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Abstract. The aim of this paper is to study the robustness of the point-
wise Lipschitz regularity in 2D, which is a measure of the local regularity
of the intensity function associated to an image. This regularity can be
efficiently computed by an approach based on fine scales. We assess its
robustness when the image undergoes various transformations, especially
geometric ones. The results we obtain show that the pointwise Lipschitz
regularity is a suitable feature for applications in computer vision.
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1 Introduction

The extraction of invariant or robust features from an image appears as a cen-
tral issue in computer vision. The difficulty of this problem lies in the fact that
natural scenes are often viewed under various situations, corresponding to a wide
class of transformations (geometric deformations or illumination change for in-
stance). So as to reach certain invariance properties regarding transformations
such as scale change, multiscale approaches were put forward. In particular,
methods based on the Scale-Space theory [1–3] turned out as successful in com-
puter vision. These can evidence regions of interest, which are stable through
local geometric deformations [4]. These regions are identified by their location
and characteristic scale, and their content can be quantified by a suitable de-
scriptor [5]. Recent works compared state-of-the-art interest regions detectors [6]
and region descriptors [7]. Existing methods proved to be efficient for one type
of scene or transformation [8–10]; however, no method outperforms the others
in all cases, so combining different kinds of features seems relevant.

In this paper, we study a feature related to the local regularity of the intensity
function: the pointwise Lipschitz regularity α ∈ R (denoted regularity α). It
was widely studied in 1D, especially in the case of multifractal signals [11, 12],
and also applied to the characterization of singularities [13, 14] and landmark
registration [15]. In 2D, methods based on regularity measures were also put
forward with applications to textured images [16, 17], the regularity being used
from a global point of view. Besides, recent advances in edge detection using
multiscale approaches [18] were used for object detection [19]. New developments
using the multiscale SIFT descriptor were also recently proposed [20].
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Here we are concerned with the pointwise regularity in 2D. More precisely, a
multiscale approach focused on fine scales allows to compute numerically values
of regularity α. As we will see, this regularity appears as a relevant feature to
detect points of interest and could be profitably used as an image descriptor: on
the one hand it has invariance properties (especially regarding geometric trans-
formations), and on the other hand values of the pointwise Lipschitz regularity α

can be efficiently computed.
This paper is organized as follows. We first present the notion of regularity α

in 2D, its invariance properties. So as to numerically estimate α in 2D, we recall
an algorithm based on a multiscale edge detector [21], which gives pointwise es-
timations of α at edge points of the image. We also present a methodology so as
to compare values of α between two images related by a geometric deformation.
Finally, an evaluation procedure allows to assess the robustness of the regular-
ity α, for natural scenes viewed under various imaging conditions. The obtained
results show that the regularity α makes up a robust feature.

2 Regularity α in the context of image analysis

We consider an image (in level of gray) given by its intensity function f : R
2 → R.

We first present briefly the definition of Lipschitz regularity in 2D, inferred from
the 1D definition [13]. This leads to the notion of regularity α. Then we recall a
known algorithm for computing the values of the regularity α. We also investigate
its invariance properties, especially from a practical point of view.

2.1 Notion of regularity α in 2D – Invariance properties

The Lipschitz regularity generalizes the usual notion of regularity.

Definition 1. (1D Lipschitz regularity) Given α ∈]0, 1[, a function f : R → R

is α-Lipschitz at x0 ∈ R if there exists a neighborhood V of x0 and A > 0 so that

∀x ∈ V, |f(x) − f(x0)| ≤ A|x − x0|
α

This can be extended for α ∈ R. In particular, for α = n ∈ N
∗, this corresponds

to a locally Cn function. Besides, for α < 0, this definition can be generalized
thanks to the theory of distributions (see details in [14]).

Definition 2. (2D Lipschitz regularity) Let f : R
2 → R and x0 ∈ R

2. For θ ∈
[0, 2π[, we define fθ : R

∗
+ → R as fθ(h) = f(x0 + huθ), where uθ = (cos θ, sin θ).

For α ∈ R, f is α-Lipschitz at x0 ∈ R
2 if

∀θ ∈ [0, 2π[, fθ α-Lipschitz at 0

Note that this definition agrees with the usual definition of the Lipschitz regu-
larity. Indeed, when α ∈]0, 1[, provided f is α-Lipschitz at x0, we can write

|f(x) − f(x0)| = |f(x0 + (h cos θ, h sin θ)) − f(x0)| = |fθ(h) − fθ(0)| ≤ Ahα

|f(x) − f(x0)| ≤ A||x − x0||
α with A > 0, for x in a neighborhood of x0.
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Definition 3. (Regularity α) Let f : R
2 −→ R and x0 ∈ R

2. The regularity α

of f at x0 is defined as

α = α(f, x0) = inf{α0 ∈ R, f α0-Lipschitz at x0} (1)

The relevance of α arises from its invariance properties: the regularity α appears
as a characteristic value. In particular, let us study the case of a constant affine
deformation (so including rotation and scale change), widely studied in the Scale-
Space theory [2].

Proposition 1. (Influence of an affine deformation on the regularity α)
Let f : R

2 −→ R, and g defined by

∀x ∈ R
2, g(x) = f(Bx), with B a 2 × 2 invertible matrix (2)

Then, for α ∈]0, 1[, α(f, x0) = α(g, y0) with y0 = B−1x0.

Proof. According to def. 3, there exists A > 0 so that

∀θ ∈ [0, π[, |f(x0) − f(x0 + huθ)| ≤ Ahα (3)

Let us study the regularity of g at y0 = B−1x0. For θ ∈ [0, 2π[ we have

|g(y0) − g(y0 + huθ)| = |g(B−1x0) − g(B−1x0 + huθ)| (4)

= |f(x0) − f(x0 + hBuθ)| (5)

Moreover, since Buθ = λuθ′ with λ ∈ R
∗ and θ′ ∈ [0, 2π[:

|g(y0) − g(y0 + huθ)| = |f(x0) − f(x0 + hλuθ′)| (6)

≤ (A|λ|α)hα (7)

So there exists A′ > 0 so that

∀θ ∈ [0, 2π[, |g(y0) − g(y0 + huθ)| ≤ A′hα (8)

and g is α-Lipschitz at x0.
Then, let us assume the regularity α of f corresponds to a minimum α0

attained in a certain direction θ0. Since we consider a constant affine deformation,
there exists θ1 so that Buθ1

and uθ0
are collinear. Hence, the regularity α of g

at B−1x0 corresponds to a minimum α0 in the direction θ1. So the regularity α

is preserved when a constant affine deformation is applied to the image. ⊓⊔

Note this invariance property may not always hold in practice. Indeed, when
B becomes nearly singular (case of extreme deformations), λ can be very small
when uθ is an eigenvector of B. So there may be numerical instabilities for ex-
treme deformations. However, as we will see, the regularity α yields a significant
robustness for wide-ranging transformations (and not only small deformations).
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Now, let us discuss more general transformations, given by

∀x ∈ R
2, g(x) = f(v(x)) with v : R

2 −→ R
2 (9)

In this general context, note that the regularity α is not necessarily preserved:
depending on the regularity of v, g may be more regular than f , resulting in a
higher regularity α for g than for f . Nevertheless, we point out that it can be
preserved in many practical cases, especially when considering image edges [22].
Note that in the case of an image representing an edge, f is regular along the
tangent to the edge and irregular along the normal direction – see Fig.1(a). In
this regard, so as to estimate precisely the regularity α of f at a given point, it is
important to determine the direction of maximum irregularity; we further explain
how to compute this direction and estimate α (section 2.2). More generally, since
transformations such as local affine deformations do not alter the topology of
the edges, the regularity α on these edges should be preserved – see Fig.1(b).

2.2 Numerical computation through a multiscale approach

So as to compute numerical values of α, we use a known approach based on a
multiscale edge detector [21]. Let us recall briefly some aspects of this detector.
According to Canny [22], edge points correspond to locations where the magni-
tude of the gradient attains a local maximum in the direction of the gradient
– which is the direction of maximum irregularity. A generalization of Canny’s
detector was put forward by Mallat, using wavelet decompositions [21]. This al-
lows to detect edge points, and also to compute an accurate estimation of the
regularity α at these edge points. This computation of α is carried out using a
linear regression at the finest scales. Besides, denoting N the size of the data
(N = n2 for an image n × n), this formulation can be computed in O(N), thus
allowing a fast computation. In summary, this detector is known as an efficient
method so as to compute numerical values of α. We emphasize that this method
is focused on the finest scales, and that it gives pointwise estimations of the
regularity α. Given an image f , the output of this detector can be expressed as
a set

{

(xi, yi, αi) ∈ R
3, 1 ≤ i ≤ nf

}

(10)

where nf is the number of detected edge points (xi, yi), each being associated
to a value αi. Since edge points correspond to singularities (where f may not be
differentiable), the obtained values can be negative: typically a boundary leads
to α = 0, a line to α = −1, and an isolated point to α = −2. For natural images,
we obtain various values; for instance, given the image represented on Fig.2(a),
we represent the density associated to the regularity α of detected edge points on
Fig.2(c). In this case, 95% of the computed values are within [−1.4, 0.8]. Besides,
some parameters of the detector (like thresholding) allow to tune the number of
edge points. We use here a light thresholding in our numerical experiments, so
as to obtain a large number of values of regularity α. This is consistent insofar
as we want to evaluate the robustness of the regularity α from a practical point
of view.
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Fig. 1. (a) At a point belonging to an edge line, the Lipschitz regularity is minimal
along the normal direction; along this direction, the regularity α can be accurately
computed. (b) If an edge undergoes a deformation which does not change its topology,
the regularity α is preserved (D1, D2: directions of maximum irregularity.)
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Fig. 2. (a,b) Two images related by a known affine deformation; (a’, b’) Detected edge
points; (c) Density of the regularity α, based on edge points represented on (a’); (d)
Errors on the estimation of α for exact matches (EM) and approximate matches (AM)
between edge points of (a’) and (b’).
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2.3 Empirical study in the case of an affine deformation

We study here the robustness of the estimation of α in the case of natural images,
for which values of regularity α are computed at detected edge points. For that
purpose we consider an original image X0 (see Fig.2(a)) and a deformed image
X1 (see Fig.2(b)) related by a known affine deformation. This homography allows
to carry out point-to-point correspondences and thus to compare the values of
regularity between the two images (see Fig.2(a’,b’)). Given X0 and X1, the
detector leads to two sets of edge points with associated values of regularity α:

S0 = (x0
i , y

0
i , α0

i )i∈I0
and S1 = (x1

j , y
1
j , α1

j )j∈I1

Afterwards, we project the points (x1
i , y

1
i )i ∈ I1 into the coordinates of X0, and

we carry out correspondences between the sets S1 and S0. At this step, we have
two possible choices: either exact matches (EM) for which a projected point
of S1 corresponds exactly to a point of S0; or approximate matches (AM), by
tolerating an error of 1 pixel. This allows to compare the computed values of α:
given a correspondence between (x0

i , y
0
i , α0

i ) and (x1
j , y

1
j , α1

j ) (either EM or AM),
we define the error on α (for one matched pair) as

dα = dα(i, j) = |α0
i − α1

j | (11)

Finally, a match is said correct if dα < ǫ, where the parameter ǫ is a tolerated
error on α. We point out there is a certain freedom of choice for ǫ, which should
depend on the application. In this regard, there is a trade-off between too low val-
ues (refusing any numerical error on α) and too high values of ǫ (not taking into
account α). Let us now study the effect of this parameter ǫ > 0, by comparing
the sets S0 and S1: we represent on Fig.2(d) the proportion of correct matches
depending on ǫ, for both EM and AM. As expected, it increases with respect to
the parameter ǫ. More precisely, a good result lies in the fact that it increases
rapidly for small values ǫ, becoming thus significant: indeed, when ǫ exceeds 0.3,
this proportion attains almost 80%. Moreover we observe that the results are
only slightly better for EM than AM, so that it can be relevant to consider AM
to define a descriptor since the number of extracted points is significantly larger.
So these first results show that the regularity α estimated at edge points is a
feature robust to affine deformations. Let us now evaluate the robustness of this
feature in a more general context, when various transformations are applied to
natural images.

3 Quantifying the robustness of the regularity α

3.1 Evaluation procedure

We consider 8 sequences, each consisting of 6 images (Xk)0≤k≤5: ZoomRota-
tion1, ZoomRotation2, Viewpoint1, Viewpoint2, Blur1, Blur2, Jpeg and Light
(see Fig.3). For each sequence, the 6 images represent a given scene viewed under
a certain imaging condition. For instance, considering the sequence Viewpoint1
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(see Fig.4), each image Xk (1 ≤ k ≤ 5) corresponds to a change of viewpoint
applied to the reference image X0. The relevance of these sequences lies in dif-
ferent aspects. First they represent various objects: textured scenes – repeated
textures, see Fig.3(a,d) – and structured ones – homogeneous regions with edges
boundaries, see Fig.3(b,c). Secondly the imaging conditions are wide-ranging:
geometric deformations and specific transformations like JPEG compression.
Thirdly the degree of these transformation can be significant (scale change up to
4, angle of viewpoint up to 60o, JPEG compression rate up to 98%). Finally,
we mention the sequences ZoomRotation1, ZoomRotation2, Viewpoint1 and
Viewpoint2 correspond to actual camera displacements; the sequences Blur1,
Blur2 and Light correspond to camera operations (varying the camera focus
or shutter speed); for the sequence Jpeg, different levels of JPEG compres-
sion were obtained by a software. For illustration purposes, we represent on
Fig.3 the images X0 and X5 associated to every sequence. For more details, see
http://www.robots.ox.ac.uk/~vgg/research/affine.

For a given set of images (Xk)0≤k≤5 associated to a sequence (viewpoint
change for instance, see Fig.4), we carry out the following procedure:

1. For each image (Xk)0≤k≤5, detect edge points and compute associated values
of regularity α: pk

i = (xk
i , yk

i , αk
i ), 1 ≤ i ≤ nk.

2. For fixed k (1 ≤ k ≤ 5), determine a set of Ck of point-to-point correspon-
dences between edge points of X0 and Xk (thanks to the known homography
between these images)

Ck =
{

(p0
i , p

k
j ) matched according to a geometric criterion

}

(12)

This leads to a certain number of correspondences (NC) #Ck.
3. Select the subset Ck

ǫ of correspondences for which regularities are sufficiently
close (according to a parameter ǫ > 0)

Ck
ǫ =

{

(p0
i , p

k
j ) ∈ Ck, dα = |α0

i − αk
j | < ǫ

}

(13)

and compute the matching score, representing the proportion of correct
matches:

Sk =
#Ck

ǫ

#Ck
(14)

This score reflects the robustness of the regularity α. We will study its evolution
with respect to ǫ for the sequence Viewpoint1 (Fig.5), and also with respect to k

for all sequences (Fig.6, for fixed ǫ). Note that in step 2, the matches based
on a geometric criterion can be either exact or approximate (as described in
section 2.3); we study both EM and AM. In step 3, one may have to choose
the parameter ǫ, representing a tolerated error on α (as seen in section 2.3).
In our experiments we use ǫ = 0.3, for which a high proportion of the matches
(almost 80%) are deemed correct in the case of the affine deformation studied
in section 2.3 (see Fig.2(d)). Note also that this choice allows to identify clearly
boundaries (α = 0), lines (α = −1) and isolated points (α = −2).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Sample of data set, representing X0 (reference image) and X5 (highest degree
of transformation) associated to: (a, b) Scale change and rotation; (c, d) Viewpoint
change; (e, f) Blur; (g) JPEG compression; (h) Illumination change.

Fig. 4. (Top) Complete sequence Viewpoint1 (viewpoint change): 6 images X0, ..., X5;
(Bottom) Associated edge points.
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Fig. 5. Proportion of correct matches with respect to the tolerated error on α, between
the images X0 and Xk (1 ≤ k ≤ 5) associated to the sequence Viewpoint1 (see Fig.4).
(ak) Comparison between X0 and Xk, for both EM and AM; (b) Comparison between
X0 and all Xk, for AM (the curves 1–5 correspond to those of fig.(a1–a5) for AM).
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Fig. 6. (a–h) Matching scores (ǫ = 0.3) associated to the sequences of Fig.3(a–h).
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3.2 Analysis of the results

Study of the sequence Viewpoint1 (Fig.5)
First, we consider the sequence Viewpoint1, associated to increasing angles of
viewpoint changes (k = 1 : 20o, k = 2 : 30o, k = 3 : 40o, k = 4 : 50o, k = 5 : 60o).
For each k (1 ≤ k ≤ 5), we represent on Fig.5(ak) the evolution of Sk with respect
to the tolerated error on α (parameter ǫ), for both EM and AM. The obtained
results are similar to the affine deformation studied in section 2.3; indeed, EM
yield slightly better than AM in all cases, and the proportion of correct matches
increases with the tolerated error on α (parameter ǫ). In particular, for ǫ = 0.3,
we note that the proportion of correct matches (for EM and AM) exceeds: 80%
for the angles 20o, 30o and 40o, see Fig.5(a1–a3); 60% for the angles 50o and 60o,
see Fig.5(a4–a5). Besides, we display on Fig.5(b) all the preceding curves (only
for EM), representing the degradation of the estimation of regularity α as the
degree of the viewpoint change increases. Note that as soon as ǫ is larger than
0.2, the proportion of correct matches exceeds 50%, even for significant changes
of viewpoint. This good result shows the regularity α makes up a robust feature.
Study of all sequences (Fig.6)
Now, considering the 8 sequences, for both approximate and exact matches,
we represent on Fig.6 the curves (k, Sk). More precisely, each graph of Fig.6
describes the performance for one particular sequence associated to a certain
image transformation. For instance, Fig.6(c) refers to the sequence Viewpoint1
(associated to a viewpoint change), represented partially on Fig.3(c) (and com-
prehensively on Fig.4). This allows to assess the robustness of the estimation of
the regularity α in general situations, which is the main objective of this paper.
We emphasize that a method is all the better than it leads to higher scores and
that these scores are stable, i.e, they remain high when the degree of deformation
increases. On the basis of the matching scores (see section 3.1), we can evaluate
how robust the estimation of α is, under various imaging conditions (Fig.6). The
matching score gives the proportion of correspondences (between two images)
for which computed values are close. Globally, we observe that the score tends
to decrease as the degree of the transformation increases. Note also the scores
for EM and AM are close, and that EM yield better results than AM (as we
pointed out in section 2.3, see Fig.2). We do not observe a significant difference
between textured (Fig.6(a,d)) and structured scenes (Fig.6(b,c)); however, the
structured scene of Fig.6(c) performs better, due to the presence of clear edges.
Let us now detail the analysis of the results for each transformation.

Scale change and rotation, Fig.6(a,b): for both textured and structured
scenes, the performance decreases overall (from 0.8 to 0.5). Since sequences
ZoomRotation1 and ZoomRotation2 correspond to significant scale changes and
rotations, the obtained results are satisfactory.

Viewpoint change, Fig.6(c,d): the performance decreases moderately, re-
maining high for the structured scene (between 0.9 and 0.7, Fig.6(c)) and good
for the textured scene (between 0.8 and 0.6, Fig.6(d)). In this regard, note that
both sequences Viewpoint1 and Viewpoint2 contain distinct edge, which are
moderately affected by a viewpoint change.
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Blur, Fig.6(e,f): the performance decreases rapidly (from 0.7 to 0.3) for both
structured scenes and textured ones. It is not surprising to obtain these average
results since the blur modifies the regularity α (edges are smoothed). It is well
known that a smoothing operation alters the regularity α; yet, one can retrieve
the regularity α when the smoothing kernel is known [14].

JPEG compression, Fig.6(g): the performance remains high (between 0.9
and 0.6), decreasing steadily. So JPEG artifacts have little impact on the regu-
larity α, even if JPEG compression tends to blur sharp edges.

Light change, Fig.6(h): very high performance (stable, close to 0.9). Since
illumination change does not alter the structure of the edges, the regularity α

is not affected by such changes.
In conclusion, the regularity α appears as very robust to light change and

JPEG compression, and less to image blur. Concerning geometric deformations,
we obtain very good results for viewpoint change (especially structured scenes)
and satisfying ones for scale change and rotation. In addition, we observe that
for all transformations except blur, the performance does not fall down, even for
a high degree of transformation. This emphasizes the fact that the regularity α

is characteristic of the kind of edge. In a blurry context, the computation of α

seems less reliable; nevertheless this can be improved by using higher scales in
the detector (provided the edges are sufficiently far apart). Eventually note that
there is a balance between quantity – larger number of AM than EM, better
repeatability for AM – and quality – better estimation of α for EM than AM.
More precisely this balance is in favor of AM: the scores are only slightly inferior
for AM than for EM, while AM leads to a greater number of points (which is
important for image description). Note also that in an application such as image
matching, increasing the parameter ǫ leads to a limited number of matched pairs
(for which the computed values are closer, see section 2.3).

3.3 Discussion

Let us discuss now some aspects of the regularity α. First, concerning the way
of computing values of α, note there exist methods based on wavelet transforms
that allow to estimate the regularity α at any point of the image [23]. Here we
focused on edges, since they appear to be robust to various transformations of
the image. Moreover, so as to improve the matching performance, the number
of detected edge points can be limited. This can be done by selecting only the
highest responses (threshold on the modulus of the gradient), or by considering
higher scales. This will result in evidencing only the most salient edges. Here, we
considered all the values for regularity α, showing that a significant proportion of
the computed values α corresponds to values for which the estimation is robust.

In addition, we can compare certain aspects of our approach with works re-
lated to interest regions [6, 7], to the extent they allow to characterize some ob-
jects present in the image. To that regard, it is important to note that we focus on
position and pointwise regularity α, whereas these methods are based on position
and characteristic scale. On the one hand, such methods use this characteristic
scale so as to define interest regions, and then compute associated descriptors
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which characterize their content. On the other hand, our method gives pointwise
features, so there is no region of interest associated to the Lipschitz regularity
(the definition of such regions seems possible, but is not straightforward).

Besides, we can compare the performance measures of these two methods.
Since the criteria used are different, we can only draw conclusions from the
shape of the curves. Numerically we observe that our method is more stable
than those based on interest regions: as the level of transformation increases,
the performance declines slower overall. More precisely, our method appears:
more stable for JPEG, Viewpoint1, Viewpoint2 and ZoomRotation2; less stable
for ZoomRotation1 and Blur1; equivalent for Light, Blur2. So, compared to the
best state-of-the-art methods, the regularity α (computed at edge points) yields
a significant robustness to various image transformations.

4 Conclusions and perspectives

In this paper, we studied the regularity α in the context of interest point detec-
tion, focusing on edge points. This approach is based on fine scales (pointwise
features) which differs from other methods based on coarser scales (local fea-
tures). We explained why certain transformations of the image do not change
the pointwise regularity α at such edge points. Hence the regularity α stands
out as a characteristic value.

The main contribution of our work lies in quantifying the robustness of the es-
timated value of α. For that purpose we proposed an evaluation procedure which
allows to compare the values of the regularity α between two images related by
a known homography. This leads to good results of robustness concerning geo-
metric deformations – such as viewpoint change, scale change and rotation – and
also JPEG compression and illumination change. So the regularity α (computed
at edges) appears as a relevant feature for various tasks in computer vision.

In terms of perspectives, let us point out potential applications of the reg-
ularity α. A first application may consist on clustering edge points into edges
(1D-curves) since these have connexity properties. Instead of relying only on a
distance measure, such a clustering would use a criterion based on both distance
and regularity α. Secondly, the regularity α could be used complementary to
interest region descriptors: the estimated regularity α at all edge points within
a given region may help to characterize the content of the region. For that pur-
pose, it is interesting that our method can evidence a great number of features.
Besides, the regularity α has potential applications to image registration, in
particular feature-based methods (thanks to the identification of lines, curves,
points and corners). Eventually, the regularity α appears as an interesting addi-
tional feature, additional to other existing local features: an integration of the
pointwise Lipschitz regularity in existing detectors will certainly improve their
performance.
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