n − 2 that minimizes
|Qδ − [1 − P ′

δ(3)]
m|, where P ′

δ(3) refers to the analytic prediction. Our results
are n′ = 779 for z = 3π, n′ = 780 for z = 5π.

Results for d = 1 are shown in Figure 3, for d = 2 in Figure 4, for d = 3 in
Figures 5 and 6, and for d > 3 in Figure 7. In all figures, both Pδ(d) and pd(δ)
are plotted against δ, since it seems better to visualize what happens as one
gets progressively farther from node a in Euclidean terms. For this reason, the
plots for Pδ(d) do not constitute a probability distribution for any fixed value
of d.

7 Discussion and conclusion

The results summarized in Figures 3 through 6 reveal excellent agreement be-
tween the analytic predictions we derived in Sections 3 through 5 and our sim-
ulation data. This holds not only for the simple cases of d = 1 and d = 2,
but also for the considerably more complex cases of P ′

δ(3) and Pδ(3). The lat-
ter, in particular, depends on the empirically determined n′. In this respect,
it is clear from Figure 6 that, even though n′ could have been calculated for a
greater assortment of δ values, doing it exclusively for δ = 2R seems to have
been sufficient.

Figure 7 contemplates some of the d > 3 cases, for which we derived no
analytic predictions. The values of d that the figure covers in parts (a, b) and
(c, d), respectively for z = 3π and z = 5π, are 4, . . . , 11. Of these, d = 11 for
z = 5π in part (d) typifies what happens for larger values of d as well (omitted
for clarity), viz. probability densities sharply concentrated at the border of the
radius-

√

1/π circle centered at node a. Note that the same also occurs for
z = 3π, but owing to the smaller R it only happens for larger values of d
(omitted from part (b), again for clarity).

For 4 ≤ d ≤ 11 with z = 3π, and 4 ≤ d ≤ 9 with z = 5π, Figures 7(b)
and (d) also display Gaussian approximations of pd(δ). Parts (a) and (c) of the
figure, in turn, contain the corresponding simulation data only, and we remark
that the absence of some approximation computed from the Gaussians of part
(b) or (d) is not a matter of difficulty of principle. In fact, the counterpart of
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Figure 3: Pδ(1) (a) and p1(δ) (b). Solid lines give the analytic predictions.
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Figure 4: Pδ(2) (a) and p2(δ) (b). Solid lines give the analytic predictions.
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δ(3). Solid lines give the analytic predictions.

Equation (2), obtained also from Bayes’ theorem and such that

Pδ(d) =
pd(δ)P (d)

p(δ)
=

pd(δ)P (d)
∑n−1

s=1 ps(δ)P (s)
, (12)

can in principle be used with either those Gaussians or the concentrated densities
in place of ps(δ) as appropriate for each s. What prevents this, however, is that
we lack a characterization of P (s) that is not based on simulation data only.

Still in regard to Figure 7, one possible interpretation of the good fit by
Gaussians of the simulation data for pd(δ) comes from resorting to the central
limit theorem in its classical form [35]. In order to do this, we view δ as valuing
the random variable representing the average Euclidean distance to node a of all
nodes that are d edges apart from a. The emergence of pd(δ) as a Gaussian for
d > 3 (provided d is small enough that the circle’s border is not influential) may
then indicate that, for each value of d, the Euclidean distances of those nodes
to node a are independent, identically distributed random variables. While we
know that this does not hold for the smaller values of d as a consequence of
the uniformly random positioning of the nodes in the circle (smaller Euclidean
distances to a are less likely to occur for the same value of d), it would appear
that it begins to hold as d is increased.

To summarize, we have considered a network of sensors placed uniformly
at random in a two-dimensional region and, for its representation as a ran-
dom geometric graph, have studied two distance-related distributions. One of
them is the probability distribution of distances between two randomly chosen
nodes, conditioned on the Euclidean distance between them. The other is the
probability density function associated with the Euclidean distance between two
randomly chosen nodes, given the distance between them. We have provided an-
alytical characterizations whenever possible, in the simplest cases as closed-form
expressions, and have also validated these predictions through simulations.
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Figure 6: Pδ(3) (a) and p3(δ) (b). Solid lines give the analytic predictions.
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Figure 7: Pδ(d) and pd(δ) for d > 3, with z = 3π (a, b) and z = 5π (c, d). Solid
lines give the Gaussians that best fit some of the pd(δ) data, each of mean µ
and standard deviation σ as indicated.
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Figure 7: Continued.
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While further work related to additional analytical characterizations is worth
undertaking, as is the investigation of the three-dimensional case, we find that
the most promising tracks for future investigation are those that relate to ap-
plications. In Section 1 we illustrated this possibility in the context of sensor
localization, for which it seems that understanding the distance-related distri-
butions we have studied has the potential to help in the discovery of better
distributed algorithms. Whether there will be success on this front remains to
be seen, as well as whether other applications will be found with the potential
to benefit from the results we have presented.
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