Skip to main content

Highly Accurate PDE-Based Morphology for General Structuring Elements

  • Conference paper
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Modelling the morphological processes of dilation and erosion with convex structuring elements with partial differential equations (PDEs) allows for digital scalability and subpixel accuracy. However, numerical schemes suffer from blur by dissipative artifacts. In our paper we present a family of so-called flux-corrected transport (FCT) schemes that addresses this problem for arbitrary convex structuring elements. The main characteristics of the FCT-schemes are: (i) They keep edges very sharp during the morphological evolution process, and (ii) they feature a high rotational invariance. Numerical experiments with diamonds and ellipses as structuring elements show that FCT-schemes are superior to standard schemes in the field of PDE-based morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serra, J.: Echantillonnage et estimation des phénomènes de transition minier. PhD thesis, University of Nancy, France (1967)

    Google Scholar 

  2. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  3. Boris, J.P., Book, D.L.: Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics 11(1), 38–69 (1973)

    Article  MATH  Google Scholar 

  4. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    Google Scholar 

  5. Boris, J.P., Book, D.L.: Flux corrected transport. III. Minimal error FCT algorithms. Journal of Computational Physics 20, 397–431 (1976)

    Article  MATH  Google Scholar 

  6. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    MATH  Google Scholar 

  7. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations. I: Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, New York (1987)

    MATH  Google Scholar 

  8. Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)

    Google Scholar 

  9. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, March 1992, vol. 3, pp. 125–128 (1992)

    Google Scholar 

  11. van den Boomgaard, R.: Mathematical Morphology: Extensions Towards Computer Vision. PhD thesis, University of Amsterdam, The Netherlands (1992)

    Google Scholar 

  12. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29, 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., Bruckstein, A.M.: Implementing continuous-scale morphology via curve evolution. Pattern Recognition 26(9), 1363–1372 (1993)

    Article  Google Scholar 

  14. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: The Hamilton–Jacobi connection. In: Proc. Fourth International Conference on Computer Vision, Berlin, pp. 215–219. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  16. Siddiqi, K., Kimia, B.B., Shu, C.W.: Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Graphical Models and Image Processing 59, 278–301 (1997)

    Article  Google Scholar 

  17. Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.): Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 12. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  18. Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  19. van den Boomgaard, R.: Numerical solution schemes for continuous-scale morphology. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 199–210. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.): Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 18. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  22. Talbot, H., Beare, R. (eds.): Proc. Sixth International Symposium on Mathematical Morphology and its Applications, Sydney, Australia (April 2002), http://www.cmis.csiro.au/ismm2002/proceedings/

  23. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  24. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2002)

    MATH  Google Scholar 

  25. Ronse, C., Najman, L., Decencière, E. (eds.): Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  26. Breuß, M., Weickert, J.: A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision 25, 187–201 (2006)

    Article  MathSciNet  Google Scholar 

  27. Breuß, M., Welk, M.: Analysis of staircasing in semidiscrete stabilised inverse linear diffusion algorithms. Journal of Computational and Applied Mathematics 206, 520–533 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breuß, M., Weickert, J. (2009). Highly Accurate PDE-Based Morphology for General Structuring Elements. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics