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Abstract. Finiteness spaces constitute a categorical model of Linear Logic (LL)
whose objects can be seen as linearly topologised spaces, (a class of topologi-
cal vector spaces introduced by Lefschetz in 1942) and morphisms as continuous
linear maps. First, we recall definitions of finiteness spaces and describe their
basic properties deduced from the general theory of linearly topologised spaces.
Then we give an interpretation of LL based on linear algebra. Second, thanks to
separation properties, we can introduce an algebraic notion of totality candidate
in the framework of linearly topologised spaces: a totality candidate is a closed
affine subspace which does not contain 0. We show that finiteness spaces with
totality candidates constitute a model of classical LL. Finally, we give a barycen-
tric simply typed lambda-calculus, with booleans B and a conditional operator,
which can be interpreted in this model. We prove completeness at type Bn → B
for every n by an algebraic method.

Introduction

In the 80’s, Girard has been led to introduce linear logic (LL) after a denotational inves-
tigation of system F. The basic idea of LL is to decompose the intuitionistic implication
into a linear one and an exponential modality. Many intuitions behind LL are rooted in
linear algebra and relate algebraic concepts with operational ones. For instance, a linear
function in the LL sense is a program (or a proof) which uses its argument exactly once
and LL shows that this idea is similar to linearity in the algebraic sense. Can we use
vector spaces and linear maps for interpreting LL? In the exponential-free fragment of
LL, this is quite easy, since all vector spaces can stay finite dimensional: it is sufficient
to take the standard relational interpretation of a formula (which is a set) and to build
the vector space generated by this set. However, the exponential modality introduces
infinite dimension and some topology is needed for controlling the size of dual spaces.
Indeed, we want all spaces to be reflexive, that is, isomorphic to their second dual,
because duality corresponds to linear negation which is involutive.

There are various ways for defining interpretations with linear spaces. Among them,
the interpretations based on linearly topologised spaces [1,6] have the feature of not
requiring any topology on the field k. This is quite natural, since the topology of the field
is never used for interpreting proofs. Introduced first by Lefschetz in [15], these spaces
are geometrically quite unintuitive (their basic opens are linear subspaces whereas usual
basic opens are balls). They provide nevertheless the simplest setting where formulæ of
LL can be seen as (topological) linear spaces as shown by Ehrhard when he introduced
finiteness spaces [6].

There are two ways of considering finiteness spaces:
Relational finiteness spaces: they can be seen as a refinement of the relational semantics
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of linear logic, in which the semantics of proofs is the same as the standard one (proofs
are interpreted as relations).
Linear finiteness spaces: given a field, any relational finiteness space gives rise to a lin-
early topologised vector space. The category of linear finiteness spaces and continuous
linear functions constitutes a model of linear logic. Besides, a linear finiteness space
and its dual with the evaluation as pairing is a Chu space [2]. The proofs of LL are
interpreted as multilinear hypocontinuous maps (hypocontinuity is between separate
continuity and continuity). The description of proofs (c.f. Appendix B) is close to that
of Game Categories of Lafont and Streicher [14].

For describing these categories, we use the duality presentation whose importance
has been emphasised by models of Classical Linear Logic such as phase semantics.
Even the definition of coherence spaces [9], usually described by means of a binary
symmetric and reflexive coherence relation ¨X on a set |X|, can be reformulated
through duality [10]. We will freely use the terminology of [12] — a survey of the
different duality presentations and in particular of models of linear logic by double
orthogonal. The partial orthogonality between the subsets c and c′ of |X| is given by

c ⊥coh c
′ ⇐⇒ ](c ∩ c′) ≤ 1.

A coherence space can then be seen as a pairX = (|X|, C(X)) where |X| is a countable
set and C(X) is a subset of P(|X|) (the powerset of |X|). Moreover, C(X) is required
to be ⊥coh-closed, that is equal to its second dual for the duality induced by the orthog-
onality: C(X) = C(X)⊥⊥. The elements of C(X) are the cliques ofX , those of C(X)⊥

are the anticliques. The category of coherence spaces and cliques is an orthogonality
category.

The category of relational finiteness spaces and finitary relations (a refinement of
standard relations) also constitute an orthogonality category with respect to the finite
orthogonality defined as follows: let u and u′ be two sets,

u ⊥fin u
′ ⇐⇒ ](u ∩ u′) <∞.

A relational finiteness space is a pair X = (|X|,F(X)) where |X| is a countable
set and the set F(X) of finitary parts is ⊥fin-closed. The elements of F(X)⊥ are the
antifinitary parts. We carry the relational finiteness in the linear world by considering
the linear subspace of k|X| generated by finitary linear combinations, that is families
x = (xa)a∈|X| such that their support |x| is finitary. The finite orthogonality between
supports (|x| ⊥fin |x|′) implies that the pairing between a finitary linear combination x
and an antifinitary one x′ is well-defined:

〈x′, x〉 =
∑
a∈|X| x

′
a xa =

∑
a∈|x|∩|x|′ x

′
a xa is a finite sum.

The notion of totality, introduced by Girard [8] in denotational semantics, is used for
interpreting proofs more closely. It often gives the means to prove completeness results
as in Loader [16]. Girard-Loader’s totality is described by an orthogonality category up
to a slight modification of the partial orthogonality:

u ⊥tot u
′ ⇐⇒ ](u ∩ u′) = 1.
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A totality candidate is then a subset Θ(X) of P(X) such that Θ(X) is ⊥tot-closed. A
totality space1 is a pair (|X|, Θ(X)) where Θ(X) is a totality candidate.

The notion of totality can be adapted to linear spaces. So, we introduce the polar
orthogonality between vectors:

x ⊥• x′ ⇐⇒ 〈x′, x〉 = 1.

Because we are working in a linear algebra setting, we are able to give a simple char-
acterisation of totality candidates, that is polar-closed subspaces of linear finiteness
spaces: a totality candidate of a finiteness space is either the space itself, or the empty
set, or any topologically closed affine subspace that does not contain 0. We get an or-
thogonality category whose objects are pairs of a finiteness space and a totality candi-
date and whose maps are continuous linear functions that preserve totality candidates.
This is a model of LL.

Since totality candidates are affine spaces, it is natural to add an affine construction
to LL: we thus introduce barycentric LL. We address then the question of completeness:
is it the case that any vector in the totality candidate of a formula is the interpretation of
a proof of this formula? Restricting our attention to a barycentric version of the simply
typed lambda-calculus (extended with booleans B and a conditional operator), we prove
completeness at type Bn ⇒ B for all n, by an algebraic method.

Outline. We start Section 1 with generalities on finiteness spaces at both relational
spaces and linear vector spaces level. Then, we give several properties inherited from
linearly topologised spaces, in particular, we introduce separation results that are funda-
mental in the sequel. We describe the interpretation of linear logic proofs into finiteness
spaces relying on Ehrhard’s results [6,4]. In Section 2, after having defined totality
candidates and the associated total orthogonality category, we study the barycentric λ-
calculus. Finally, in Section 3, we tackle the completeness problem and give a positive
answer for first order boolean types.

1 Finiteness spaces

1.1 Relational finiteness spaces

Let A be a countable set. The finite orthogonality is defined by:

∀u, u′ ⊆ A, u ⊥ u′ ⇐⇒ u ∩ u′ finite.

As usual, the orthogonal of any F ⊆ P(A) is F⊥ = {u′ ⊆ A |∀u ∈ F , u ⊥ u′}
and F is orthogonally closed whenever F⊥⊥ = F .

Definition 1. A relational finiteness space is a pair A = (|A|,F(A)) where the web
|A| is a countable set and the finitary subsets F(A) ⊆ P(|A|) are orthogonally closed.
We say that u′ ∈ F(A)⊥ is antifinitary. Let A and B be relational finiteness spaces. A
finitary relation R between A and B is a subset of |A| × |B| such that

1 The additional conditions that are actually required in [16] are not essential for our purpose.



4 Christine Tasson

∀u ∈ F(A), R · u = {b ∈ |B| |∃a ∈ u, (a, b) ∈ R} ∈ F(B),
∀v′ ∈ F(B)⊥, tR · v′ = {a ∈ |A| |∃b ∈ v′, (a, b) ∈ R} ∈ F(A)⊥.

Let us call RelFin the category whose objects are the relational finiteness spaces and
whose maps are the finitary relations.

Every finite subset of a countable set A is finitary. Therefore, there is only one
relational finiteness space associated with a finite web (any subset is finitary).

LetF , G ⊆ P(A). IfF ⊆ G then G⊥ ⊆ F⊥. Besides,F ⊆ F⊥⊥, soF⊥⊥⊥ = F⊥.
Therefore, (A,F⊥⊥) is always a finiteness space.

Let A be a relational finiteness space, then (F(A)⊥)⊥ = F(A). Thus, the or-
thogonal A⊥ of A defined to be (|A|,F(A)⊥) is a relational finiteness space whose
orthogonal A⊥⊥ = (|A|,F(A)⊥⊥) is equal to A.

Example 2. Booleans. The relational finiteness space B is associated with the web with
two elements B = {T, F}. Every subset is finitary: F(B) = P(B).
Integers. The web N of integers, associated with the finite subsets Pfin(N) constitutes a
relational finiteness space denoted by N . Its orthogonal N⊥ is (N,P(N)).

1.2 Linear finiteness spaces

Notations: In the sequel A, (Ai)i≤n and B range over relational finiteness spaces. The
field k is discrete and infinite (i.e. every subset of k is open). We handle standard notions
of linear algebra using the notations: • dim(E) is the dimension of E, E∗ is the
space of linear forms over E, • E′ is the topological dual of E, • 〈x∗, x〉 is x∗(x)
if x ∈ E and x∗ ∈ E∗, • f∗ : y∗ ∈ F ∗ 7→ [x∗ ∈ E∗ : x 7→ 〈y∗, f(x)〉] is the linear
adjoint of f : E → F , • kerE(x∗) is the kernel of x∗ ∈ E∗, • annE∗(x) (resp.
annE′(x)) is the subspace of E∗ (resp. E′) of linear forms (resp. continuous linear
forms) which annihilate x, • aff (T ) (resp. aff (T )) is the affine hull (resp. affine
closed) of a subset T , that is aff (T ) = {

∑n
i=1 λixi |

∑n
i=1 λi = 1, xi ∈ T , n ∈ N}.

If dir (T ) is the direction of T and x ∈ aff (T ), then aff (T ) = x+ dir (T ).
Any relational finiteness space A gives rise to a linear finiteness space k〈A〉 which

is a subspace of the linear space k|A|:

Definition 3. For every x ∈ k|A|, let |x| = {a ∈ |A| |xa 6= 0} be the support of x. The
linear finiteness space associated with A is k〈A〉 = {x ∈ k|A| | |x| ∈ F(A)}.

With each a ∈ |A|, we associate a basic vector ea ∈ k〈A〉. Notice that k〈A〉 is
generated by the finitary linear combinations of basic vectors (and not by finite ones).

Each linear finiteness space can be endowed with a topology induced by the an-
tifinitary parts of the underlying relational finiteness space:

Definition 4. For every J ′ ∈ F(A)⊥, let us call VJ′ = {x ∈ k〈A〉 | |x| ∩ J ′ = ∅} a
fundamental linear neighbourhood of 0. A subset U of k〈A〉 is open if and only if for
each x ∈ U there is J ′x ∈ F(A)⊥ such that x + VJ′x ⊆ U . This topology is named the
finiteness topology on k〈A〉.
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The collection of VJ′ where J ′ ranges over F(A)⊥ is a filter basis. Indeed, for
every J ′1, J

′
2 ∈ F(A)⊥, VJ′1 ∩VJ′2 = VJ′1∪J′2 and J ′1 ∪J ′2 ∈ (F(A))⊥. Besides, k〈A〉 is

Hausdorff, since for every x 6= 0 and a ∈ |x| the finite set {a} ∈ F(A)⊥, so x /∈ V{a}.
Endowed with the finiteness topology, k〈A〉 is a linearly topologised space. That

is a topological vector space over a discrete field whose topology is generated by a
fundamental system (a filter basis of neighbourhoods of 0, here the VJ′ , which are
linear subspaces of k〈A〉). Introduced by Lefschetz [15, II - §6], linearly topologised
spaces have been studied in [13, §10-13].

Definition 5. Let us call LinFin the category whose objects are the linear finiteness
spaces and whose maps are the linear continuous functions.

Example 6. Booleans. As every linear finiteness space whose web is finite, the linear
finiteness space associated with the boolean relational space has a finite dimension:
k〈B〉 = k〈B⊥〉 = k

B ' k
2. The space k〈B〉 is endowed with the discrete topology

since B is antifinitary and so VB = {0} is a fundamental linear neighbourhood of 0.
Integers. The linear finiteness space associated with N is the set of finite sequences
over k. The linear finiteness space associated with N⊥ is the set of all sequences over
k. Since N ∈ F(N⊥), VN = {0} is a neighbourhood of zero, thus k〈N〉 is endowed
with the discrete topology. On the contrary, the topology on k〈N⊥〉 is non-trivial: the
fundamental system is the collection of VJ′ where J ′ ranges over finite subsets of N.
The space k〈N⊥〉 is simply kN endowed with the usual product topology.

Linearly topologised spaces are quite different from Banach spaces. Any open sub-
set VJ′ of a finiteness space is closed (∀x /∈ VJ′ , (x+ VJ′) ∩ VJ′ = ∅) — linear finite-
ness spaces are totally disconnected. Intuitively, unit balls are replaced by subspaces.
Besides, with the usual topological definition, the only bounded subspace would {0}.
Fortunately, there are linear variants of the notions of boundedness and compactness:

Definition 7. A subspace C of k〈A〉 is said to be linearly bounded iff for every J ′ ∈
F(A)⊥ the codimension of VJ′ ∩ C in C is finite, i.e. there exists a subspace C0 of C
such that: C = (VJ′ ∩ C)⊕ C0 and dimC0 is finite.
A subspace K of k〈A〉 is said linearly compact iff for every filter F of affine closed
subspaces of k〈A〉, which satisfies the intersection property (i.e. ∀F ∈ F , F ∩K 6= ∅),

(∩F) ∩K 6= ∅.

Theorem 8 (Tychonov). [13, §10.9(7)] For any set I , kI endowed with the product
topology (generated by VJ = {x ∈ kI | |x| ∩ J = ∅} with J ⊆ I) is linearly compact.

In the converse direction, we get a characterisation of linearly compact spaces:

Theorem 9. [15, II - §6(32.1)] For every linearly compact vector space K, there is a
set I such that K is topologically isomorphic to kI endowed with the product topology.

Example 10. Booleans. As in every linearly topologised space of finite dimension (see
[13, §13.1]), every subspace of k〈B〉 is linearly bounded.
Integers. It follows from Th. 9 that a linearly compact space is discrete iff its dimension
is finite. Hence, the linearly compact subspaces of k〈N〉 are the finite dimensional ones.
Thanks to Tychonov Th. 8, k〈N⊥〉 is linearly compact.
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In the finiteness setting, finitary supports characterise linearly bounded spaces. Al-
though it is not true in the general setting of linearly topologised spaces [13, §13.1(5)],
linearly compact spaces are exactly the closed linearly bounded spaces.

Proposition 11. Let K be a subspace of k〈A〉. There is an equivalence between
1. K is linearly bounded, 2. |K| = ∪{|x| |x ∈ K} is finitary,
3. the closure of K is linearly compact.

Proof. First, let C be a linearly bounded space and J ′ ∈ F(A)⊥. There is a finite
dimensional subspace C0 of C such that C = (C ∩ VJ′)⊕ C0. Since the dimension of
C0 is finite, |C0| is finitary. Besides, |C| ∩ J ′ = |C0| ∩ J ′ which is finite: |C| ∈ F(A).
Conversely, if |C| ∈ F(A), then |C| ∩ J ′ is finite and C ⊆ (k|K| ∩ VJ′) ⊕ k|K|∩J

′
is

linearly bounded. The equivalence between (2) and (3) has already been proved in [4].
(Complete proof in Annex A, Prop. 11)

We focus attention on the topological dual — a linearly topologised space endowed
with the linearly compact open topology, that is the topology of uniform convergence
on either linearly bounded spaces or linearly compact spaces (equivalent thanks to
Prop. 11).

Definition 12. The topological dual k〈A〉′ is the linear space made of continuous lin-
ear forms over k〈A〉 and endowed with the linearly compact open topology. This topol-
ogy is generated by the ann k〈A〉′(K) = {x′ ∈ k〈A〉′ | ∀x ∈ K, 〈x′, x〉 = 0}’s where
K ranges over linearly compact subspaces of k〈A〉 and by their translations.

The two following propositions are central in the totality introduced in Section 2.

Proposition 13 (Separation). [13, §10.4(1’)]. For every closed subspace D of k〈A〉
and x /∈ D, there is a continuous linear form x′ ∈ k〈A〉′ such that 〈x, x′〉 = 1 and
∀d ∈ D, 〈d, x′〉 = 0. (Proof in Annex A, Prop. 13)

Proposition 14 (Separation in the dual). Let T ′ be a closed affine subspace of k〈A〉′
such that 0 /∈ T ′. There exists x ∈ k〈A〉 such that ∀x′ ∈ T ′, 〈x′, x〉 = 1.

Proof. First, linear algebra ensures the result when the dimension of T ′ is finite (c.f.
Annex A, Lem.14). Second, the closed subspace T ′ does not contain 0, so there is K
linearly compact of k〈A〉 such that ann (K) ∩ T ′ = ∅. We use the closed affine filter
made of TF ′ = {x ∈ E |∀x′ ∈ F ′, 〈x′, x〉 = 1} with F ′ ranging over finite collections
of k〈A〉′ and the compactness of K to build the wanted x. (Details in Annex A, Prop. 14)

Both separations theorem, are usefull to prove the algebraic isomorphism between
a linear finiteness space and its second dual. This isomorphism is both continuous and
open, as linearly bounded subspaces of the dual coincide with equicontinuous subspaces
(Prop. 15). To sum up, the reflexivity of finiteness spaces relies on the links between
linearly compactness, closed linearly bounded and equicontinuity.(Annex A, Prop 16-17)

Proposition 15 (Equicontinuous spaces). Let A be a relational finiteness space. A
subspace B′ of k〈A〉′ is linearly bounded if and only if there is J ′ ∈ F(A)⊥ such that
B′ ⊆ ann k〈A〉′(VJ′). (proof in Annex A, Prop. 15)



Algebraic totality, towards completeness. 7

Proof. First, B′ is linearly bounded if and only if |B′| ∈ F(A) (see Prop. 11). Second,
∃J ′ ∈ F(A), B′ ⊆ ann (VJ′) ⇐⇒ ∃J ′ ∈ F(A), |B′| ⊆ J ′ ⇐⇒ |B′| ∈ F(A).

Linear finiteness spaces satisfy other good properties (they admit Schauder bases
(ea)a∈|A| and are complete [6]). Although we do not know by now if the category
of linearly topologised spaces satisfying all these properties is stable under LL con-
structions, we already know that the full subcategory of finiteness spaces is a model of
LL [6].

1.3 A model of MELL with MIX

Both categories RelFin and LinFin constitute a model of classical linear logic as
it has been proved by Ehrhard [6]. Although linear finiteness spaces are entirely de-
termined by its underlying relational finiteness space (Fig.1), we give the algebraic
description of the constructions of LL in LinFin (Fig.2) as in [6,4].

Multiplicatives: Additives:
|A`B| = |A⊗B| = |A| × |B| |&iAi| = |⊕iAi| =

F
i|Ai|,

F(A`B) =

8<:
R ⊆ |A| × |B| s.t.
∀u ∈ F(A)⊥, R · u ∈ F(B)

∀v ∈ F(B)⊥, tR · v ∈ F(A)

9=; F(&iAi) =


tiui s.t.
∀i ∈ I, ui ∈ F(Ai)

ff

F(A⊗B) =

8<:
R ⊆ |A| × |B| s.t.

R · |B| ∈ F(A)
tR · |A| ∈ F(B)

9=; F(⊕iAi) =

8<:
tj∈Juj s.t.

J ⊆ I finite
∀j ∈ J, uj ∈ F(Aj)

9=;
Exponentials:

|!A| = |?A| =Mfin(|A|) = {µ : A→ N |µ(a) > 0 for finitely many a ∈ A}
F(!A) = {M ⊆Mfin(|A|) | ∪{|µ|, µ ∈M} ∈ F(A)}

F(?A) =
n
M ⊆Mfin(|A|) |∀u ∈ F(A)⊥,Mfin(u) ∩M finite

o
Fig. 1: LL formulæ interpreted in RelFin.

Example 16. If B = 1⊕ 1, then we get back to Ex. 2:

|?B⊥| = |!B| =Mfin(T, F) ' N2,

F(!B) = {M ⊆Mfin(T, F) | ∪µ∈M |µ| ∈ F(B)} = P(N2),

F(?B⊥) =
{
M ⊆ N2 | ∀M ′ ⊆ N2, M ∩M ′ fin.

}
= Pfin(N2).
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Multiplicatives: Additives:
k〈⊥〉 = k〈1〉 = k k〈>〉 = k〈0〉 = {0}
k〈A`B〉 = k〈A〉 ⊗ε k〈B〉 k〈&i∈IAi〉 = ×i∈Ik〈A〉i
k〈A⊗B〉 = k〈A〉 e⊗k〈B〉 k〈⊕i∈IAi〉 = ⊕i∈Ik〈A〉i
k〈A ( B〉 = Lc(k〈A〉,k〈B〉)

Exponentials:

k〈?(A⊥)〉 = fPol(k〈A〉) k〈!A〉 =
hfPol(k〈A〉)

i′
Fig. 2: Interpretation of LL formulæ in LinFin, for proofs, see Annex B.
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Let us give some explanations on Fig.2:
(() continuous linear functions. We can generalise the topological dual framework

and endow the space of continuous linear functions Lc(k〈A〉,k〈B〉) with the linearly
compact open topology. It is generated by W(K,V ) = {f | f(K) ⊆ V } where K
ranges over linearly compact subspaces of k〈A〉 and V over fundamental neighbour-
hoods of 0 of k〈B〉 and their translations.
The linearly topologised space Lc(k〈A〉,k〈B〉) coincides with the linear finiteness
space k〈A ( B〉 = k〈A⊥ ` B〉. Indeed, the canonical map which maps each lin-
ear function to its matrix in the base induced by the web is a linear homeomorphism.

(`) hypocontinuous bilinear forms. As noticed by Ehrhard, the evaluation map:
ev : k〈A( B〉 × k〈A〉 → k〈B〉 is separately continuous but not continuous. That is
why we need another notion of continuity:
A bilinear form φ : k〈A〉 × k〈B〉 → k is said hypocontinuous iff for every linearly
compactsKA of k〈A〉 andKB of k〈B〉, there are two neighbourhoods VB of k〈B〉 and
VA of k〈A〉 such that φ(KA, VB) = 0 and φ(VA,KB) = 0. We denote k〈A〉 ⊗ε k〈B〉,
the space of hypocontinuous bilinear forms over k〈A〉′ × k〈B〉′. It is a linearly topolo-
gised space when it is endowed with the linearly compact open topology generated by
W(K ′A,K

′
B) = {φ |φ(K ′A,K

′
B) = 0} where K ′A and K ′B range over linearly compact

subspaces of k〈A〉′ and k〈B〉′ respectively.
The space k〈A〉 ⊗ε k〈B〉 is related to the inductive tensor product [11] which was
generalised to linearly topologised spaces in [7].

(⊗) complete tensor product. The dual k〈A〉 ⊗̃k〈B〉 of k〈A〉′ ⊗ε k〈B〉′ is the
completion of the algebraic tensor product k〈A〉 ⊗ k〈B〉. Indeed, α(k〈A〉 ⊗ k〈B〉) is
dense in k〈A〉 ⊗̃k〈B〉 [7, Th 2.12] where

α : k〈A〉 ⊗ k〈B〉 ↪→ (k〈A〉′ ⊗ε k〈B〉′)′
x⊗ y 7→ [x ⊗̃ y : φ 7→ φ(x, y)].

(&) product. Let I be a set. The linear finiteness space k〈&i∈IAi〉 is the product of
the k〈A〉is, endowed with the product topology.

(⊕) direct sum. The linear finiteness space k〈⊕i∈IAi〉 is the coproduct ⊕i∈Ik〈A〉i
(made of finite linear combinations of elements of the k〈A〉is), endowed with the topol-
ogy induced by the product topology.

(!) through webs. The comonadic structure (k〈!A〉, ε, δ) and its linear distribution
κ, can be described with respect to the web base: for x =

∑
a∈|A| xaea given in k〈A〉,

we set xµ =
∏
a∈|µ| x

µ(a)
a and we take X =

∑
µ∈Mfin(|A|)Xµeµ ∈ k〈!A〉 in

κ : x 7→
∑
µ∈Mfin(|A|) x

µeµ ε : X 7→
∑
a∈|A|X[a]ea,

δ : X 7→
∑
M∈Mfin(Mfin(|A|))

(∑
µ=Σ(M)Xµ

)
eM .

The exponentiation x! = κ(x) of x satisfies ε(x!) = x and δ(x!) = (x!)!.
(?) analytic functions. The linear finiteness space k〈?A⊥〉 is the dual of k〈!A〉.

However, there is a more algebraic approach [4] of the monoid k〈?A⊥〉. A func-
tion P is polynomial whenever there are symmetric hypocontinous i-linear forms2

2 Hypocontinuity for i-linear forms is a generalisation of the bilinear case. (Annex B, Def. 18)
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φi : ×ik〈A〉′ → k such that P (x) =
∑n
i=0 φi(x, . . . , x). The space k〈?(A⊥)〉 coin-

cides with the completion P̃ol(k〈A〉) of the space Pol(k〈A〉) of polynomial functions
over k〈A〉 endowed with the linearly compact open topology3. We call the elements of
k〈?(A⊥)〉 analytic functions.

(!) distributions. Finally, we are concerned with the Taylor expansion formula of
Ehrhard [6]. Taking into account that k〈!A〉 is the dual space of P̃ol(k〈A〉), we can
establish a parallel with distributions. For instance, x! sends an analytic function F to
its image 〈x!, F 〉 = F (x), hence it corresponds to the dirac mass at x. Besides, in
LinFin, there exists a sequence of projections:

πn :
∑
µ∈Mfin(|A|) xµeµ ∈ k〈!A〉 7→

∑
]µ=n xµeµ ∈ k〈!A〉,

which are linear and continuous since their supports |π|n = {(µ, µ) |]µ = n} are fini-
tary. The vector xn = πn(x!) =

∑
]µ=n x

µeµ of k〈!A〉 is the convolution of x iterated
n times. This distribution sends an analytic function to a homogeneous polynomial of
degree n, that is its derivative at zero. From x! =

∑∞
n=0

1
n!x

n, Ehrhard deduces the
Taylor expansion formula:

F (x) =
∞∑
n=0

1
n!
〈xn, F 〉. (1)

Example 17. We denote k [X,Y ] (resp. k [[X,Y ]]) the set of polynomials (resp. formal
power series) over the two variables X,Y .
k〈!B〉 =

{
z ∈ kN2 | |z| ∈ P(N2)

}
= k [[Xt, Xf ]]

k〈?B⊥〉 =
{
z ∈ kN2 | |z| ∈ Pfin(N2)

}
= k [Xt, Xf ]

k〈!B( B〉 = k〈!B( 1⊕ 1〉 = k〈?B⊥〉2 = k [Xt, Xf ]× k [Xt, Xf ] ,
k〈`n?B⊥〉 = k [X1, X2, . . . , X2n−1, X2n]
k〈⊗n!B( B〉 = k [X1, X2, . . . , X2n−1, X2n]2

2 Totality and barycentric lambda-calculus

In the present section, we explore an algebraic version of totality spaces, where for-
mulæ are interpreted as finiteness spaces with an additional totality structure. Adapt-
ing Loader’s definition to this algebraic setting, we define a general concept of totality
finiteness space: it is a pair [k〈A〉 , T ] where k〈A〉 is a linear finiteness space and T is
a subset of k〈A〉which is equal to its second dual for a duality associated with the polar
as defined below. Actually, the finiteness space interpreting any formula coincides with
the first component of the totality finiteness space interpreting this formula.

2.1 Totality finiteness spaces.

The polar orthogonality is defined as follows:

∀x ∈ k〈A〉, x′ ∈ k〈A〉′, x ⊥• x′ ⇐⇒ 〈x′, x〉 = 1

3 generated byW(K) = {P polynomial function |P (K) = 0} with K linearly compact.
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The polar of a subset T of k〈A〉 is the following closed affine subspace of k〈A〉′:

T • = {x′ ∈ k〈A〉′ |∀x ∈ T , 〈x′, x〉 = 1}

This set is closed since (x, x′) 7→ 〈x′, x〉 is linear and separately continuous on k〈A〉×
k〈A〉′ (let (x, x′) ∈ k〈A〉 × k〈A〉′, {x} is linearly compact, so ann (x) is open in
k〈A〉′; x′ is a linear continuous form, so ker(x′) is open in k〈A〉). Notice that, up to
the homeomorphism between k〈A〉 and k〈A〉′′, if T ′ is an affine subspace of k〈A〉′,
T ′• = {x ∈ k〈A〉 |∀x′ ∈ T ′, 〈x′, x〉 = 1}.

There is a simple characterisation of polar-closed affine subspaces:

Proposition 18 (Characterisation). A subset T of k〈A〉 is polar-closed (T •• = T ) iff
T is the empty set, the space k〈A〉, or a closed affine subspace that does not contain 0.

Proof. If T = k〈A〉, then T • = ∅ and ∅• = k〈A〉 = T . If T = ∅, then T •• = ∅.
It remains the case where T is affine, closed and 0 /∈ T . The inclusion T ⊆ T •• is
straightforward. Let us prove the contrapositive. Let x0 /∈ T . Let z0 ∈ T and D =
dir (T ) then T = z0 + D, x0 6= z0 and x0 − z0 /∈ D. By separation Prop. 13, there
is x′0 ∈ k〈A〉′ such that 〈x′0, x0 − z0〉 = 1 and ∀d ∈ D, 〈x′0, d〉 = 0. On the one side,
if λ = 〈x′0, z0〉 6= 0, we set y′0 = 1

λx
′
0, then 〈y′0, z0〉 = 1 and ∀d ∈ D, 〈y′0, d〉 =

1
λ 〈x
′
0, d〉 = 0, so y′0 ∈ T •. However 〈y′0, x0〉 = 1

λ 〈x0, x
′
0〉 = 1+λ

λ 6= 1, hence x0 /∈
T ••. On the other side, 〈x′0, z0〉 = 0, then 〈x′0, x0〉 = 1. Since 0 /∈ T and by separation
Prop. 13, there exists x′1 ∈ k〈A〉′ such that 〈x′1, z0〉 = 1 and ∀d ∈ D, 〈x′1, d〉 = 0,
hence x′1 ∈ T •. Moreover, 〈x′1 + x′0, z0〉 = 1 and ∀d ∈ D, 〈x′1 + x′0, d〉 = 0 hence
x′1 + x′0 ∈ T •. To conclude, either 〈x′1, x0〉 = 0 and x′1 ∈ T • or 〈x′0 + x′1, x0〉 =
1 + 〈x0, x

′
1〉 6= 1 and x′0 + x′1 ∈ T •, so in both cases, x0 /∈ T ••.

�

From this characterisation, we deduce another one which will be useful to compute
the constructions of the model. Recall that aff (T ) = {

∑n
i=1 λiti |

∑
λi = 1, ti ∈ T }.

Corollary 19. Let T be a subset of k〈A〉. If T • 6= ∅, then T •• = aff (T ).

Proof. The proof is based on: T ⊆ aff (T ) ⊆ T ••. (Proof in Annex C)

Definition 20. A totality finiteness space is a pair [k〈A〉 , T ] made of a linear finite-
ness space k〈A〉 and a totality candidate T , that is is a polar closed subspace of k〈A〉.

Let TotFin be the category whose objects are totality finiteness spaces and whose
morphisms are continuous linear functions that preserve the totality candidates.

2.2 A model of classical linear logic

To prove that TotFin is a model of classical linear logic, we use the definitions and
results of [12, §4-5]. Let G(LF) be the double glueing of the category LinFin along
the HOM functor. The objects of G(LF) are triples [k〈A〉 , U , U ′ ] where U and U ′ are
subspaces of respectively k〈A〉 and k〈A〉′. A morphism between [k〈A〉 , U , U ′ ] and
[k〈B〉 , V , V ′ ] is a continuous linear function f : k〈A〉 → k〈B〉 such that f(U) ⊆ V
and f∗(V ′) ⊆ U ′, where f∗ is the adjoint of f . The linear exponential comonad of
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LinFin is equipped with a well-behaved linear distribution κ : x ∈ k〈A〉 7→ x! ∈
k〈!A〉 (it is routine to check the diagrams satisfied by κ).
The category TotFin is a subcategory of G(LF) (considering triples [k〈A〉 , T , T • ]).
More precisely, it is a Tight orthogonality with respect to the polar orthogonality. This
orthogonality is stable since it is focussed with respect to the focus {1}: x ⊥• x′ ⇐⇒
〈x′, x〉 = 1 ⇐⇒ x′(x) = 1. Since LinFin is a model of classical linear logic,
TotFin is also a model of classical linear logic (c.f. [12, Th. 5.14]).

The constructions inherited from LinFin as described in [12, §5.3] are:

T (A⊥) = T (A)•

T (1) = T (⊥) = {1}, T (0) = T (>) = {0},
T (A⊗B) = [T (A)⊗ T (B)]••, T (A&B) = T (A)× T (B),
T (A( B) = [T (A)⊗ T (B)•]•, T (A⊕B) = [T (A)× T (B)]•,

T (!A) = [κ(T (A))]•• =
{
x! |x ∈ T (A)

}••
Moreover, we describe every totality candidate as a closed affine subspace. This alge-
braic description is made possible thanks to the characterisation of totality candidates
(Prop. 18) and to the algebraic setting.

Proposition 21.

T (A⊗B) = aff (T (A)⊗ T (B)),
T (A( B) = {f ∈ k〈A〉 |f(T (A)) ⊆ T (B)} . (2)
T (A⊕B) = aff (T (A)× ker(T (B)•) ∪ ker(T (A)•)× T (B)) (3)
T (!A) = aff (x! |x ∈ T (A)), (4)

T (?A) =
{
F ∈ P̃ol(k〈A〉) |∀x ∈ T (A), F (x) = 1

}
, (5)

T (!A( B) =
{
F ∈ P̃ol(k〈A〉, B) |∀x ∈ T (A), F (x) ∈ T (B)

}
. (6)

Proof. The proof relies on showing that T • is not empty and on the use of Cor. 19.
( Details in Annex C, Prop 21-23.)

The formula A ⇒ B is interpreted as the totality finiteness space that is made of
morphisms of the Kleisli category.

Corollary 22. The totality candidate associated with A ⇒ B satisfies the following
fundamental equation:

T (A⇒ B) = {F : k〈A〉 → k〈B〉 analytic |∀x ∈ T (A), F (x) ∈ T (B)} (7)

In other words, the totality we have defined is a logical relation.

Example 23. T (B) = {(xt, yt) ∈ k2 |xt + yt = 1}, T (B⊥) = {(1, 1)},

T (!B) = {F ∈ k [[Xt, Xf ]] |∀(xt, yt), xt + yt = 1⇒ F (xt, yt) = 1},
T (?B⊥) = {P ∈ k [Xt, Xf ] |xt + yt = 1⇒ P (xt, yt) = 1},
T (!B( B) = {(P,Q) ∈ k [Xt, Xf ]2 |xt + yt = 1⇒ P (xt, yt) +Q(xt, yt) = 1}
T (`n?B⊥) = {P ∈ k [X1, . . . , X2n] |∀1 ≤ i ≤ n, x2i−1 + x2i = 1

⇒ P (x1, y2, . . . , x2n−1, x2n) = 1}
T (⊗n!B( B) = {(P,Q) ∈ k [X1, . . . , X2n]2 |P +Q− 1 ∈ T (`n?B)}
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Because totality candidate are affine spaces, it is natural to add a barycentric con-
struction to our proof system and to interpret it by a barycentric combination. Totality
finiteness spaces constitute a model of linear logic with MIX and barycentric sums.

2.3 Simply typed boolean barycentric lambda-calculus

We propose a λ-calculus in the style of Vaux’s algebraic λ-calculus [17]. In the barycen-
tric λ-calculus, sums of terms are allowed. It is well known that the application in λ-
calculus is linear in the function but not in its argument. That is why we introduce two
kinds of terms: atomic terms that do not contain barycentric sums but in the argument
of an application and barycentric terms which are barycentric sums of atomic terms.
Moreover, we add booleans and a conditional construction.
Syntax. Let V be a countable set of variables. Atomic terms s and barycentric terms T
are inductively defined by

R,S ::=
∑m
i=1 ai si where

{
∀i ∈ {1, . . . ,m}, ai ∈ k ,∑m
i=1 ai = 1 ,

s ::= x |λx.s |(s)S |T |F |if s then R else s where x ∈ V

We denote Λat the collection of atomic terms and Λbar the collection of barycentric
terms. We quotient all these sets of terms by α-conversion and associativity and com-
mutativity of the sum.
Types. The barycentric λ-calculus is simply typed with the usual type syste with the
restriction that barycentric sums of atomic terms are possible only if the latter have the
same type. Decomposing A ⇒ B with exponential and linear map: !A ( B the type
system can be reformulated within linear logic:

x ∈ V
Γ, x : A ` x : A

(var)
x : A,Γ ` s : B
Γ ` λx.s : A⇒ B

(abs)

Γ ` s : A⇒ B Γ ` R : A
Γ ` (s)R : B

(app)
Γ ` si : A

n∑
i=1

ai=1

Γ `
n∑
i=1

ai si : A
(sum)

Γ ` T : B (true)
Γ ` F : B (false)

Γ ` s : B Γ ` R : A Γ ` S : A
Γ ` if s then R else S : A

(cond)

Semantics We interpret the barycentric λ-calculus in LinFin through the standard
translation of the λ-calculus in LL, extended to deal with the barycentric and boolean
features as follows:

J
∑n
i=1 ai siK

Γ =
∑n
i=1 ai JsiK

Γ JTKΓ = (1, 0), JFKΓ = (0, 1),

Jif s then R else SKΓ = (JsKΓt JRKΓt + JsKΓf JSKΓt , JsKt JRKΓf + JsKΓf JSKΓf ).

Notice that since JBK = k〈B〉 = k
2, the semantics of each term s of type B is given by

its two components JsK = (JsKt , JsKf ).
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Theorem 24. Totality finiteness spaces constitute a denotational model of the barycen-
tric λ-calculus.

Thanks to cor 22, we can relate the notion of totality with realisability in logic where a
term λx.t : A⇒ B is total iff ∀s : A, t[x← s] : B.

3 Towards completeness

We focus attention on closed terms of type Bn ⇒ B. As we have seen in Ex. 23, terms
of that type are pairs of polynomials P = (Pt,Pf ) ∈ k [X1, . . . , X2n]2 s.t. for all
(ai) ∈ k2n with a2i−1 + a2i = 1, Pt(a1, . . . , a2n) + Pf (a1, . . . , a2n) = 1.

Theorem 25 (Completeness). Every total function of T (Bn ⇒ B) is the interpretation
of a term of the boolean barycentric calculus.

More precisely, we prove that every pair of polynomials P ∈ T (⊗n!B( B) is boolean,
i.e. there is a term S of the boolean calculus such that JSK = (Pt,Pf ).

Let us first introduce some notations and intermediate results.

¬S = if S then F else T, J¬SK = (JSKf , JSKt),
S+ = if S then T else T, JS+K = (JSKt + JSKf , 0),
S− = if S then F else F, JS−K = (0, JSKt + JSKf ),
Πi = λx1, . . . ,xn · xi, JΠiK = (X2i−1, X2i).

The following pairs of polynomials are boolean:

(X2i, X2i−1) = X2i · (1, 0) +X2i−1 · (0, 1) = J¬ΠiK , (8)

(X2i−1 +X2i, 0) = X2i · (1, 0) +X2i−1 · (1, 0) =
q
Π+
i

y
, (9)

(1−X2i, X2i) = (1, 0) + (X2i−1, X2i)− (X2i−1 +X2i, 0) =
q
T + Πi −Π+

i

y
,

(1−X2i−1, X2i−1) =
q
T + ¬Πi −Π+

i

y
.

We prove first a weak version of the completeness theorem where we assume that
Pt + Pf − 1 vanishes everywhere.

Lemma 26 (Affine pairs). For every polynomial P ∈ k [X1, . . . , Xn], the pair of poly-
nomials (1− P, P ) is boolean.

Proof. We use an induction on the degree d of P . If d = 0, there exists a ∈ k such that
P = a, hence (1− P, P ) = J(1− a) T + a FK.

If d > 0, let us first study the monomial case, i.e. Xµ =
∏
Xµi

i with, say, µ1 ≥ 1.

(1−Xµ, Xµ) = (1−X1) · (1, 0) +X1 ·
(

1−Xµ1−1
1

∏
i6=1X

µi

i , X
µ1−1
1

∏
i 6=1X

µi

i

)
= Jif Ξ1 then T else Ξd−1K = JΞµK .

where the induction hypothesis ensures the existence of Ξ1 and Ξd−1 respectively in-
terpreted by Xµ1−1

1 and
∏
i 6=1X

µi

i . Finally, if P =
∑
aµ
∏
Xµi

i , then

(1− P, P ) = (1−
∑
aµ) (1, 0) + (

∑
aµ) (1−Xµ, Xµ)

= J(1−
∑
aµ) T + (

∑
aµ) ΞµK .

�
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The following algebraic lemma, allows us to reduce our problem to affine pairs.

Lemma 27 (Spanning polynomials). Let P ∈ k [X1, . . . , X2n] where k is an infinite
field. If P vanishes on the common zeroes of X2i−1 + X2i − 1, then for every i in
{1, . . . , n} there is Qi ∈ k [X1, . . . , X2n] such that P =

∑n
i=1Qi(X2i−1 +X2i − 1).

Proof. Under the change of variable: Yi = X2i−1 +X2i − 1, Yi+n = X2i, for
i ∈ {1, . . . , n}, we denote by PY the polynomial P . Then for every (yi) ∈ k

n,
PY (0, . . . , 0, yn+1, . . . , y2n) = 0. Since k [Y2, . . . , Y2n] is a ring, k [Y2, . . . , Y2n] [Y1]
is an euclidean ring. The euclidean division of PY by Y1 gives PY = Q1Y1 +R1 where
Q1 ∈ k [Y2, . . . , Y2n] [Y1] and R1 ∈ k [Y2, . . . , Y2n]. By iterating this process on Ri
for i ∈ {1 . . . n− 1}, we get PY =

∑n
i=1QiYi +Rn where Qi ∈ k [Y1, . . . , Y2n] and

Rn ∈ k [Yn+1, . . . , Y2n]. For all (yi) ∈ kn, we have
PY (0, . . . , 0, yn+1, . . . , y2n) = Rn(yn+1, . . . , y2n) = 0. Since k is infinite, Rn = 0
and PY =

∑n
i=1QiYi. Change the variables, we get P =

∑n
i=1Qi(X2i−1 +X2i− 1).

�

Proof (Theorem 25). Let P ∈ T (⊗n!B ( B). Thanks to Ex. 23, we know that Pt +
Pf − 1 vanishes on every zero of {X2i−1 +X2i − 1 |1 ≤ i ≤ n}. Then, we can apply
Lem. 27: Pt+Pf −1 =

∑n
i=1Qi(X2i−1 +X2i−1) withQi ∈ k [X1, . . . , X2n]. Thus,

(Pt,Pf ) =
∑n
i=1 [(1−Qi) · (1, 0) +Qi · (X2i−1 +X2i, 0)]+(1−Pf ,Pf )−n(1, 0).

By Lem. 26, there are boolean terms Si and S such that (1 − Qi, Qi) = JSiK and
(1− Pf ,Pf ) = JSK. We have seen in Eq. (9) that (X2i−1 +X2i, 0) =

q
Π+
i

y
. Finally,

we have found a term whose semantics is

P =

t
n∑
i=1

(
if Si then T else Π+

i

)
+ S− n T

|

.

�

If we inductively define the types n by 1 = 1, 2 = B and n + 1 = n⊕ 1, then the
completeness theorem can be generalised to types n1×· · ·×nk ⇒m and a barycentric
lambda-calculus with integer and case constructions.

Example 28 (Gustave and Parallel-or functions). Several pairs of polynomials can in-
terpret the functions POr ∈ T (!B ⊗ !B) ( B and Gus ∈ T (!B ⊗ !B ⊗ !B) ( B
satisfying:

POr(T, 0) = T Gus(T, F, 0) = T
POr(0, T) = T Gus(0, T, F) = T
POr(F, F) = F Gus(F, 0, T) = T

Gus(F, F, F) = F

The pairs of polynomials with the smallest degrees are respectively:

POr : B × B ⇒ B
(x , y) 7→ (xt + yf − xtyt, xfyf )

Gus : B × B × B ⇒ B
(x , y , z) 7→ (xtyf + ytzf + ztxf , xtytzt + xfyfzf )
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Conclusion

The first two sections of this article emphasise the algebraic and topological description
of the model of finiteness spaces which is important for several reasons. First, the def-
inition of linear finiteness spaces is related to relational finiteness spaces by means of
web. The purpose of a more algebraic approach is to get rid of webs. Our description
of reflexivity is a first step in this direction. Second, our study has unveiled an algebraic
approach to totality where totality candidates admit a simple algebraic and topological
characterisation; such a characterisation was not available in coherence spaces. More-
over, although we needed to use linear logic to describe algebraic totality, we get a
notion which is similar to reducibility candidates in realisability. Finally, the partial
completeness result is proved using an algebraic method. This gives a new insight into
the analogy between linear algebra and linear logic.

The last section is devoted to a full completeness result which open the path to a bet-
ter understanding of non-deterministic functions such as POr and Gus. Let us conclude
with a parallel with what happened for sequential algorithms. The model of coherence
spaces and stable functions is not complete for sequential algorithm. Even if the not
sequential function POr is not stable, Gus is stable. The full completeness result of
Loader [16] does not give information on boolean functions since it is restricted to mul-
tiplicative constructions with Mix. On the contrary, hypercoherence and strongly stable
functions constitute a model of linear logic which characterises sequentiality [5,3]. The
perspective is now to understand if this completeness result generalises at other types.

Acknowledgements I want to thank Thomas Ehrhard and Pierre-Louis Curien for their
constant support. I am also deeply grateful to Pierre Hyvernat who was interested in the
completeness part of this work. He proved simultaneously the result stated here with an
elegant combinatorial approach and found the total description of the POr function.
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A Finiteness spaces

Proposition 11. Let K be a subspace of k〈A〉. There is an equivalence between

1. K is linearly bounded, 2. |K| = ∪{|x| |x ∈ K} is finitary,
3. the closure of K is linearly compact.

Proof. Let K be linearly bounded. Let J ′ ∈ F(A)⊥. There is a finite dimensional
subspace K0 of K such that K = (K ∩ VJ′) ⊕ K0. Since the dimension of K0 is
finite, |K0| is finitary. Besides, |K| ∩ J ′ = |K0| ∩ J ′ which is finite. We proved that
|K| ∈ F(K).

Let K be a subspace of k〈A〉 such that |K| is finitary. The topology induced
by k〈A〉 on its subspace k

|K| is the product topology. Indeed, it is generated by
k
|K| ∩VJ′ =

{
x ∈ k|K| | |x| ∩ J ′ = ∅

}
with J ′ ∈ F(A)⊥ and so |K| ∩ J ′ is finite. By

Tychonov Th. 8, k|K| is linearly compact. Since the closure of K is a closed subspace
of k|K|, it is also linearly compact (cf. [13, §10.9(1)]).

Let K be a linearly compact subspace of k〈A〉. Let J ′ ∈ F(A)⊥. Thanks to the
incomplete basis theorem, there is D such that K = (K ∩ VJ′) ⊕ D. If we endow
D with the discrete topology and K ∩ VJ′ with the topology induced by K, then the
projections on each subspace are continuous. Therefore, D is linearly compact as the
image of a linearly compact space by a continuous function [13, §10.9(2)]. Besides,
D has a finite dimension as every discrete linearly compact space.Thus K is linearly
bounded.

Proposition 13 (Separation). For every closed subspace D of k〈A〉 and x /∈ D, there
is a continuous linear form x′ ∈ k〈A〉′ such that 〈x, x′〉 = 1 and ∀d ∈ D, 〈d, x′〉 = 0.

Proof. Since ∩VJ′ = {0}, there is J ′ ∈ F(A)⊥ such that x /∈ VJ′ . Thanks to the
incomplete basis theorem, we can define a linear form x′ not necessarily continuous
such that 〈x′, x〉 = 1 and ∀y ∈ D + VJ′ , 〈x′, y〉 = 0. Since VJ′ ⊂ kerx′, x′ is
continuous.

Lemma 14. Let F ′ ⊂ k〈A〉′ finite. If 0 /∈ aff (F ′) then there exists x ∈ E such that
∀x′ ∈ F ′, 〈x′, x〉 = 1.

Proof. Let x′1, . . . , x
′
n ∈ F ′ be a maximal linearly independent collection. We first

prove that F ′ ⊆ aff (x′1, . . . , x
′
n): Let x′ ∈ F ′. Since (x′i) is maximal, there exist

λ1, . . . , λn such that x′ =
∑n
i=1 λix

′
i. Assume 0 /∈ aff (F ′), then the equation in µi:

0 = (1−
∑n
i=1 µi)x

′+
∑n
i=1 µix

′
i cannot have any solution. By replacing x′ by

∑
i λix

′
i

and since (xi) is independent, we get the system {(1−
∑n
i=1 µi)λj + µj |1 ≤ j ≤ n}

which has no solution. Hence, its determinant (−1)n−1(1 −
∑n
i=1 λi) is null and∑n

i=1 λi = 1. Hence x′ ∈ aff (x′1, . . . , x
′
n). Since x′1, . . . , x

′
n are linearly inde-

pendent, there exists x ∈ E such that for any 1 ≤ i ≤ n, 〈x′i, x〉 = 1, hence
∀x′ ∈ F ′ ⊆ aff (x′1, . . . , x

′
n), 〈x′, x〉 = 1.

Proposition 14 (Separation in the dual). Let T ′ be a closed affine subspace of k〈A〉′
such that 0 /∈ T ′. There exists x ∈ k〈A〉 such that ∀x′ ∈ T ′, 〈x′, x〉 = 1.
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Proof. The closed subspace T ′ does not contain 0, hence there exists a fundamental
linear neighbourhood of 0, that is ann (K) where K linearly compact in k〈A〉, such
that ann (K) ∩ T ′ = ∅. For any finite subspace F ′ ⊆ T ′, let TF ′ = {x ∈ E | ∀x′ ∈
F ′, 〈x′, x〉 = 1}. One has aff (F ′) ⊆ T ′ and hence aff (F ′) ∩ ann (K) = ∅. So
0 /∈ aff {x′|K | x

′ ∈ F ′}. Applying Lem. 14 in K ′, for every finite F ′ ⊆ T ′, we get
x ∈ K such that ∀x′ ∈ F ′, 〈x′, x〉 = 1, so x ∈ TF ′ ∩K.
The collection (TF ′) where F ′ ranges over finite subsets of T ′ is a filter of closed affine
subspaces of k〈A〉. All elements of this filter meet the linearly compact subspace K ⊆
k〈A〉. ThusK∩

⋂
F ′⊆finT ′

TF ′ 6= ∅ , so there is x ∈ K such that ∀x′ ∈ T ′, 〈x′, x〉 = 1.

Proposition 15. (Equicontinuous spaces) LetA be a relational finiteness space. A sub-
space B′ of k〈A〉′ is linearly bounded if and only if there is J ′ ∈ F(A)⊥ such that
B′ ⊆ ann k〈A〉′(VJ′).

Proof. First, B′ is linearly bounded if and only if |B′| ∈ F(A) (see Prop. 11). Second,
∃J ′ ∈ F(A), B′ ⊆ ann (VJ′) ⇐⇒ ∃J ′ ∈ F(A), |B′| ⊆ J ′ ⇐⇒ |B′| ∈ F(A).

Proposition 16 (Reflexivity). The map ι : k〈A〉 → k〈A〉′′ defined below is a topolog-
ical isomorphism.

∀x ∈ k〈A〉, ι(x) : x′ ∈ k〈A〉′ 7→ 〈x′, x〉 = x′(x).

Proof. If x 6= 0, then there is J ∈ F(A)⊥ such that x /∈ VJ . By separation Prop. 13,
there is x′ ∈ k〈A〉′ such that 〈x′, x〉 = 1, hence ι is injective. Let x′′ ∈ k〈A〉′′ such
that x′′ 6= 0. Let x′ ∈ k〈A〉 such that 〈x′′, x′〉 = 1. Thanks to separation in the dual
Prop. 14, there is x ∈ k〈A〉 such that 〈x′, x〉 = 1 and for all y′ ∈ kerk〈A〉′(x′′),
〈y′, x〉 = 0. Hence ι(x) and x′′ coincide on both x′ and ker(x′′).

If J ′ ∈ F(A)⊥, then the support |ann k〈A〉′(VJ′)| = J ′ is in F(A)⊥. By Prop. 11,
KJ′ = ann k〈A〉′(VJ′) is linearly compact in k〈A〉′ and ann k〈A〉′′(KJ′) is a linear
neighbourhood of 0 in k〈A〉′′. Conversely, let K ′ be a linearly compact subspace of
k〈A〉′. By Propositions 15 and 11, kerk〈A〉(K ′) is open in k〈A〉.

We next show that the Topological dual construction of linear finiteness spaces co-
incides with the orthogonal construction of relational finiteness spaces.

Proposition 17. The linear finiteness space k〈A〉′ endowed with the linearly compact
open topology is isomorphic to the linear finiteness spaces k〈A⊥〉.

Proof. Let x′ ∈ k
|A|, then x′ ∈ k〈A〉∗ where 〈x′, x〉 =

∑
a∈|A| x

′
a xa. We have the

following equivalence: x′ is continuous if and only if there is J ′ ∈ F(A)⊥ such that
∀x ∈ VJ′ , 〈x′, x〉 =

∑
a∈|A| x

′
axa = 0, that is |x|′ ⊂ J ′. Consequently, we have that

x′ ∈ k〈A〉′ if and only if x′ ∈ k〈A⊥〉.
Let J ∈ F(A). The subspace kJ of k〈A〉 is linearly compact thanks to Prop. 11.

Hence ann (kJ) = {x′ | |x′| ∈ F(A)⊥, |x|′ ∩ J = ∅} is open in k〈A〉′. Conversely, if
K ⊆ k〈A〉 is linearly compact, then |K| is finitary (Prop. 11) and V|K| is a fundamental
linear neighbourhood of 0. Moreover, V|K| ⊆ ann (K) hence ann (K) is open in k〈A〉′.
We proved that the two topologies coincide.
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B Interpretation of proofs in LinFin.

Hypocontinuity can be generalised to multilinear functions:

Definition 18. Let (Ai)i≤n be a finite collection of relational finiteness spaces. An n-
linear form φ : ×ik〈Ai〉 → k is hypocontinuous if for any (Ki) collection of linearly
compact subspaces of k〈Ai〉s (respectively), for any i0 there exists a fundamental linear
neighbourhood Ui0 such that φ(×Ai) = 0 where Ai = Ki if i 6= i0 and Ai0 = Ui0 .

Any proof of the sequent ` Γ of formula of MELL+MIX+SUM is interpreted as a
continuous linear form on JΓ K. If Γ = A1, . . . , An then a proof of the sequent can be
expressed as a hypocontinuous n-linear forms on×i JAiK′. Finally, if Γ = Γ1, A, then a
proof of this sequent can be equivalently described as a continuous linear function from
JΓ1K to JAK. We freely use these different presentations in order to describe proofs.

The interpretation of proofs of MELL+MIX+SUM are described on Fig. 3- 4 and is
similar with the presentation of [14] except for exponentials.

A proof π Its interpretation

AX
` A, A⊥

JπK : JAK′ × JAK → k

x′ , x 7→ 〈x′, x〉

ρ1. . . . . . . . .
` Γ1, A

ρ2. . . . . . . . . .
` Γ2, A

⊥

CUT` Γ1, Γ2

Jρ1K ∈
q
Γ⊥1 ( A

y
Jρ2K ∈

q
Γ⊥2 ( A⊥

y

JπK : JΓ1K′ × JΓ2K′ → k

γ′1 , γ′2 7→ 〈ρ2(γ
′
2), ρ1(γ

′
1)〉

ρi. . . . .
` Γ nP

i=1

ai = 1
` Γ

JρiK ∈ JΓ K′
nP
i=1

ai = 1

JπK : JΓ K → k

γ 7→
nP
i=1

ai 〈JρiK , γ〉

MIX0` ⊥
JπK : k → k

a 7→ a

ρ1. . . . . .
` Γ1

ρ2. . . . . .
` Γ2 MIX` Γ1, Γ2

Jρ1K ∈ JΓ1K′ Jρ2K ∈ JΓ2K′

JπK : JΓ1K′ × JΓ2K′ → k

γ′1 , γ′2 7→ Jρ1K (γ′1) Jρ2K (γ′2)

ρ. . .
Γ ⊥` Γ,⊥

JρK ∈ JΓ K′

JπK : JΓ K′ × k → k

γ , a 7→ JρK (γ′)

Fig. 3: Interpretation of proofs of MELL+MIX+SUM in LinFin
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ρ. . . . . . . . . . .
` Γ,A,B `` Γ,A`B

JρK ∈
q
Γ⊥ ( (A`B)

y

JπK : JΓ K′ × (JAK ⊗ε JBK)′ → k

γ′ , φ 7→ 〈φ, JρK (γ′)〉

1` 1
JπK : k → k

a 7→ a

ρ1. . . . . . . . . .
` Γ1, A1

ρ2. . . . . . . . . .
` Γ2, A2 ⊗

` Γ1, Γ2, A⊗B

Jρ1K ∈
q
Γ⊥1 ( A1

y
Jρ2K ∈

q
Γ⊥2 ( A2

y

JπK : JΓ1K′ × JΓ2K′ × (JAK′ ⊗ε JBK) → k

γ′1 , γ′2 , φ 7→ φ(Jρ1K (γ′1), Jρ2K (γ′2))

>` Γ,>
JπK : JΓ K′ × {0} → k

γ′ , 0 7→ 0

ρ1. . . . . . . . .
` Γ,A1

ρ2. . . . . . . . .
` Γ,A2

&` Γ,A1 &A2

Jρ1K ∈
q
Γ⊥ ( A1

y
Jρ2K ∈

q
Γ⊥ ( A2

y

JπK : JΓ K′ × (JA1K′ ⊕ JA2K′) → k

γ′, x′1 + x′2 7→ 〈x′1, Jρ1K (γ′)〉+ 〈x′2, Jρ2K (γ′)〉

ρ. . . . . . . . .
` Γ,A1 ⊕g` Γ,A1 ⊕A2

JρK ∈
q
Γ⊥ ( A1

y

JπK : JΓ K′ × (JA1K′ × JA2K′)
γ , (x′1, x

′
2) 7→ 〈x′1, JρK (γ)〉

ρ. . . . .
` Γ Weak

` Γ, ?A⊥

JρK ∈ JΓ K′

JπK : JΓ K × J!AK → k

γ , d 7→ JρK (γ) 1d=e[]

ρ. . . . . . . . . . . . . . . .
` Γ, ?A⊥, ?A⊥

contr
` Γ, ?A⊥

JρK ∈ JΓ K ⊗ε J!AK ⊗ε J!AK

JπK : JΓ K′ × J!AK → k

γ′ , d 7→
P
d1,d2

JρK (γ′, d1, d2) 1d=d1 e⊗ d2

ρ. . . . . . . . .
` Γ,A⊥

Der
` Γ, ?A⊥

JρK ∈ JΓ K ⊗ε JAK

JπK : JΓ K′ × J!AK → k

γ′ , X 7→
P

#µ=1

JρK (γ′, Xµ)

ρ. . . . . . . . . . . . . . . . . . . . .
` ?A⊥1 , . . . , ?A

⊥
n , B Prom

` ?A⊥1 , . . . , ?A
⊥
n , !B

JρK ∈ Poln(JA1K× · · · × JAnK ; JAK)

JπK : Poln(JA1K× · · · × JAnK ; J!AK)
x1, . . . , xn 7→ (JρK (x1, . . . , xn))!

Fig. 4: Interpretation of proofs of MELL+MIX+SUM in LinFin
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C Totality candidate characterisation.

Corollary 19. Let T be a subset of k〈A〉. If T • 6= ∅, then T •• = aff (T ).

Proof. Since T ⊆ T •• and T •• is affine close, we have T ⊆ aff (T ) ⊆ T ••. Con-
sequently, T • ⊆ [ aff (T ) ]• ⊆ T • and [aff (T )]•• = T ••. Moreover, if T • 6= ∅
then there is x′ ∈ k〈A〉′ such that for any x ∈ T , 〈x′, x〉 = 1, and so for any
x ∈ aff (T ), 〈x′, x〉 = 1. We infer that 0 /∈ aff (T ). Thanks to the characterisation
Lem. 18, [ aff (T ) ]•• = aff (T ). Finally, aff (T ) = T ••.

Proposition 21.

T (A⊗B) = aff (T (A)⊗ T (B)),
T (A( B) = {f ∈ k〈A〉 |f(T (A)) ∈ T (B)} . (10)

Proof. If x′ ∈ T (A)• and y′ ∈ T (B)•, then x′ ⊗ y′ : (x, y) → 〈x′, x〉〈y′, y〉 is in
[T (A)⊗ T (B)]•. Thanks to Cor. 19, aff (T (A)⊗ T (B)) = [T (A)⊗ T (B)]••.

The second equation comes from the equivalences:
f ∈ [T (A)⊗ T (B)•]• ⇐⇒ ∀x ∈ T (A), ∀y′ ∈ T (B)•, 〈f(x), y′〉 = 1,

⇐⇒ ∀x ∈ T (B), f(x) ∈ T (B).

Proposition 22.

T (A⊕B) = aff (T (A)× ker(T (B)•) ∪ ker(T (A)•)× T (B))

Proof. By construction,
T (A⊕B) = {(x, y) | ∀u′ ∈ T (A)•, v′ ∈ T (B)•, 〈x, u′〉+ 〈y, v′〉 = 1}.
So aff (T (A) × ker(T (B)•) ∪ ker(T (A)•) × T (B)) ⊆ T (A ⊕ B). Reciprocally, let
z = (x, y) ∈ T (A ⊕ B), u′0 ∈ T (A)• and v′0 ∈ T (B)•, D(A) = dir (T (A)•)
and D(B) = dir (T (B)•). Then T (A)• = u′0 + D(A) and T (B)• = v′0 + D(B).
Therefore for all d′x ∈ D(A), 〈d′x, x〉 = 0; for all d′y ∈ D(B), 〈d′y, y〉 = 0 and
〈u′0, x〉 + 〈v′0, y〉 = 1. If 〈v′0, y〉 = 0 then y ∈ ker(D(B)) and x ∈ T (A), so z =
(x, y) ∈ T (A) × ker(T (A)•) (respectively, if 〈u′0, x〉 = 0, then z ∈ ker(T (B)•) ×
T (B)). If 〈u′0, x〉 6= 0 and 〈v′0, y〉 6= 0, then z = 〈u′0, x〉( x

〈u′0,x〉
, 0) + 〈v′0, y〉(0,

y
〈v′0,y〉

).

So z = (x, y) ∈ aff (T (A)× ker(T (B)•) ∪ ker(T (A)•)× T (B)).

Proposition 23.

T (!A) = aff (x! |x ∈ T (A)), (11)

T (?A) =
{
F ∈ P̃ol(k〈A〉) |∀x ∈ T (A), F (x) = 1

}
, (12)

T (!A( B) =
{
F ∈ P̃ol(k〈A〉, B) |∀x ∈ T (A), F (x) ∈ T (B)

}
. (13)

Proof. Let 1 ∈ Pol(k〈A〉) be the constant function: ∀x ∈ k〈A〉, 〈x!, 1〉 = 1. We have
1 ∈

{
x! |x ∈ T (A)

}•
. Therefore, the first equality comes from Cor. 19. Using (10)

and (11), we get (13). The equality (12) comes from the linear logic equivalence: ?A '
!(A⊥)( 1.
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