Skip to main content

Ehrenfeucht-Fraïssé Games on Random Structures

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5514))

Abstract

Certain results in circuit complexity (e.g., the theorem that AC0 functions have low average sensitivity) [5, 17] imply the existence of winning strategies in Ehrenfeucht-Fraïssé games on pairs of random structures (e.g., ordered random graphs G = G(n,1/2) and G  +  = G ∪ {random edge}). Standard probabilistic methods in circuit complexity (e.g., the Switching Lemma [11] or Razborov-Smolensky Method [19, 21]), however, give no information about how a winning strategy might look. In this paper, we attempt to identify specific winning strategies in these games (as explicitly as possible). For random structures G and G  + , we prove that the composition of minimal strategies in r-round Ehrenfeucht-Fraïssé games \(\Game_r(G,G)\) and \(\Game_r(G^{{+}},G^{{+}})\) is almost surely a winning strategy in the game \(\Game_r(G,G^{{+}})\). We also examine a result of [20] that ordered random graphs H = G(n,p) and H  +  = H ∪ {random k-clique} with p(n) ≪ n − 2/(k − 1) (below the k-clique threshold) are almost surely indistinguishable by \(\lfloor k/4 \rfloor\)-variable first-order sentences of any fixed quantifier-rank r. We describe a winning strategy in the corresponding r-round \(\lfloor k/4 \rfloor\)-pebble game using a technique that combines strategies from several auxiliary games.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: \(\Sigma^1_1\) formulae on finite structures. Annals of Pure and Applied Logic 24, 1–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6)loglogn negation gates. SIAM J. Comput. 35(1), 201–215 (2005)

    Article  MATH  Google Scholar 

  3. Beame, P.: Lower bounds for recognizing small cliques on CRCW PRAM’s. Discrete Appl. Math. 29(1), 3–20 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, Department of Computer Science and Engineering, University of Washington (November 1994)

    Google Scholar 

  5. Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inf. Process. Lett. 63(5), 257–261 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dawar, A.: How many first-order variables are needed on finite ordered structures? In: We Will Show Them: Essays in Honour of Dov Gabbay, pp. 489–520 (2005)

    Google Scholar 

  7. Denenberg, L., Gurevich, Y., Shelah, S.: Definability by constant-depth polynomial-size circuits. Information and Control 70(2/3), 216–240 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17, 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldmann, M., Håstad, J.: A simple lower bound for the depth of monotone circuits computing clique using a communication game. Information Processing Letters 41(4), 221–226 (1992)

    Article  MathSciNet  Google Scholar 

  10. Gurevich, Y., Lewis, H.R.: A logic for constant-depth circuits. Information and Control 61(1), 65–74 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 6–20 (1986)

    Google Scholar 

  12. Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput. Syst. Sci. 25(1), 76–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Immerman, N.: Descriptive Complexity. In: Graduate Texts in Computer Science. Springer, New York (1999)

    Google Scholar 

  14. Immerman, N., Buss, J., Barrington, D.M.: Number of variables is equivalent to space. Journal of Symbolic Logic 66 (2001)

    Google Scholar 

  15. Koucky, M., Lautemann, C., Poloczek, S., Therien, D.: Circuit lower bounds via Ehrenfeucht-Fraisse games. In: CCC 2006: Proceedings of the 21st Annual IEEE Conference on Computational Complexity, pp. 190–201 (2006)

    Google Scholar 

  16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  17. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lynch, J.F.: A depth-size tradeoff for boolean circuits with unbounded fan-in. In: Structure in Complexity Theory Conference, pp. 234–248 (1986)

    Google Scholar 

  19. Razborov, A.A.: Lower bounds on the size of bounded depth networks over a complete basis with logical addition. Matematicheskie Zametki 41, 598–607 (1987); English translation in Mathematical Notes of the Academy of Sciences of the USSR 41, 333–338 (1987) (in Russian)

    Google Scholar 

  20. Rossman, B.: On the constant-depth complexity of k-clique. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 721–730 (2008)

    Google Scholar 

  21. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 77–82 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossman, B. (2009). Ehrenfeucht-Fraïssé Games on Random Structures. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2009. Lecture Notes in Computer Science(), vol 5514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02261-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02261-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02260-9

  • Online ISBN: 978-3-642-02261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics