
Classic-Like Analytic Tableaux
for Finite-Valued Logics

Carlos Caleiro1 and João Marcos2

1 Instituto de Telecomunicações and Dept. Mathematics, IST, TU-Lisbon, Portugal
2 Department of Informatics and Applied Mathematics, UFRN, Brazil

Abstract. The paper provides a recipe for adequately representing a
very inclusive class of finite-valued logics by way of tableaux. The only
requisite for applying the method is that the object logic received as
input should be sufficiently expressive, in having the appropriate lin-
guistic resources that allow for a bivalent representation. For each logic,
the tableau system obtained as output has some attractive features: ex-
actly two signs are used as labels in the rules, as in the case of classical
logic, providing thus a uniform framework in which different logics can
be represented and compared; the application of the rules is analytic, in
that it always reduces complexity, providing thus an immediate proof-
theoretical decision procedure together with a counter-model builder for
the given logic.

Key words: many-valued logics, proof theory

1 Background

The fact that any abstract consequence relation may be represented by way of
an adequate many-valued semantics (cf. [16]) makes many-valued logics ubiqui-
tous in the realm of inference systems. Moreover, the compositional feature that
characterizes truth-functional semantics makes the latter extremely attractive
for computational or linguistic purposes. This much from a purely semantical
perspective. From a proof-theoretical perspective, on the other hand, the ex-
istence of appropriate and efficient deductive formalisms and theorem-proving
frameworks for truth-functional logics provides many-valued logics with useful
tools for automating their variegated approaches to entailment and for develop-
ing deep computational insights into their underlying reasoning mechanisms.

General procedures for providing arbitrary finite-valued logics with adequate
tableau systems are known since long in the literature (cf. [3, 8]). Reasonably
up-to-date implementation-oriented accounts of such axiom-extraction strate-
gies can be found in [10, 4]. The price to pay for the full generality of such
approaches is that of a certain semantic intromission in the proof-theoretical
formulation of the corresponding object logics: the tableau rules, in each case,
contain formulas labeled by as many different signs as there are truth-values,
or collections of truth-values. The issue here goes beyond a mere sacrifice in

Joao Marcos
Preprint.
WoLLIC 2009,
LNAI 5514, pages 268-280, Springer, 2009.

2 Carlos Caleiro & João Marcos

elegance: the staggering and heavily semantic-dependent wealth of signs for for-
mulas culminates in irksome difficulties for the task of comparing different logics
on what regards their deductive strengths, given the inexistence of a uniform
object-language framework for dealing with all of them at once.

The intrinsic bivalence that underlies the usual definition of entailment for
many-valued logics has suggested that the many ‘algebraic’ truth-values of the
latter might be represented by the use of just two ‘logical’ values (cf. [15]).
A constructive procedure for producing an equivalent bivalent semantics for
any sufficiently expressive finite-valued logic has been proposed in [6]. Suitable
machineries for extracting classic-like sequent systems for generous classes of
such bivalent semantics were set up in [5, 1], and a sketch of how any such bivalent
semantics may give origin to classic-like 2-signed tableaux was offered in [6] and
implemented in [13]. The advantage of uniformity of framework provided by
the mentioned constructive extraction of adequate 2-signed tableau-theoretic
formalizations for finite-valued logics was partially canceled, however, by the
fact that among such tableau rules a non-analytic dual branching version of the
cut rule was to be found. In contrast, the present paper is to show in detail how
adequate classic-like tableau systems may be constructively extracted directly
from the corresponding finite-valued semantics, this time with the additional
advantage of analyticity, a feature that allows for the immediate design of fully
automated decision tacticals for the logics characterized by such semantics.

2 Truth-Functionality vs. Bivalence

Consider an alphabet consisting of a denumerable set A = {p0, p1, p2, . . .} of
atoms/variables and a finite set of connectives Σ = {�0,�1, . . . ,�k}. The arity
of a given connective � ∈ Σ will be denoted by ar�. The set S of formulas,
as usual, is the algebra freely generated over A with respect to Σ. Let Vn =
{v0, v1, . . . , vn−1} be a set of truth-values, partitioned into a set D ⊆ Vn of
designated values and a set U = Vn \D of undesignated values. In what follows,
it will be handy in many cases to assume F = v0 and T = vn−1. In general, an
n-(valued) assignment of truth-values to the atoms is any mapping ρ : A → Vn,
and an n-(valued) valuation is any extension w : S→ Vn of such an assignment
to the set of all formulas. An n-valent semantics for S based on Vn, then, is
simply an arbitrary collection of n-valued valuations. In particular, we will call
bivalent any (classic-like) semantics where V2 = {F, T} and D2 = {T}; the
corresponding valuations are called bivaluations. Canonical notions of entailment
|=x ⊆ Pow(S)× S characterizing a logic L may be associated to any valuation w
and any n-valent semantics Sem, if one simply sets Γ |=w α iff (w(α) ∈ D
whenever w(Γ) ⊆ D), and Γ |=Sem α iff (Γ |=w α for every w ∈ Sem), where
Γ ∪ {α} ⊆ S. Any pair 〈Γ, α〉 ∈ Pow(S)× S such that Γ |=Sem α is called a valid
inference of Sem.

A particularly interesting case of n-valent semantics corresponds to the ones
we call truth-functional, namely, semantics provided to the set of formulas S
by defining an appropriate Σ-algebra V with carrier Vn, associating to each

Classic-Like Analytic Tableaux for Finite-Valued Logics 3

� ∈ Σ an ar�-ary operator �̂ ∈ V, and collecting in Sem the set of all ho-
momorphisms § : S → V. Any such homomorphism, as is usual in the field of
universal algebra, can be understood as the unique extension of an assignment
ρ : A → Vn into a valuation §ρ : S→ V where one imposes §(�(ϕ1, . . . , ϕar�)) =
�̂(§(ϕ1), . . . , §(ϕar�)). This way, one might say that such a semantics is composi-
tional, in that the meaning it attributes to a complex expression clearly depends
(functionally) on the meaning of its directly subordinated subexpressions. Any
logic characterized by truth-functional means, for a given Vn, is called n-valued;
we will say that an n-valued logic L with an entailment relation |=Sem is gen-
uinely n-valued in case there is no m < n such that |=Sem can be canonically
obtained by way of an m-valued truth-functional semantics.

Example 1. Our running example for this paper will involve a well-known class
of truth-functional n-valued logics, namely Lukasiewicz’s logics Ln, for n > 2.
Each Ln may be characterized by considering the unary connective ¬ and the
binary connective ⊃, together with a set of truth-values Vn where the designated
ones form the singleton D = {vn−1}, while interpreting ¬̂vi as v(n−1)−i and
interpreting vi⊃̂vj as v(n−1)−(i−j) in case i > j, and as v(n−1) otherwise, where
0 ≤ vi, vj ≤ n− 1.

Taking advantage of the residual shadow of bivalence that lurks in the dis-
tinction between designated and undesignated truth-values, it is easy to see
that any entailment relation characterizing an n-valued logic can also be char-
acterized by way of a bivalent semantics. Indeed, consider the total mapping
t : Vn → V2 such that t(v) = T iff v ∈ D and define, for any valuation § : S→ V
of an n-valued semantics Sem, the bivaluation b§ = t ◦ §. Collect all such bi-
valuations into a semantics Sem2 and notice that Γ |=x α iff Γ |=y α, where
〈x, y〉 ∈ {〈§, b§〉, 〈Sem,Sem2〉}.

Now, given a genuinely n-valued logic, for n > 2, describing this same logic by
way of a bivalent (non-truth-functional) semantics would seem to throw away the
fundamental feature of compositionality, making the resulting semantic charac-
terization less appealing both from a meta-theoretical and from a practical point
of view. As we will see in what follows, however, this is not necessarily the case,
as bivalent semantics can be quite profitable and informative, even in the non-
truth-functional case, where in fact an extended notion of compositionality may
be entertained.

Let’s first try and find a way of distinguishing each pair of values of a gen-
uinely n-valued logic L. Given vi, vj ∈ V, we write vi] vj and say that vi and vj
are separated in case vi and vj belong to different classes of truth-values, that
is, in case t(vi) 6= t(vj). Given any two variables pi and pj and any valuation §
such that vi = §(pi) 6= §(pj) = vj yet b§(pi) = b§(pj), we say that a one-variable
formula θij(p) of L separates vi and vj if §(θij(pi))] §(θij(pj)) (or, equiva-
lently, b§(θij(pi)) 6= b§(θij(pj))). In that case we will also say that the values vi
and vj of L are effectively distinguishable, as they may be separated using just
the original linguistic resources of L. Finally, we will say that the logic L is
effectively separable in case its truth-values are pairwise effectively distinguish-
able, that is, for any pair of distinct values 〈vi, vj〉 ∈ D2 ∪ U2 a one-variable

4 Carlos Caleiro & João Marcos

formula θij(p) can be found in L that separates vi and vj . Collect, without rep-
etition, all such one-variable formulas into a finite sequence θ1(p), . . . , θs(p), and
assume θ0(p) = p ; obviously, θ0(p) by itself suffices to separate any pair of values
〈vi, vj〉 ∈ (D × U) ∪ (U × D). Then, the binary print of a value v ∈ V will be
the sequence v = [b§(θr(p))]sr=0, where §(p) = v. Notice that for every pair of
distinct values 〈vi, vj〉 ∈ V2 it is now obviously the case that vi 6= vj .

Example 2. Back to the example of the Ln, one has to devise a way of pairwise
separating each of the n − 1 undesignated values, in each case. A well-known
general method, in the case of the Ln, is to use the Rosser-Turquette functions
(cf. [14]). To give an independent illustration of how the separation can be done
in the particular case of L3, one might either define θ01(p) = θ1(p) as ¬p, using
a primitive connective of the language of L3, or alternatively define this same
θ1(p) using a more complex formula such as ¬p ⊃ p. To simplify notation, in
this particular case of L3, where a single separating formula θ1 suffices, we shall
drop its subscript. For different reasons, it is obvious in each case that v0 6= v1.
Indeed, using the first definition, the binary prints corresponding respectively
to v0, v1 and v2 are 〈F, T 〉, 〈F, F 〉 and 〈T, F 〉; the second definition originates,
respectively, the binary prints 〈F, F 〉, 〈F, T 〉 and 〈T, T 〉.

The next sections will show how such effective separation of truth-values,
whenever it can be effected —and that is a decidable property of a finite-valued
logic—, may be used to automatically produce adequate classic-like analytic
tableau systems for the corresponding finite-valued logics.

3 A Uniform Analytic Deductive Formalism

The result, mentioned in the last section, that allowed for the characterization
of a finite-valued logic by way of bivalent semantics, coupled with the technique
that allows for the separation of the algebraic truth-values of the object logic by
way of the binary print defined with the help of the linguistic resources of that
very logic, gives a hint on how the corresponding adequate bivalent semantics
may be constructively described, in each case. A further step will now be to
show in detail how this bivalence may be explored in order to devise an adequate
classic-like formalism to investigate a finite-valued logic from a proof-theoretic
perspective. Before outlining the general method we intend to propose, having as
output an appropriate labeled (in fact, 2-signed) tableau system for some given
sufficiently expressive finite-valued logic, let’s illustrate it in the present section
with a fully worked example. We shall use & to represent conjunction in the
classical metalanguage, || to represent disjunction, =⇒ to represent implication,
and > to represent an absurd.

Now, consider again the case of L3, where Σ = {¬,⊃}, and recall the par-
ticular separation of truth-values produced by setting θ(p) = ¬p ⊃ p. It follows
that θ(¬ϕ1) = ¬¬ϕ1 ⊃ ¬ϕ1 and θ(ϕ1 ⊃ ϕ2) = ¬(ϕ1 ⊃ ϕ2) ⊃ (ϕ1 ⊃ ϕ2). Using
the 3-valued semantics of L3 one will then notice that:

§(θ(¬ϕ1)) = v0 only if §(ϕ1) = v2 and §(θ(¬ϕ1)) = v2 only if §(ϕ1) ∈ {v0, v1}

Classic-Like Analytic Tableaux for Finite-Valued Logics 5

Recalling the binary prints of v0 as 〈F, F 〉, of v1 as 〈F, T 〉, and of v2 as 〈T, T 〉,
one might rewrite now the above by way of the following first-order schematic
sentences, whose consequents are written in a kind of ‘disjunctive normal form’:

(L3.1) F :θ(¬ϕ1) =⇒ (T :ϕ1 & T :θ(ϕ1))
(L3.2) T :θ(¬ϕ1) =⇒ (F :ϕ1 & F :θ(ϕ1)) || (F :ϕ1 & T :θ(ϕ1))

Similarly, one might also notice that:

§(θ(ϕ1 ⊃ ϕ2)) = v0 only if §(ϕ1) = v2 and §(ϕ2) = v0,

§(θ(ϕ1 ⊃ ϕ2)) 6= v1 for every valuation §, and

§(θ(ϕ1 ⊃ ϕ2)) = v2, otherwise.

These immediately translate into:

(L3.3) F :θ(ϕ1 ⊃ ϕ2) =⇒ (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))
(L3.4) T :θ(ϕ1 ⊃ ϕ2) =⇒ (F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))

|| (F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & F :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))
|| (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (T :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))

We will call the expressions (L3.1)–(L3.4) θ-rules. The full description of L3 will
also include the following non-θ-rules, obtained by using the binary prints now
to describe the original truth-tables of the primitive connectives of L3:

(L3.5) F :¬ϕ1 =⇒ (F :ϕ1 & T :θ(ϕ1)) || (T :ϕ1 & T :θ(ϕ1))
(L3.6) T :¬ϕ1 =⇒ (F :ϕ1 & F :θ(ϕ1))
(L3.7) F :(ϕ1 ⊃ ϕ2) =⇒ (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))

|| (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2)) || (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))

(L3.8) T :(ϕ1 ⊃ ϕ2) =⇒
(F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2)) || (F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))

|| (F :ϕ1 & F :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2)) || (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2)) || (T :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))

The above first-order expressions are intended to represent tableau rules: the an-
tecedent of each rule is the head, and the disjunction in the consequent describes
the branches that may be created once the head is matched on a previously given
branch. In addition to the traditional closure rule for 2-signed tableaux, which
says that a branch is closed once it contains two signed formulas of the form F :ϕ
and T :ϕ, additional closure rules will be needed in order to exclude each binary
print not allowed for the given logic with a given choice of separating formulas.
In the present case, as only the pair 〈T, F 〉 fails to be among the pairs allowed as
binary prints of the initial collection of truth-values, an additional closure rule
will say that branches containing both a signed formula of the form T :ϕ and
a signed formula of the form F :θ(ϕ) may be closed. One might represent such
closure rules by writing:

(L3.C0) F :ϕ & T :ϕ =⇒ > (L3.C1) T :ϕ & F :θ(ϕ) =⇒ >

6 Carlos Caleiro & João Marcos

There is, of course, a lot of redundancy to be found among the above mechani-
cally extracted θ-rules and non-θ-rules. A simpler tableau system for L3 might be
defined, though, by any set of expressions first-order-equivalent to (L3.1)–(L3.8),
together with the already mentioned appropriate closure rules. An example of
such a simpler axiomatization is provided by (L3.C0) and (L3.C1) together with:
θ-rules

(L3.1)∗ F :θ(¬ϕ1) =⇒ T :ϕ1 (L3.2)∗ T :θ(¬ϕ1) =⇒ F :ϕ1

(L3.3)∗ F :θ(ϕ1 ⊃ ϕ2) =⇒ (T :ϕ1 & F :θ(ϕ2))
(L3.4)∗ T :θ(ϕ1 ⊃ ϕ2) =⇒ F :ϕ1 || T :θ(ϕ2)

non-θ-rules

(L3.5)∗ F :¬ϕ1 =⇒ T :θ(ϕ1) (L3.6)∗ T :¬ϕ1 =⇒ F :θ(ϕ1)
(L3.7)∗ F :(ϕ1 ⊃ ϕ2) =⇒ (T :ϕ1 & F :ϕ2) || (T :θ(ϕ1) & F :θ(ϕ2))
(L3.8)∗ T :(ϕ1 ⊃ ϕ2) =⇒ F :θ(ϕ1) || T :ϕ2 || (F :ϕ1 & T :θ(ϕ2))

Figure 1 (see Appendix) shows an example of a tableau for L3, using the
above simpler set of rules. There, the branches (2.1) and (2.2) originate from the
application of rule (L3.7)∗ to the signed formula (1), and the same rule applies to
(2.1.2) to originate branches (3.1) and (3.2). The branch that goes through (4)
originates from the application of rule (L3.3)∗ to the signed formula (2.2.2). The
usual closure rule for tableaux, (L3.C0), closes the leftmost branch, in view of the
nodes (2.1.1) and (3.1.2). Similarly for the rightmost branch, in view of (2.2.1)
and (4.2), even though the involved formula in this case is non-atomic. As for
the innermost branch, notice that (3.2.2) has the form F :θ(p0), so the additional
closure rule of L3, (L3.C1), finishes off the branch, in view of (2.1.1).

Special care must be exercised, in the present environment, as θ-rules might
interfere with non-θ-rules, or with other θ-rules, and as the blind application
of tableau rules might make the same signed formula appear over and over
again, in the same branch. Even worse, it would appear that, applied in the
wrong order, some signed formulas might give rise to increasingly more complex
signed formulas. For instance, suppose that in the tableau from Fig. 1 one never
applied the combination of rules (L3.3)∗ and (L3C0) after (2.2.2), but applied
instead rule (L3.8)∗ to the signed formula T :θ(p0) that appears in (2.2.1). One
of the originating branches would then extend this branch exactly by adding the
signed formula F :θ(¬p0). If, further on, to this new signed formula one applied
rule (L3.8)∗ instead of rule (L3.1)∗, a new branch would originate in which the
signed formula T :θ(¬¬p0) were added. Such unfortunate sequential choice of
rules could of course go on forever, producing more and more complex signed
formulas, originating thus a tableau branch that would never be closed.

A way of avoiding the above phenomenon would consist in only allowing
rule application in building tableaux when the signed formulas originating from
a given node are strictly ‘less complex’ than the signed formula present in that
node. One might realize such intent by choosing an appropriate complexity mea-
sure ` : S → N for formulas that is guaranteed to decrease with rule applica-
tion. In the particular case of L3 one might define `(p) = 0, `(θ(ϕ)) = `(ϕ),
`(¬ϕ1) = `(ϕ1) + 1 and `(ϕ2 ⊃ ϕ3) = `(ϕ2) + `(ϕ3) + 1, where p ∈ A,
ϕ,ϕ1, ϕ2, ϕ3 ∈ S, and where ϕ2 is not of the form ¬ϕ3, that is, ϕ2 ⊃ ϕ3 does not

Classic-Like Analytic Tableaux for Finite-Valued Logics 7

appear at the head of a θ-rule. One might now use such complexity measure as
a guide while constructing tableaux for L3, observing that: (i) no rule applies to
an atom p, and similarly no rule should be applied to a formula of the form θ(p),
as both p and θ(p) have complexity zero; (ii) θ-rules contribute more to the re-
duction of complexity than non-θ-rules, as a formula of the form θ(ϕ) has the
same complexity as ϕ, and the consequent of an application of a θ-rule involves
only formulas of lower complexity, of the forms ϕr or θ(ϕr), where ϕr is a proper
subformula of ϕ. Furthermore, although it is not the case for L3, it may happen
in general that more than one θ-rule is applicable to the same signed formula. In
such a case, as we will impose below, one ought to choose the θ-rule whose head
is more ‘concrete’. As it turns out, it is always possible to order the rules in a
way that solves all ambiguities while guaranteeing also that all tableau construc-
tions terminate. We shall dub such tableau-building heuristics a requirement of
analyticity, and, as we shall see, it will guarantee that our tableau proofs are
normalized and terminate. In the case of the previous example, the requirement
of analyticity would guarantee that rule (L3.8)∗ would never be applied to node
(2.2.1), as the formula with sign T that appears in the that node already has
complexity zero. Indeed, as we have seen, modifying the above example in allow-
ing a non-θ-rule to be applied before a θ-rule in a situation involving non-atomic
formulas turned out to allow for the production of increasingly more complex
formulas — as it is obviously the case, for instance, that `(θ(ϕ)) < `(θ(¬ϕ)).

The next section will show how the above illustrated procedure may be gener-
alized so as to provide adequate and well-behaved proof-theoretical formalisms,
together with a classic-like decision procedure, for a very inclusive class of truth-
functional logics.

4 The Extraction of Adequate Classic-Like Tableau
Systems for Finite-Valued Logics

Let L be an effectively separable n-valued logic with a set of formulas S generated
over the denumerable set of atoms A = {p0, p1, p2, . . .} with respect to the set
of connectives Σ = {�0,�1, . . . ,�k} and having D ⊆ Vn as its set of designated
values, and assume that its binary prints are produced by a convenient sequence
of one-variable separating formulas θ1(p), . . . , θs(p). Recall that we set θ0(p) = p.
So, for each truth-value v ∈ Vn, we might take an atom p and an n-valued
assignment § such that §(p) = v, and consider the distinctive characterizing
bivalent sequence v = [b§(θr(p))]sr=0. As a matter of convention, we shall say that
an n-valued valuation § satisfies a labeled formula of the form X:δ if b§(δ) = X.

As for the associated tableau rules, consider first the usual classic-like closure
rule (C0) of the form: F :ϕ & T :ϕ =⇒ >. Furthermore, let BP = {[cr]sr=0 :
cr ∈ {F, T}} be the set of all possible (s + 1)-long binary prints, and let CL =
BP \ {v : v ∈ Vn} be the set of all such bivalent sequences that are not produced
as binary prints of truth-values of L. Intuitively, any closuring sequence c̃ ∈ CL
brings about information that is unobtainable by way of the initial truth-values
of L, allowing one thus to close a tableau branch that contains such a sequence.

8 Carlos Caleiro & João Marcos

Information, even if partial, leading unambiguously to a binary print in CL should
always give rise to a closed tableau. Let a partial binary print be any sequence
c̃R = [cr]r∈R such that R ⊆ {0, . . . , s} and each cr ∈ {F, T} (this definition
includes, of course, the total binary prints in BP, as strict partiality occurs
exactly when R is a proper subset of {0, . . . , s}). Given two partial binary prints
c̃R1 and d̃R2 , we say that c̃R1 extends d̃R2 if R2 (R1 and dr = cr for every
r ∈ R2. We can now conclude that closuring information is carried by any
partial binary print c̃R such that all of its 2s+1−Card(R) possible total extensions
are in CL. Hence, it would be reasonable to add a different closure rule for each
such partial closuring information. However, it suffices to take into account just
the minimal closuring situations, that is, closuring partial binary prints c̃R that
cannot be obtained as extensions of any other closuring partial binary print.

In general, where c̃R = [cr]r∈R is some partial binary print, and δ stands for
an arbitrary schematic formula, we write c̃S

R(δ) = [cr:θr(δ)]r∈R for the linguistic
2-signed version of such partial binary print. Accordingly, for each minimal clo-
suring partial binary print c̃R, consider an additional closure rule (C#) of the
form: &(c̃S

R(ϕ)) =⇒ >.
Recall, moreover, that for each connective � : Sj → S of Σ with arity j = ar�

there is an associated operator �̂ : Vjn → Vn in the algebra of truth-values. This
interpretation mapping can immediately be extended homomorphically to any
formula δ of any given arity, and we shall denote this by δ̂. Finally, consider
again the flattening total mapping t : Vn → {F, T} such that t(v) = T iff
v ∈ D. Given X ∈ {F, T}, a j-ary connective � and a separating formula θ, let
Bθ�X ([ϕi]

j
i=1) = {&[viS(ϕi)]

j
i=1 : t(θ̂(�̂([vi]

j
i=1))) = X}. For each Bθ�X ([ϕi]

j
i=1)

consider then a rule of the form: X:θ(�([ϕi]
j
i=1)) =⇒ || Bθ�X ([ϕi]

j
i=1). Such rules

are called θ-rules when θ = θi, for some 0 < i ≤ s; otherwise, when θ = θ0(p),
they are called non-θ-rules. Notice that those rules generate as many branches as
there are members (conjunctions) of Bθ�X ([ϕi]

j
i=1). The number of different non-

θ-rules is 2×Card(Σ), and there are 2×s×Card(Σ) different θ-rules. For each fixed
j-ary connective � and each fixed separating formula θ, the summed number of
branches of the rules Bθ�F ([ϕi]

j
i=1) and Bθ�T ([ϕi]

j
i=1) generated by the above

procedure always amounts to nj ; additionally, each branch will have exactly
s+1 labeled formulas. In the best case, one might use Ceiling(log2 Max(d, n−d))
separating formulas, besides identity, where d = Card(D), to pairwise distinguish
the n truth-values of L; in the worst case, n−1 such connectives will be needed.
The case in which, say, Bθ�F ([ϕi]

j
i=1) turns out to be empty originates in fact a

new closure rule, and in that case the rule Bθ�T ([ϕi]
j
i=1) can thus be omitted;

the case in which Bθ�T ([ϕi]
j
i=1) turns out to be empty is entirely symmetric.

Tableaux are built as usual, by applying the above rules, given an initial
sequence of 2-signed formulas, and a branch is said to be closed if its closure is
obtained by the application of any of the (C#) rules, including (C0). Branches
that are not closed are said to be open. A tableau is said to be closed in case all of
its branches are closed. By the construction of the above rules, it is easy to check
the following soundness result with respect to the initially given truth-functional
semantics:

Classic-Like Analytic Tableaux for Finite-Valued Logics 9

Theorem 1. If a valuation satisfies some initial sequence of 2-signed formu-
las, then it satisfies all the formulas in some open branch of any tableau that
originates from that set of formulas.

To enforce the requirement of analyticity for our tableaux the following strat-
egy will be helpful. Notice that, from the point of view of analyticity, only a
formula in the set Θ = {θr(ϕ) : 0 < r ≤ s, ϕ ∈ S \ A} is possibly ‘problem-
atic’, as more than one rule may apply to (an appropriate labelling of) it. In
the case of such a formula we will always apply a carefully chosen θ-rule, as
follows. In general, given δ ∈ Θ, let Iδ = {0 < r ≤ s : there exists �r ([δi]

jr
i=1) ∈

S such that δ = θr(�r([δi]jri=1))}. To ensure the termination of the tableau con-
struction procedure, the choice of rule to be applied in each case will be guided
by the following complexity measure ` : S→ N, defined for the formulas of L:

(`0) `(p) = `(θr(p)) = 0, where p ∈ A;

(`1) `(δ) = 1 + Minr∈Iδ

(∑jr
i=1 `(δi)

)
, where δ ∈ Θ;

(`2) `(�([ϕi]
j
i=1)) = 1 +

∑j
i=1 `(ϕi), otherwise.

Accordingly, no rule application should be allowed in a tableau for nodes of com-
plexity 0; moreover, applications of θ-rules should always precede applications
of non-θ-rules, as the former clearly contribute more than the latter to decreas-
ing the overall complexity of the corresponding nodes. A particularly interesting
situation arises in the case where the heads of more than one θ-rule are matched
by the same node. In that case, the θ-rule to be applied may be chosen by heed-
ing the minimality requirement in clause (`1) of the definition of the complexity
measure. This choice is typically very simple. Indeed, consider the situation in
which a formula δ can be obtained either as θi(ϕi) or as θj(ϕj). In that case,
θi(pi) might be thought of as a formula on the variable pi, of which θi(ϕi) is a
substitution instance, and similarly for θj(pj) as a formula on the variable pj .
Now, by Robinson’s unification algorithm, θi(pi) and θj(pj) will have a most gen-
eral unifier, that is, either it is the case that pi = σ(pj) or else that pj = σ(pi),
for an appropriate substitution σ. In the former case, where pi = σ(pj), the
θ-rule to be applied first is the one for θj , as θj(pj) = θi(σ(pj)); the latter case
is entirely symmetric. As it can easily be seen, this prioritary application of the
‘most concrete’ rule will provide the greater decrease in complexity for a given
node, and will help implementing the requirement of analyticity. The situation
is a bit more complex in the remaining case, where the most general unifier of
θi(pi) and θj(pj) asserts simultaneously that σ(pi) = δi and σ(pj) = δj where
δi, δj are formulas in which the variables pi, pj , respectively, do not occur. In this
(peculiar) case, and only for the formula θi(δi) = θj(δj), we must directly check
which of the two corresponding θ-rules matches the minimality requirement.

Say that a tableau branch is exhausted if it is closed, or if the appropriate θ-
rules have been applied to every node whose formulas have non-null complexity
and non-θ-rules have been applied to every other non-atomic node. Our main
normalization result guarantees that:

Lemma 1. Exhausted tableaux always exist.

10 Carlos Caleiro & João Marcos

A nice thing about exhausted tableaux is that all counter-models for non-
valid inferences can be built from them. Indeed, using the above lemma one may
easily prove now the following completeness result:

Theorem 2. From every open branch of an exhausted tableau for a given ini-
tial sequence of 2-signed formulas one may extract a valuation satisfying those
formulas.

As an immediate byproduct of the previous results, it follows that:

Corollary 1. For a given logic L with semantics Sem:
γ1, . . . , γm |=Sem α iff there is a closed tableau for T :γ1, . . . , T :γm, F :α.

5 Future Work

There are a number of possible directions for further extension of our present
results. Previous work on extraction of non-analytic tableau rules for sufficiently
expressive finite-valued logics (cf. [6]) has been implemented (cf. [13]) for the
extraction of appropriate axioms in the framework of Isabelle’s intuitionis-
tic higher-order logic. A similar implementation might now be performed for
the presently illustrated procedure, with the advantage that analyticity guar-
antees the existence of fully automated decision procedures, and these can be
constructively assembled as tacticals in Isabelle’s meta-language. Moreover,
the 2-signed ‘normal form’ that underlies the statement of our tableau rules in
the (intuitionistic) meta-language may also be used as a basis for the study of
classic-like automated reasoning mechanisms based on satisfiability checking or
signed resolution (cf. [11, 4, 9]).

On what concerns the issue about ‘sufficient expressiveness’, a requisite for
the application of our present procedure to a given finite-valued logic, it should
be noted that the calculation of a convenient collection of separating formulas,
whenever it exists, may also be performed automatically. Moreover, as it can be
shown, for the logics that turn out not to be sufficiently expressive, a conser-
vative extension of the original language may be devised by the addition of a
convenient number of 0-ary connectives in order to make such logics amenable
to our method. Such is the case, for instance, for Gödel-Dummett n-valued log-
ics, with finite n > 3. The complexity of such procedures, not yet described nor
implemented in detail, is still to be fully explored.

Finally, it will be interesting to investigate the amount in which the above
procedures can be extended so as to apply to logics characterized by seman-
tics that broaden the notion of truth-functionality, such as non-deterministic
semantics (cf. [2]) and possible-translations semantics (cf. [12]). For one thing,
as we shall show in future studies, the adequacy results that connect bivalent
semantics to the corresponding tableau systems can in fact be generalized so
as to cover many other logics characterized by what we call ‘dyadic semantics’
[6, 7], including numerous interesting infinite-valued logics. Such generic results,
in fact, also take into account logics whose non-truth-functional semantics is
formulated using more than 2 ‘logical values’.

Classic-Like Analytic Tableaux for Finite-Valued Logics 11

References

1. Stefano Aguzzoli, Agata Ciabattoni, and Antonio Di Nola. Sequent calculi for
finite-valued Lukasiewicz logics via Boolean decompositions. Journal of Logic and
Computation, 10(2):213–222, 2000.

2. Arnon Avron and Iddo Lev. Non-deterministic multiple-valued structures. Journal
of Logic and Computation, 15:241–261, 2005.

3. Stanis law J. Surma. An algorithm for axiomatizing every finite logic. In David C.
Rine, editor, Computer Science and Multiple-Valued Logics, Selected Papers from
the IV International Symposium on Multiple-Valued Logics, pages 143–149. North-
Holland, Amsterdam, 1974. 2nd edition, 1984.

4. Matthias Baaz, Christian G. Fermüller, and Gernot Salzer. Automated deduction
for many-valued logics. In J. Alan Robinson and Andrei Voronkov, editors, Hand-
book of Automated Reasoning, pages 1355–1402. Elsevier and MIT Press, 2001.

5. Jean-Yves Béziau. Sequents and bivaluations. Logique et Analyse (N.S.), 44(176):
373–394, 2001.

6. Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Two’s
company: “The humbug of many logical values”. In J.-Y. Béziau, editor, Logica
Universalis, pages 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005. Preprint
available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf.

7. Carlos Caleiro, Walter A. Carnielli, Marcelo E. Coniglio, and João Marcos. How
many logical values are there? Dyadic semantics for many-valued logics. Draft,
2005. Forthcoming.

8. Walter A. Carnielli. Systematization of the finite many-valued logics through the
method of tableaux. The Journal of Symbolic Logic, 52(2):473–493, 1987.

9. Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet.
Resolution decision procedures. In Handbook of Automated Reasoning, pages 1791–
1849. Elsevier, Amsterdam, 2001.

10. Reiner Hähnle. Tableaux for many-valued logics. In M. D’Agostino, D. Gabbay,
R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 529–580.
Springer, 1999.

11. Reiner Hähnle. Advanced many-valued logics. In D. M. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, volume 2, pages 297–395. Kluwer,
Dordrecht, 2nd edition, 2001.

12. João Marcos. Possible-translations semantics. In W. A. Carnielli, F. M. Diońısio,
and P. Mateus, editors, Proceedings of the Workshop on Combination of Logics:
Theory and applications (CombLog’04), held in Lisbon, PT, July 28–30, 2004,
pages 119–128, 1049-001 Lisbon, PT, 2004. Departamento de Matemática, Instituto
Superior Técnico. July 28–30, 2004, Lisbon, PT. Extended version available at:
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/04-M-pts.pdf.

13. João Marcos and Dalmo Mendonça. Towards fully automated axiom extraction
for finite-valued logics. In W. Carnielli, M. E. Coniglio, and I. M. L. D’Ottaviano,
editors, The Many Sides of Logic, Studies in Logic. College Publications, London,
2009. Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/08-MM-towards.pdf.

14. John Barkley Rosser and Atwell R. Turquette. Many-Valued Logics. Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1952.

15. Roman Suszko. The Fregean Axiom and Polish mathematical logic in the 1920s.
Studia Logica, 36:373–380, 1977.

16. Ryszard Wójcicki. Theory of Logical Calculi. Kluwer, Dordrecht, 1988.

12 Carlos Caleiro & João Marcos

Appendix

Illustration of a Tableau for L3

The following example employs the simplified rules (L3.#)∗, together with the
corresponding closure rules (L3.C0) and (L3.C1):

(1) F :(p0 ⊃ (p1 ⊃ p0))

(2.1.1) T :p0

(2.1.2) F :(p1 ⊃ p0)

(3.1.1) T :p1

(3.1.2) F :p0

>

(3.2.1) T :(¬p1 ⊃ p1)
(3.2.2) F :(¬p0 ⊃ p0)

>

(2.2.1) T :(¬p0 ⊃ p0)
(2.2.2) F :(¬(p1 ⊃ p0) ⊃ (p1 ⊃ p0))

(4.1) T :p1

(4.2) F :(¬p0 ⊃ p0)

>

Fig. 1. A failed attempt to refute p0 ⊃ (p1 ⊃ p0).

Proofs of the Main Results

Proof of Theorem 1. First, observe that if a valuation § : S → Vn satisfies
the head of a rule

X:θ(�([ϕi]
j
i=1)) =⇒ || Bθ�X ([ϕi]

j
i=1)

then, by construction, one may conclude that § also satisfies &[viS(ϕi)]
j
i=1 for

some sequence [viS(ϕi)]
j
i=1 of labeled formulas such that t(θ̂(�̂([vi]

j
i=1))) = X,

that is, b§(ϕi) = vi, for 1 ≤ i ≤ j.
Suppose now that a valuation § satisfies a given sequence of 2-signed formulas.

Then, by the above observation, it is clear that § satisfies all the formulas in
some branch of any tableau built from these initial formulas by applying rules
as above. To see that any such branch must be open, just note that no closure
rule may be applied. To that effect, the branch would have to contain labeled
formulas that match the head F :ϕ & T :ϕ of the classic-like closure rule (C0), or
else the head &(c̃S

R(ϕ)) of a closure rule (C#), for some given minimal closuring
partial binary print c̃R. It would follow then that any valuation that satisfies
this branch would either have to assign two different values to the formula ϕ or
have to associate to ϕ a closuring partial binary print.

Classic-Like Analytic Tableaux for Finite-Valued Logics 13

Proof of Lemma 1. We first check that every rule applied according to the
specified requirement of analiticity does indeed reduce the complexity.

– Consider ϕ = θ(�([ϕi]
j
i=1)) ∈ Θ with `(ϕ) = 1 + `(ϕ1) + . . .+ `(ϕj), and the

corresponding θ-rule:

X:θ(�([ϕi]
j
i=1)) =⇒ || Bθ�X ([ϕi]

j
i=1).

Then, for each 1 ≤ i ≤ j and 0 ≤ r ≤ s, we have that:
`(ϕ) = 1 + `(ϕ1) + . . .+ `(ϕj) > `(ϕi) ≥ `(θr(ϕi)).

– Consider now ϕ = �([ϕi]
j
i=1) /∈ Θ, and the corresponding non-θ-rule:

X:� ([ϕi]
j
i=1) =⇒ || B�X([ϕi]

j
i=1).

Then, for each 1 ≤ i ≤ j and 0 ≤ r ≤ s, we again have that:
`(ϕ) = 1 + `(ϕ1) + . . .+ `(ϕj) > `(ϕi) ≥ `(θr(ϕi)).

In either case the complexity of every signed formula in the conclusion of the
rule is lower than the complexity of the head signed formula. Hence, given an
initial finite set with m many 2-signed formulas of complexity bounded by g, the
tableau will be exhausted after the application of at most m×ug rules, where u
is the maximum number of formulas in the conclusion of a rule.

Proof of Theorem 2. Given an open branch of an exhausted tableau, consider
any assignment ρ : A → Vn such that, for every p ∈ A, the binary print ρ(p) =
[Xi]si=0 of ρ(p) agrees with the information available, that is:

– either Xi:θi(p) occurs in the branch, or
– neither T :θi(p) nor F :θi(p) occur in the branch.

Accordingly, if Xi = T then F :θi(p) does not appear in the branch; mutatis
mutandis, if Xi = F then T :θi(p) does not appear in the branch. Note that since
none of the closure rules can be applied to the branch, we have non-closuring
information about every atom p, and such an assignment ρ can always be defined.
To prove that the homomorphic extension §ρ : S→ V of such assignment indeed
satisfies all the formulas in the branch it is sufficient to prove that if §ρ satisfies
all the formulas in some branch of a tableau rule, then it also satisfies the head
of the rule. To such purpose, we need only consider the generic case of a rule

X:θ(�([ϕi]
j
i=1)) =⇒ || Bθ�X ([ϕi]

j
i=1).

Assume that §ρ satisfies one of the disjunctions in the conclusion of the rule, that
is, §ρ satisfies some Bθ�X ([ϕi]

j
i=1) = {&[viS(ϕi)]

j
i=1 : t(θ̂(�̂([vi]

j
i=1))) = X}. Then,

for each 1 ≤ i ≤ j, §ρ satisfies viS(ϕi) or, equivalently, §ρ(ϕi) = vi. Therefore, it
follows that t(§ρ(θ(�([ϕi]

j
i=1)))) = X, and thus §ρ satisfies the head of the rule

X:θ(�([ϕi]
j
i=1)).

14 Carlos Caleiro & João Marcos

Acknowledgments. The first author was partially supported by FCT and
EU FEDER via the KLog project PTDC/MAT/68723/2006 of SQIG-IT. The
second author acknowledges partial support by SQIG-IT and CNPq. The authors
are deeply indebted to their colleagues W. Carnielli and M. Coniglio for many
fruitful discussions on topics related to this work, and also to D. Mendonça and
three anonymous referees for their attentive reading and valuable suggestions of
improvements on earlier drafts of the paper.

