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Abstract. The vast amount of information presented in museums is often over-
whelming to a visitor, making it difficult to select personally interesting exhibits.
Advances in mobile computing and user modelling have made possible tech-
nology that can assist a visitor in this selection process. Such a technology can
(1) utilise non-intrusive observations of a visitor’s behaviour in the physical space
to learn a model of his/her interests, and (2) generate personalised exhibit recom-
mendations based on interest predictions. Due to the physicality of the domain,
datasets of visitors’ behaviour (i. e., visitor pathways) are difficult to obtain prior
to deploying mobile technology in a museum. However, they are necessary to as-
sess different modelling techniques. This paper reports on a methodology that we
used to conduct a manual data collection, and describes the dataset we obtained.
We also present two collaborative models for predicting a visitor’s viewing times
of unseen exhibits from his/her viewing times at visited exhibits (viewing time is
indicative of interest), and evaluate our models with the dataset we collected. Both
models achieve a higher predictive accuracy than a non-personalised baseline.

1 Introduction

Cultural heritage spaces such as museums offer a vast amount of information. However,
a visitor’s receptivity and time are typically limited, posing the challenge of selecting
personally interesting exhibits to view within the available time. Advances in mobile
computing and user modelling provide the opportunity to assist a visitor in this selec-
tion process — by means of personalised mobile technology. Such a technology can
(1) utilise non-intrusive observations of a visitor’s behaviour in the physical space to
learn a model of his/her interests, and (2) generate personalised exhibit recommen-
dations based on interest predictions. The physicality of the domain poses practical
challenges for developing predictive user models. For example, datasets of visitors’ be-
haviour in the museum (i. e., visitor pathways) are difficult to obtain prior to deploying
mobile technology (e. g., positioning technology).

In this paper, we describe a computer-supported methodology that we used to manu-
ally collect a dataset of visitor pathways in Melbourne Museum (Melbourne, Australia),
and the dataset we obtained. We then present two collaborative models for predicting a
visitor’s viewing times of unseen exhibits from his/her viewing times at visited exhibits:
(1) a memory-based nearest-neighbour collaborative filter, and (2) a model-based ap-
proach utilising the theory of Gaussian spatial processes. Our models were evaluated
with the dataset we collected, by comparing their predictive accuracy with that of a non-
personalised baseline. Both models attain a higher predictive accuracy than the baseline,
with our spatial process model outperforming the nearest-neighbour collaborative filter.



The paper is organised as follows. In Section 2, we outline related research. Sec-
tion 3 describes our methodology for collecting visitor pathways in a physical museum
and the dataset we obtained, followed by Section 4 where we discuss our models for
predicting a visitor’s viewing times. Section 5 summarises the results of our evaluation,
and in Section 6, we discuss ways to utilise our predictive models in a personalised
museum handheld guide. We conclude in Section 7.

2 Related Research

Personalised guide systems in physical domains have often employed adaptable user
models, which require visitors to explicitly state their interests in some form. For ex-
ample, the GUIDE project [1] developed a handheld tourist guide for visitors to the city
of Lancaster, UK. It employed a user model obtained from explicit user input to gen-
erate a dynamic and user-adapted city tour, where the order of the visited items could
be varied. In the museum domain, the CHIP project [2] investigates how Semantic Web
techniques can be used to provide personalised access to digital museum collections
both online and in the physical museum, based on explicitly initialised user models.

Less attention has been paid to predicting preferences from non-intrusive observa-
tions, and to utilising adaptive user models that do not require explicit user input. In
the museum domain, adaptive user models have usually been updated from a user’s in-
teractions with the system, with a focus on adapting content presentation, rather than
predicting and recommending exhibits to be viewed. For example, HyperAudio [3] dy-
namically adapted the presented content and hyperlinks to stereotypical assumptions
about a user, and to what a user has already accessed and seems interested in. The aug-
mented audio reality system for museums ec(h)o [4] treated user interests in a dynamic
manner, and adapted its user model on the basis of a user’s interactions with the sys-
tem. The collected user modelling data were used to deliver personalised information
associated with exhibits via audio display. The PEACH project [5] developed a multi-
media handheld guide which adapts its user model on the basis of both explicit visitor
feedback and implicit observations of a visitor’s interactions with the device. This user
model was then used to generate personalised multimedia presentations.

These systems, like most systems in the museum domain, rely on knowledge-based
user models in some way, and hence, require an explicit, a-priori engineered repre-
sentation of the domain knowledge. In contrast, our research investigates non-intrusive
statistical user modelling and recommendation techniques that do not require such an
explicit domain knowledge representation [6].

3 Data Collection and Dataset

This section describes our methodology for collecting a dataset of visitor pathways
(Section 3.1), and the dataset we obtained (Section 3.2).

3.1 Data Collection

The GECKO project endeavours to develop user modelling techniques which rely on
non-intrusive observations of users’ behaviour in physical spaces [8]. Developing such
non-intrusive user modelling and personalisation techniques for museums requires data-
sets about visitor behaviour in the physical museum space (i. e., visitor pathways). Data-
sets that are suitable for the development phase can be obtained by manually tracking



(a) Melbourne Museum — Ground level (b) Melbourne Museum — Upper level

Fig. 1. Visitor pathway visualised on a site map of Melbourne Museum

museum visitors. Such a data collection methodology is clearly inappropriate for model
deployment, but it facilitates model development by eschewing issues related to tech-
nology selection and instrumentation accuracy.

In the museum domain, traditional manual tracking methodologies include using
printed site maps and a stopwatch to record visitors’ pathways and the time spent at
various exhibits [7]. However, depending on the required level of detail and frequency
of events, such logging techniques can overwhelm a tracker, potentially yielding track-
ing errors. Additionally, they require a substantial transcription effort to digitise the
data. This motivated us to develop a computer-supported methodology for recording
museum visitors’ time-annotated pathways. Hence, in the framework of the GECKO
project, we developed two Java-based tools for manual tracking and visualisation of
datasets, GECKOtracker and GECKOvisualiser respectively.

— GECKOtracker is a clickable interface showing a digitised site map of the physical
space encoded in the Scalable Vector Graphics (SVG) file format. GECKOtracker
resides on portable computers carried by (human) trackers — one tracker follows
one museum visitor at a time. When following a visitor, a tracker logs the visitor’s
position by clicking on the map, while the computer clock delivers the time. A
‘viewing event’ is registered when the tracker clicks on an exhibit. Figure 1 depicts
the site map for Melbourne Museum, together with one of the visitor pathways we
collected.

— GEcCKovisualiser is used for post-collection visualisation and analysis of the gath-
ered data. It supports different views of the data (e. g., showing a pathway or the dis-
tribution of viewing times) in two linked formats: visualisation on the site map (Fig-
ure 1) and textual log. GECKOvisualiser was used to gain a better understanding of
our dataset, and to correct obvious mistakes made by our trackers.

GECKOtracker was used by 16 trackers in total, comprising university students and
museum staff. Feedback from trackers and other museum staff indicates that they value
our software. The trackers particularly liked the software’s ease of operation. Feedback
regarding the digital maps of the museum indicates that our maps encode sufficient
information for the trackers to correctly identify exhibit areas — a key requirement
for accurate tracking. Feedback from participants shows that most visitors did not feel
disturbed by a tracker following them through the museum. In fact, some participants



Table 1. Dataset statistics
Mean Stddev Min Max

Visit length (hrs) 1:50:39 0:47:54 0:28:23 4:42:12
Viewing time (hrs) 1:31:09 0:42:05 0:14:09 4:08:27

Exhibit areas / visitor 52.70 20.69 16 103
Visitors / exhibit area 66.09 25.36 6 117

stated that quite early into their visit, they forgot that they were being tracked (despite
being approached at the start of the visit to obtain their approval).

3.2 Dataset

Melbourne Museum displays thousands of exhibits distributed over many separate gal-
leries and exhibitions. However, normally visitors do not require recommendations to
travel between individual, logically related exhibits in close physical proximity. Rather,
they may prefer recommendations regarding physically separate areas. In order to gen-
erate predictions that support appropriate recommendations, we grouped the individ-
ual exhibits into semantically coherent and spatially confined exhibit areas. This task,
which was performed with the assistance of museum staff, yielded 126 exhibit areas.

Using GECKOtracker, we recorded the pathways of over 170 visitors to Melbourne
Museum from April to June 2008. We restricted ourselves to tracking first-time adult
visitors travelling on their own, to ensure that neither prior knowledge about the mu-
seum nor other visitors’ interests influenced a visitor’s decisions about which exhibits
to view. Prior to the data collection, we briefed our trackers on the usage of the tracking
tool, the layout of the museum, and its digital representation on the site map. Addition-
ally, we clarified what should be considered a viewing event. After the data collection,
the visitor pathways were post-processed using GECKOvisualiser. For instance, we re-
moved mis-clicks reflecting viewing events that could not have possibly occurred, e. g.,
visitor transitions from one end of the museum to the other and back within a few
seconds, or transitions outside the museum walls and back. We also removed incom-
plete visitor pathways, e. g., due to a laptop running out of battery, or a visitor leaving
unexpectedly. The resulting dataset comprises 158 complete visitor pathways in the
form of time-annotated sequences of visited exhibit areas, with a total visit length of
291:22:37 hours, and a total viewing time of 240:00:28 hours. The dataset also contains
demographic information about the visitors, which was obtained by means of post-visit
interviews conducted by our trackers. In total, we obtained 8327 viewing durations at
the 126 exhibit areas, yielding an average of 52.7 exhibit areas per visitor (41.8% of the
exhibit areas). Hence, on average 58.2% of the exhibit areas were not viewed by a vis-
itor. This indicates that there is potential for pointing a visitor to relevant but unvisited
exhibit areas. Table 1 summarises further statistics of the dataset.

Clearly, the deployment of non-intrusive personalised visitor support in a museum
requires suitable positioning technology to track visitors, and models to infer visitors’
interests. Although our dataset was obtained manually, it provides information that is
of the same type as information inferable from sensing data. Additionally, the results
obtained from experiments with this dataset are essential for model development, as
they provide an upper bound for the predictive performance of our models.



4 Viewing Time Prediction from Non-Intrusive Observations

In an information-seeking context, people usually spend more time on relevant infor-
mation than on irrelevant information, as viewing time correlates positively with pref-
erence and interest [9]. Hence, viewing time can be used as an indirect measure of
interest. We propose to use log viewing time (instead of raw viewing time), due to the
following reasons. When examining our dataset (Section 3.2), we found the distribu-
tions of viewing times at exhibits to be positively skewed (we use the terms ‘exhibit’
and ‘exhibit area’ synonymously in the remainder of this paper). Thus, the usual as-
sumption of a Gaussian model did not seem appropriate. To select a more appropriate
family of probability distributions, we used the Bayesian Information Criterion (BIC).
We tested exponential, gamma, normal, log-normal and Weibull distributions. The log-
normal family fitted best, with respect to both number of best fits and average BIC score
(averaged over all exhibits). By transforming all viewing times to their log-equivalent,
we obtained normally distributed data. This transformation fits well with the idea that
for high viewing times, an increase in viewing time indicates a smaller increase in the
modelled interest than a similar increase in the context of low viewing times.

In this section, we propose two models for predicting a visitor’s (log) viewing times
from non-intrusive observations of his/her (log) viewing times at visited exhibits: a
memory-based nearest-neighbour collaborative filter [10] (Section 4.1), and a model-
based approach based on the theory of Gaussian spatial processes [11] (Section 4.2).

4.1 Nearest-Neighbour Collaborative Filter

Our Collaborative Filter Model (CFM) for predicting a visitor’s viewing times of un-
seen exhibits is a nearest-neighbour collaborative filter [10]. The predictive model is
built by first collecting all observed log viewing times into a matrix of size m X n,
where m is the cardinality of the set V' of all visitors, and 7 is the cardinality of the
set I of all exhibits (we use v € V' to denote a visitor, and ¢ € I to denote an exhibit).
To ensure that varying exhibit complexity does not affect the similarity computation for
selecting the nearest neighbours (viewing time increases with exhibit complexity), we
then normalise all these values by calculating exhibit-wise z-scores. That is, we nor-
malise the log viewing time of a visitor for an exhibit by subtracting its log viewing
time mean 7.; and dividing by its standard deviation ;. The resultant normalised log
viewing times 7,,;, which are stored in a matrix R of size m X n, may be regarded as
implicit ratings given by visitors to exhibits.

We calculate 7,;, a prediction of a current visitor a’s unobserved (normalised log)
viewing time r,;, from the values in R as follows (we unnormalise afterwards to obtain
a log viewing time):
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where 7,. denotes the current visitor a’s average normalised log viewing time, N (a, 7)
is the set of nearest neighbours, and s, is the similarity between visitors a and v (cal-
culated using Pearson’s correlation coefficient on the normalised log viewing times of
visitors @ and v). The set of nearest neighbours N (a,4) for the current visitor a and
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exhibit ¢ is constructed by (1) calculating s, for all visitors v who viewed exhibit ¢,
and (2) selecting the visitors most similar to current visitor a — those for whom |s,,|,
the absolute similarity with visitor a, is above a certain threshold. When calculating 7,
we use a weighted mean of deviations from each neighbour’s average normalised log
viewing duration 7,. in order to neutralise viewing behaviour differences between vis-
itors. This weighted mean is then added to the current visitor’s average normalised log
viewing time 7,.. Our experiments suggest that these calculations should be performed
only after enough evidence has been gathered for obtaining a good estimate of 7,.. In
our case, this happens after 20 observations. Prior to that, we estimate 7,; using only
the (personalised) similarity-weighted mean of the r,,;s.

Whenever a similarity-weighted personalised prediction is not possible (e. g., when
the set of nearest neighbours is empty), we estimate r,; using an unweighted average
of the deviations from the neighbours’ (log viewing time) means [10]:
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where N(-,7) denotes the set of visitors who viewed exhibit i. As above, we use a
simple mean of the r,;s for less than 20 observations in visitor a’s profile.

We added further modifications from the literature to improve CFM’s performance.
For instance, we use significance weighting [10] to decrease the influence of nearest
neighbours whose similarity value is computed from a small number of co-viewed ex-
hibits. We also employ shrinkage to the mean [12], which has been shown to often
improve statistical estimation, whenever we compute a personalised prediction of r;
(replacing Equation 1):

@
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where w € [0, 1] is chosen such that an error measure of choice is minimised. We use
the mean absolute error (MAE) (Section 5.1).

4.2 Gaussian Spatial Process Model

Spatial statistics is concerned with the analysis and prediction of geographic data [11].
Utilising spatial processes, the field deals with tasks such as modelling the associa-
tions between observations made at certain locations, and predicting values at locations
where no observations have been made. The assumption made for spatial processes, that
correlation between observations increases with decreasing site distance, fits well with
our scenario, where viewing times are usually more correlated the more related exhibits
are. Hence, by introducing a notion of spatial distance between exhibits to functionally
specify this correlation structure, we can use spatial process models for predicting view-
ing times. We use sy, ..., 8, to denote the locations of exhibits i, € I = {1,...,n}
in a space providing such a distance measure, i.e., ||s; — s;||. This distance measure
can be easily obtained for the museum domain. That is, museums are carefully themed
by curatorial staff, such that closely-related exhibits are in physical proximity. Based
on this observation, we hypothesise that physical walking distance between exhibits is
inversely proportional to their (content) similarity. Thus, we use physical walking dis-
tance as our distance measure between exhibits. Specifically, our SVG file-based repre-
sentation of the museum (Section 3.1) was used to calculate the walking distances by



mapping the site map onto a graph structure which preserves the physical layout of the
museum (i. e., preventing paths from passing through walls or ceilings). We normalised
the resulting distances to the interval [0, 1].

Typically, for a visitor v € V, we have viewing times for only a subset of I, say
for n,, exhibits. Denoting a visitor’s log viewing time vector with r,,, we collect all ob-

served log viewing times into a vector 7 = (71, ...,7,,) of dimension Y /" | n,.! As-
sociated with each exhibit ¢ is a log viewing time mean 7.; and a standard deviation ;.
Let u = (T.q,...,T.,) be the vector of mean log viewing times, and o = (01, ...,0,)

the vector of standard deviations. Furthermore, p,, and o, are the vectors of means
and standard deviations respectively for only those exhibits viewed by a visitor v. For
example, if visitor 1 viewed exhibits 2, 3, 7 and 9, then p; = (F.2,7.3,7.7,T.9) and
g1 — (0’27 03,07, O'g).

Similarly to spatial processes, our Spatial Process Model (SPM) assumes a special
correlation structure between the viewing times of different exhibits. In our experi-
ments, we use a powered exponential [11]:

plllsi = sjll; &, v) = exp (— (¢llsi — s;11)") .

where ¢ > 0 and 0 < v < 2. That is, p(||s; — s;||; ¢, ) models the correlation be-
tween the log viewing times of exhibits ¢ and j. Let H(¢,v) be a correlation matrix
with components (H(¢,v));; = p([si — s;ll; ¢, v) collecting all these correlations,
and let H,(¢,v) denote a visitor v’s correlation matrix (dimension n, X n,). That
is, H, (¢, v) corresponds to H (¢, ) having removed those rows and columns that cor-
respond to unvisited exhibits. Also, let 8 = (u, o, 72,0, 1/) be a vector collecting the
2n + 3 model parameters, where 72 denotes the variance of non-spatial error terms
necessary to fully specify the model (they model non-spatial variation in the data).
Then, modelling the data using Gaussian spatial processes (a detailed derivation ap-
pears in [?]), 7 given O is multivariate normal of dimension va:1 n,. As the viewing
times of different visitors v = 1, ..., m are independent, the model simplifies to

Ty |0 ~ N (o, Xy) forallo =1,...,m, %)

where ¥, = o, 1,,, H,(¢,V)0, 1, + 7% 1,,, is a visitor v’s covariance matrix, and 1,,,
is the identity matrix of dimension n,, X 1.

Given the model parameters 8 = (,u, 0,72, 0, V), our model is fully specified. We
employ Bayesian inference using SPM’s likelihood function derived from Equation 4 to
estimate @ from 7 (in particular, we use slice Gibbs sampling [14]). This solution offers
attractive advantages over the classic frequentist approach, such as the opportunity of
incorporating prior knowledge into parameter estimation via the prior distribution, and
capturing the uncertainty about the parameters via the posterior distribution.

We can now use multivariate normal theory to predict a current visitor a’s log view-
ing times of unseen exhibits, say 7, 1, from a vector of observed viewing times 7 2.
This is because (74,1, 7q,2) | € is normally distributed (similarly to Equation 4). If we
use the following notation

Ta1 Ha,1 Za11 Yo 12
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! The information in r is the unnormalised equivalent of the information in R (Section 4.1).



then the conditional distribution p (r4,1|74,2, ) is normal with mean vector and covari-
ance matrix

Ta1 = E(74,1|7a,2,0) = a1 + Za,122;%2 (re2 — Ma,2) s
Cov ('ra,llra,Za 0) = Ea,ll - Ea,lQZ‘;%QEg:lQ,

where 7,1 = E (74,1|7¢,2,0) represents a personalised prediction of the log view-
ing times 7, 1. Additionally, a measure of confidence in this prediction can be derived
from Cov (741|742, 0), €. g., by using the variances on the diagonal of this matrix.
Being a model-based approach, SPM offers advantages over memory-based tech-
niques such as CFM. For instance, the model parameters 8 = (u, o, 72,9, V) have
a clear interpretation, and the confidence measure provided by the model supports an
informed interpretation of the model’s predictions. Additionally, recommendation gen-
eration is sped up by uncoupling the model-fitting phase from the prediction phase.

5 Evaluation

We describe the experimental setup in Section 5.1, and discuss our results in Section 5.2.

5.1 Experimental Setup

We used the dataset discussed in Section 3.2 to evaluate the predictive performance of
our models CFM and SPM (Section 4). For our experiments, we ignored travel time
between exhibits, and collapsed multiple viewing events of one exhibit into one event.
Due to the relatively small size of our dataset, we used leave-one-out cross valida-
tion. That is, for each visitor, we trained the models with the data from 157 of the 158
visit trajectories, and used the withheld visit pathway for testing. For CFM, we evalu-
ated several thousand parameterisations (e. g., varying the maximum number of nearest
neighbours and the shrinkage weight w), and used the best-performing one for our final
experiments. As mentioned above, SPM’s model parameters 8 were estimated from the
training data using slice Gibbs sampling [14]. For CFM, we computed predictions of a
visitor’s log viewing times of unseen exhibits from the (normalised) log viewing times
of the nearest neighbours (Equation 3). For SPM, log viewing times were predicted by
conditioning a multivariate normal distribution (Section 4.2), using the parameter esti-
mates for 6 to instantiate the model. In addition to CFM and SPM, we implemented a
baseline Mean Model (MM) which predicts the log viewing time of an exhibit ¢ to be
its (non-personalised) mean log viewing time 7.;.

We performed three types of experiments: Individual Exhibit, Progressive Visit and
Recommendation Potential.

— Individual Exhibit (IE). /E evaluates predictive performance for a single exhibit.
For each observed visitor-exhibit pair (v, i), we removed the log viewing time r,;
from the vector of the visitor v’s log viewing durations, and computed a prediction
7y; from the other observations. This experiment is lenient in the sense that all
available observations except the observation for exhibit ¢ are kept in a visitor’s
viewing duration vector.

— Progressive Visit (PV). PV evaluates performance as a museum visit progresses,
i.e., as the number of viewed exhibits increases. For each visitor, we started with



an empty visit, and iteratively added each viewed exhibit to the visit history, to-
gether with its log viewing time. We then predicted the log viewing times of all yet
unvisited exhibits.

— Recommendation Potential (RP). RP assesses the recommendation potential of
our models, i.e., it gives an indication as to whether our models can discover un-
visited but personally interesting exhibits. We predicted the log viewing times of
all unvisited exhibits for each visitor, given his/her complete visit history. We then
counted the predicted log viewing durations that were significantly above the cor-
responding exhibit’s average log viewing time 7.;. For this purpose, we used the
95% credible interval around 7.;.

For the first two experiments, we used the mean absolute error (MAE) to measure
predictive accuracy as follows:

1
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where I, denotes a visitor v’s set of exhibits for which predictions were computed. For
IE, we calculated the total MAE for all visitors and all exhibits; and for PV, we com-
puted the MAE across the yet unvisited exhibits for all visitors for each time fraction of
a visit (to account for different visit lengths, we normalised all visits to a length of 1).

Figure 2 shows a plot of the relationship between the shrinkage weight w and the
MAE for CFM. To obtain the plot, we used the best-performing CFM parameterisation
and varied w over [0, 1]. For each w, we averaged the MAEs obtained for the /E and PV
experiments. The mimimum MAE is achieved for w = 0.75. This value of w was used
in our comparative evaluations.

5.2 Results

For the IE experiment, CFM outperforms MM, achieving an MAE of 0.7868 (stderr
0.0068). SPM outperforms both MM and CFM, achieving an MAE of 0.7548 (stderr
0.0066). The performance differences are statistically significant with p < 0.01 (upper
portion of Table 2, column ‘logt MAE).

Computing MAEs with respect to log viewing times penalises errors for higher
viewing times less than errors for lower viewing times, which is reasonable in our con-
text. To illustrate the meaning of our results in terms of raw viewing times, we give a few
exhibit-specific MAEs (calculated as for the /E experiment, but on raw viewing times).
The lower portion of Table 2 shows these values for five exhibit areas A to E, which were
selected on the basis of the variability of their viewing times and locations in Melbourne
Museum (marked in Figure 1). The first column in Table 2 designates the exhibit area,
the second and third column the mean and standard deviation of the distribution of view-
ing times for this area (in seconds) respectively (we used the parameters of the fitted
log-normal models to compute estimates of the means and standard deviations), and the
last column shows the MAE with respect to log viewing times. In addition, for each ex-
hibit area, we split the data at the median of the fitted log-normal model, separating low
and high viewing times. We then computed the MAEs for each half separately (fourth
and fifth columns). As expected, the MAEs for the lower half are smaller than the
MAE:S for the upper half. For instance, CFM achieves an MAE of 52.6 seconds for the



Table 2. Model performance for the /E experiment (MAE)

Exhibit area Viewing time lowerMAE upperMAE logt MAE
Mean Stddev Mean (Stderr) Mean (Stderr) Mean (Stderr)
Total MM 0.8618 (0.0071)
Total CFM 0.7868 (0.0068)
Total SPM 0.7548 (0.0066)
CFM  60.8(6.3) 119.1(12.4)  0.6024 (0.0492)
Area A 200246 opyr 532(5.8) 1114(115) 05513 (0.0463)
CFM  29.8(4.0) 84.4(11.1)  0.6844 (0.0590)
Area B H5 156 opy 96.93.7)  76.4(10.7)  0.6245 (0.0588)
CFM  52.6(6.5) 118.7(19.2) 0.7038 (0.0587)
Area C T 240 opy 428(5.4)  110.7(18.0)  0.6308 (0.0531)
CFM  20.7(2.7)  64.9(11.3)  0.8066 (0.0733)
Area D 8149 spy 206(3.3)  60.6(10.7)  0.7588 (0.0719)
Area E s 1ps CFM 18135  47.0(10.8)  0.7896(0.1118)

SPM  18.1(3.5) 49.3 (10.1)  0.7921 (0.1047)

low viewing times at area C (29.7% of the mean), and 118.7 seconds for the high view-
ing times (67.1% of the mean). For CFM, the average MAE (when averaged over the
five exhibits) as a percentage of mean exhibit viewing time is 26.2% for the lower half,
and 66.4% for the upper half. In contrast, SPM achieves 23.9% and 63.0% respectively.

The performance of SPM, CFM and the baseline MM for the PV experiment is de-
picted in Figure 3. CFM outperforms MM slightly (statistically significantly for visit
fractions 0.191 to 0.374 and for several shorter intervals later on, p < 0.05). There is
a significant improvement in performance for SPM, compared to both MM and CFM
(statistically significant for visit fractions 0.019 to 0.922, p < 0.05). Drawing attention
to the initial portion of the visits, SPM’s MAE decreases rapidly, whereas the MAE
for MM and CFM remains at a higher level. Generally, the faster a model adapts to a
visitor’s interests, the more likely it is to quickly deliver personally useful recommenda-
tions. Such behaviour in the early stages of a museum visit is essential in order to build
trust in the system’s recommendations, and to guide a visitor in a phase of his/her visit
where such guidance is most likely needed. As expected, MM performs at a relatively
constant MAE level. For CFM and SPM, we expected to see a relative improvement in
performance as the number of visited exhibits increases. However, this trend is rather
subtle. Additionally, for all three models, there is a performance drop towards the end
of a visit. We postulate that these phenomena may be explained, at least partially, by
the increased influence of outliers on the MAE as the number of exhibits remaining to
be viewed is reduced with the progression of a visit. This influence in turn offsets po-
tential gains in performance obtained from additional observations. Our hypothesis is
supported by a widening in the standard error bands for all models as a visit progresses,
in particular towards the end (not shown in Figure 3 for clarity of presentation).

For the RP experiment, we obtained the following results. Per visitor (on average),

CFM discovers 29.3 exhibits with predicted viewing times that are significantly higher
than the average. This corresponds to 37.0% of the predictions per visitor (on average).
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In comparison, SPM predicts 23.6 such exhibits (30.1% of the predictions). These num-
bers indicate that our models discover exhibits which visitors appear to be interested in
but did not view. As SPM significantly outperforms CFM with respect to predictive ac-
curacy, SPM’s percentage is most likely a more realistic estimate of the true potential
of our models with respect to visitor support. A more conclusive interpretation requires
a further, more rigorous investigation.

6 Discussion

Recommender systems have often been employed in virtual (i. e., non-physical) do-
mains, where personalised recommendations are directly derived from predicted rat-
ings, e. g., by recommending the items with the highest ratings. In contrast, in a physical
domain, the transition from predicting a visitor’s interests to recommendation genera-
tion is not trivial, as we do not want to recommend exhibits that visitors are going to
see anyway. We suggest the following approach to address this problem. Firstly, use
the predictions generated by interest-based predictive models (Section 4) to build a list
of areas in the museum that a visitor is likely to be interested in, e. g., by determining
whether a predicted interest is significantly higher than the (non-personalised) average
interest. Secondly, form a list of exhibits from a location-based prediction of a visitor’s
pathway through the physical museum [8]. Then, after merging the lists appropriately,
one can recommend exhibits that a visitor may be interested in but is likely to overlook.
This approach requires a strategy for merging the lists, e. g., whether locations that a
visitor is likely to visit anyway should be included (to help build trust in the system) or
excluded (to avoid over-communication). The modality of the presentation, e. g., visu-
alised on a site map or provided in textual or audio form, should be taken into account
when selecting the exhibits to be recommended.

7 Conclusions and Future Work

In this paper, we proposed a computer-supported methodology that we used to collect
pathways of visitors to Melbourne Museum. We presented two collaborative models
for predicting a visitor’s viewing times of unseen exhibits from his/her viewing times at
visited exhibits — a memory-based nearest-neighbour collaborative filter (called CFM),
and a model-based approach utilising the theory of Gaussian spatial processes (called
SPM). Our models were evaluated with the dataset we collected. Our results show that
both models attain a higher predictive accuracy than a non-personalised baseline, with



SPM outperforming the other models. Additionally, in the realistic Progressive Visit set-
ting, SPM rapidly adapts to observed visitor behaviour, addressing the new-user prob-
lem of collaborative approaches.

In the future, we intend to investigate ways of hybridising SPM by incorporating
content-based exhibit features into our distance measure. We also plan to combine our
models with a model that predicts a visitor’s pathway (i. e., a sequence of exhibits), and
develop strategies for delivering useful personalised recommendations about exhibits.
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