Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5601))

  • 884 Accesses

Abstract

This paper aims to present the formal framework in which the interdisciplinary study of natural language is conducted by integrating linguistics, computer science and biology. It provides an overview of the field of research, conveying the main biological ideas that have influenced research in linguistics. Especially, this work highlights the main methods of molecular computing that have been applied to the processing and study of the structure of natural language. Among them, DNA computing, membrane computing and NEPs are the most relevant computational architectures that have been adapted to account for one of the most unknown cognitive capacities of human beings.

This work has been partially supported by the Spanish Ministry of Science and Technology, projects MTM-2007-63422 and JC2008-00040.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  2. Bel-Enguix, G., Jiménez-López, M.D.: Byosyntax. An Overview. Fundamenta Informaticae 64, 1–12 (2005a)

    Google Scholar 

  3. Bel-Enguix, G., Jiménez-López, M.D.: Linguistic Membrane Systems and Applications. In: Ciobanu, G., Păun, G., Pérez Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 347–388. Springer, Berlin (2005b)

    Chapter  Google Scholar 

  4. Bel-Enguix, G., Jimnez-López, M.D.: Analysing Sentences with Networks of Evolutionary Processors. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 102–111. Springer, Heidelberg (2005c)

    Chapter  Google Scholar 

  5. Brendel, V., Busse, H.: Genome structure described by formal languages. Nucleic Acids Research 12(5), 2561–2568 (1984)

    Article  Google Scholar 

  6. Castellanos, J., Leupold, P., Mitrana, V.: Descriptional and Computational Complexity Aspects of Hybrid Networks of Evolutionary Processors. Theoretical Computer Science 330(2), 205–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Networks of Evolutionary processors. Acta Informatica 39, 517–529 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavalli-Sforza: Cultural Transmission and Evolution. Princeton University Press, Princeton (1981)

    Google Scholar 

  9. Collado-Vides, J.: A transformation-grammar approach to the study of regulation of gene expression. Journal of Theoretical Biology 136, 403–425 (1989)

    Article  Google Scholar 

  10. Collado-Vides, J., Gutirrez-Rios, R.-M., Bel-Enguix, G.: Networks on transcriptional regulation encoded in a grammatical model. BioSystems 47, 103–118 (1998)

    Article  Google Scholar 

  11. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. Gordon and Breach, London (1994)

    MATH  Google Scholar 

  12. Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Hybrid Networks of Evolutionary Processors are Computational Complete. Acta Informatica 41(4-5), 257–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csuhaj-Varjú, E., Mitrana, V.: Evolutionary Systems: A Language Generating Device Inspired by Evolving Communities of Cells. Acta Informatica 36, 913–926 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Darwin, C.: The origin of the species (1859)

    Google Scholar 

  16. Errico, L., Jesshope, C.: Towards a New Architecture for Symbolic Processing. In: Plander, I. (ed.) Artificial Intelligence and Information-Control Systems of Robots, vol. 94 (31-40). World Scientific Publisher, Singapore (1994)

    Google Scholar 

  17. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)

    Google Scholar 

  18. Jacob, F., Monod, J.: Genetic repression, allosteric inhibition and cellular differentiation. In: Locke (ed.) Cytodifferentiation and Macromolecular Synthesis, pp. 30–64. Academic Press, Inc., New York (1963)

    Chapter  Google Scholar 

  19. Jakobson, R.: Essais de Linguistique Générale. 2. Rapports Internes et Externes du Language. Les Éditions de Minuit, Paris (1973)

    Google Scholar 

  20. Ji, S.: Microsemiotics of DNA. Semiotica 138(1/4), 15–42 (2002)

    Google Scholar 

  21. Kirby, S.: Spontaneous evolution of linguistic structure: an iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary Computation 5(2), 102–110 (2001)

    Article  Google Scholar 

  22. López García, A.: Fundamentos genéticos del lenguaje, Madrid, Cétedra (2002)

    Google Scholar 

  23. Maynard Smith, J., Szathmáry, E.: The Major Transitions in Evolution. Oxford University Press, New York (1997)

    Google Scholar 

  24. Maynard Smith, J., Szathmáry, E.: The Origins of Life: From the Birth of Life to the Origin of Language. Oxford University Press, Oxford (1999)

    Google Scholar 

  25. Marcus, S.: Language at the Crossroad of Computation and Biology. In: Păun, G. (ed.) Computing with Bio-Molecules, pp. 1–35. Springer, Singapore (1998)

    Google Scholar 

  26. Margenstern, M., Mitrana, V., Pérez-Jiménez, M.: Accepting Hybrid Networks of Evolutionary Processors. In: Ferreti, C., Mauri, G., Zandron, C. (eds.) DNA 10. Preliminary Proceedings, pp. 107–117. University of Milano-Biccoca, Milan (2004)

    Google Scholar 

  27. Martín-Vide, C., Mitrana, V., Pérez-Jiménez, M., Sancho-Caparrini, F.: Hybrid Networks of Evolutionary Processors. In: Cantó-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. Part I, LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Monod, J.: Le hasard et la ncessit. ditions du Seuil, Paris (1970)

    Google Scholar 

  29. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Paradigms. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  31. Pawlak, Z.: Gramatyka i Matematika. Panstwowe Zakady Wydawnietw Szkolnych, Warzsawa (1965)

    Google Scholar 

  32. Sakakibara, Y., Brown, M., Underwood, R., Saira Mian, I., Haussler, D.: Stochastic Context-Free Grammars for Modeling RNA. In: Proceedings of the 27th Hawaii International Conference on System Sciences, pp. 283–284. IEEE Computer Society Press, Honolulu (1994)

    Google Scholar 

  33. Searls, D.: The Linguistics of DNA. American Scientist 80, 579–591 (1993)

    Google Scholar 

  34. Schleicher Die ersten Spaltungen des indogermanischen Urvolkes. Allgemeine Zeitung fuer Wissenschaft und Literatur (August 1853)

    Google Scholar 

  35. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree Adjoining Grammars for RNA Structure Prediction. Theoretical Computer Science 210(2), 277–303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Victorri, B.: Analogy between language and biology: a functional approach. Cogn Process 8, 11–19 (2007)

    Article  Google Scholar 

  37. Watson, J., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 137 (1953)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bel-Enguix, G. (2009). Computing Natural Language with Biomolecules: Overview and Challenges. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02264-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02263-0

  • Online ISBN: 978-3-642-02264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics