Skip to main content

Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

We examine relations between popular variational methods in image processing and classical operator splitting methods in convex analysis. We focus on a gradient descent reprojection algorithm for image denoising and the recently proposed Split Bregman and alternating Split Bregman methods. By identifying the latter with the so-called Douglas-Rachford splitting algorithm we can guarantee its convergence. We show that for a special setting based on Parseval frames the gradient descent reprojection and the alternating Split Bregman algorithm are equivalent and turn out to be a frame shrinkage method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeVore, R.A., Lucier, B.J.: Fast wavelet techniques for near-optimal image processing. In: IEEE MILCOM 1992 Conf. Rec., vol. 3, pp. 1129–1135. IEEE Press, San Diego (1992)

    Google Scholar 

  2. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mrázek, P., Weickert, J.: Rotationally invariant wavelet shrinkage. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 156–163. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage. Applied and Computational Harmonic Analysis 24, 195–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM Journal on Control and Optimization 29, 119–138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Mathematics of Operations Research 18(1), 202–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kiwiel, K.C.: Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization 35(4), 1142–1168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frick, K.: The Augmented Lagrangian Method and Associated Evolution Equations, Dissertation, University of Innsbruck (2008)

    Google Scholar 

  15. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bulletin of the American Mathematical Society 72, 571–575 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iusem, A.N.: Augmented Lagrangian methods and proximal point methods for convex optimization. Investigación Operativa 8, 11–49 (1999)

    Google Scholar 

  18. Goldstein, D., Osher, S.: The Split Bregman method for l 1 regularized problems. UCLA CAM Report (2008)

    Google Scholar 

  19. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary–Value Problems. Studies in Mathematics and its Applications, vol. 15, pp. 299–331. North–Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  22. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  23. Aujol, J.F.: Some first-order algorithms for total variation based image restoration. Preprint ENS Cachan (2008)

    Google Scholar 

  24. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restauration. UCLA CAM Report (2008)

    Google Scholar 

  25. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based construction of wavelet frames. Applied and Computational Harmonic Analysis 14, 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, B., Shen, Z.: Pseudo-splines, wavelets and framelets. Applied and Computational Harmonic Analysis 22, 78–104 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Setzer, S., Steidl, G.: Split Bregman method, gradient descent reprojection method and Parseval frames. Preprint Univ. Mannheim (2008)

    Google Scholar 

  28. Chan, R.H., Setzer, S., Steidl, G.: Inpainting by flexible Haar-wavelet shrinkage. SIAM Journal on Imaging Science 1, 273–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Setzer, S. (2009). Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics