Syntax For Free: Representing Syntax with
Binding using Parametricity

Robert Atkey

bob.atkey@ed.ac.uk
School of Informatics, University of Edinburgh

Abstract. We show that, in a parametric model of polymorphism, the
type Va.((a — a) — o) — (@ — a — ) — « is isomorphic to closed
de Bruijn terms. That is, the type of closed higher-order abstract syntax
terms is isomorphic to a concrete representation. To demonstrate the
proof we have constructed a model of parametric polymorphism inside
the Coq proof assistant. The proof of the theorem requires parametricity
over Kripke relations. We also investigate some variants of this represen-
tation.

1 Introduction

Representing, computing with, and reasoning about syntax with binding has
been of interest to computer scientists for the last 30 or 40 years. The crucial
point that makes these activities difficult is the notion of a-equivalence, the ob-
vious idea that if we have two terms equal up to the swapping of the names
of their bound variables, e.g. Az.z and Ay.y, then the terms should be treated
equally. Unfortunately, the obvious representation of binders as a pair of a vari-
able name and a subterm does not respect a-equivalence, so operations on such
data must be carefully written in order to respect it.

In this paper, we look at two solutions that have been put forward to deal
with this (we do not look at the third major approach: nominal sets [7]): de
Bruijn indicies and higher-order abstract syntax, and relate the two.

The de Bruijn index approach [5], approaches the problem by removing the
names of bound variables altogether. Bound variables are represented by pointers
to the construct that binds them. For instance, the A-term Ax.\y.xy is repre-
sented as A.A.1 0. The bound variable & has been replaced by a pointer to the
binder one step away from the occurrence, and the bound variable y has been re-
placed by a binder zero steps away. The advantage of this representation is that
a-equivalent terms are now structurally equal. The disadvantage is the compli-
cated definitions of common operations such as substitution, where non-intuitive
shifting operations are required to maintain the correct pointers.

Another common approach is to use higher-order abstract syntax [13]. In this
approach, we use the binding structure of the meta-language to represent bind-
ing in the object-language. For the untyped A-calculus, we suppose that there
is a type tm and operations lam : (tm — tm) — tm and app : tm — tm — tm.



The object-level term Az.\y.xy is thus represented as the meta-language term
lam (Az. lam (Ay. app z y)). The key advantage of this approach is that, since
object-level variables are represented using meta-level variables, substitution be-
comes very easy to define. A disadvantage of this representation is the need to
make sure that we do not allow too many terms into our type tm. Proving that
we have not done so is called adequacy [8], and is usually performed by reasoning
on the canonical forms of some weak type theory such as LF.

The key to higher-order abstract syntax is that the meta-level variables that
are used to represent object-level variables are only used as variables, and cannot
be further analysed. Washburn and Weirich [18] noted that parametric type
abstraction, as available in System F, is a viable way of ensuring that represented
terms are well behaved. They consider the type

Va.((a—a)—a)—= (a—a—a) >«

and derive a fold operator and some reasoning principles from it. This type
captures the two operations of higher-order abstract syntax, the lam and the
app, but abstracts over the carrier type. Washburn and Weirich claim that this
type represents exactly the terms of the untyped A-calculus, but do not provide a
proof. Coquand and Huet [4] also state that this type represents untyped lambda
terms, also without proof. In this paper we provide such a proof.

The reason that this approach works is that System F terms of type Va.m must
act parametrically in o, that is, they cannot reflect on what actual instantiation
of a they have been provided with. Reynolds [16] formalised this idea by stating
that for any two instantiations of o, parametric terms must preserve all relations
between them.

We take this idea, and extend it to use Kripke relations [15]. Kripke relations
are relations R indexed by some preorder W, such that if w < w’ in W, then
Rwzxy implies Rw’zy. By requiring that all terms of polymorphic type preserve
all Kripke logical relations, we can prove that the denotation of the type given
by Washburn and Weirich is isomorphic to the type of closed de Bruijn terms:
de Bruijn terms that do not have dangling pointers. The preorder-indexing of
the relations is used to handle the expansion of the number of meta-variables
being used as object-variables as we go under binders.

Traditionally, parametric models of System F have been hard to come by,
and have generally involved fiddly constructions with PERs. We make life easier
for ourselves by starting with a meta-theory!' that already has impredicative
polymorphism and construct a parametric model of System F inside it. We use
a version of Coq with impredicative polymorphism for this purpose, and we have
formalised most of our results here?.

Overview In the next section we introduce our model of System F inside the
Coq type theory. Following that, in Section 3, we present our main result, the

! Or meta-meta-theory, if one is pedantic.
2 The formal development is available from:
http://homepages.inf.ed.ac.uk/ratkey/parametricity.



isomorphism between the Washburn-Weirich HOAS type and de Bruijn terms. In
Section 4 we investigate two alternative representations that take different views
on how variables are represented. In Section 5, we show how the computational
aspect of System F can be integrated into our object-level representations, and
prove that a simplified version of the Haskell ST monad can be represented using
de Bruijn-style terms. Finally, Section 6 concludes with a discussion of related
work.

2 A model of parametric polymorphism

To state and prove our main results, we construct, inside the Coq proof assistant,
a denotational model of System F that supports parametricity. For simplicity,
we want to let System F types be denoted by objects of sort Set; we can then
express denotations of terms as normal Coq functions that preserve all Kripke
relations.

2.1 Preparing the meta-theory

In order to use Sets as denotations of System F types, we require impredicativ-
ity. The denotation of the type Va.7 quantifies over all denotations of types (i.e.
Sets). By default, Coq’s type theory is predicative for Set (although it is impred-
icative in the type of propositions, Prop), so one cannot construct a new object
of sort Set by quantifying over all objects of sort Set. Fortunately, Coq supports
a command line option -impredicative-set that allows us to proceed.

We also require three axioms to be added to Coq’s theory. The first of these
is proof irrelevance, which states that all proofs of a given proposition are equal:

VP : Prop. Vpy,p2 : P. p1 = po.

We also require extensionality for functions, which states that two functions are
equal if they are equal for all inputs:

VA : Type,B: A— Type, f,g: (Va.Ba). (Vx. fr=gx) — f=g

Extensionality for functions allows our denotational model to support the 7-
equality rules of System F. We also require propositional extensionality, which
will allow us to treat equivalent propositions as equal:

VP,Q :Prop, (P—Q)—P=Q

These axioms allow us to define data with embedded proofs that are equal if
their computational contents are equal, which will aid us in proving equalities
between denotations of System F types.

We informally justify our use of these axioms, plus impredicativity, by the
existence of models of CIC in intuitionistic set theory. In the remainder of the
paper, we use informal set theoretic notation and do not explicitly highlight
the uses of these axioms. Note that everywhere we use the word “set”, we are
referring to Coq objects of sort Set.



2.2 Denotational semantics of System F
The syntax of System F types is standard:
Tu= a | m—oT1 | Yar

where « is taken from a countably infinite set of variables, and V.7 binds « in
7. We actually use a de Bruijn representation of types (and terms) of System F
in our Coq development, but we will use the usual concrete representation for
exposition.

As we mentioned in the introduction, in order to prove the isomorphisms
below involving syntax with binding, we require that the denotation of Va.7 be
parametric over all Kripke relations over all preorders. Preorders consist of a
carrier W : Type and a binary relation <y, : W — W — Prop that is reflexive
and transitive. For a given preorder W, a W-Kripke logical relation over sets
A, B : Set is a predicate R: W — A — B — Prop, such that

Yw,w',a,b. w <y w — Rwab — Rw'ab.

For brevity, we write the collection of all W-Kripke relations over A, B as
KRel(W, A, B). Note that, even though we are using W-indexed Kripke rela-
tions, we do not use sets indexed by any particular W as denotations of System
F types—we are not constructing a model of System F in the presheaf category
for some preorder W. We will require multiple instantiations of W in our proofs.

Type environments y are mappings from type variables to sets. For a preorder
W and a pair of type environments 7, 72, a relation environment p is a mapping
from type variables a to W-Kripke relations over 7 («),v2(«). For any type
environment v and preorder W, there is a relation environment AEV that maps
all type variables to the equality relation.

We now define the denotations of types and the induced Kripke relations
between them. The mapping 7 [—] maps types with type environments to sets
and the mapping R[—] maps types 7, preorders W and relation environments
over type environments 71, v2 to W-Kripke relations over 7 [7]~1, 7 [7]~2. These
mappings are mutually defined over the structure of types:

Tla]y =~(a)
Tr = nly=T[nly — T[rly
T[Var]y={ z:VA:Set. T[r](v[a — A])
| VIV, A1, Ag, R : KRel(W, Ay, As), w : W.
R7]Y (AY [a+— R]) w (z A1) (z As) }
Rl pwazy=pla)wzy
Rln —n]Vow fg=Vu' :W,z: T[r]y,y: T[n]n. w <w v’ —
Rl p w' zy — R[]V p ' (fz) (9y)
RVa.7)Vp w x y = YAy, Ay, R : KRel(W, Ay, Ay).
R[] (pla = R]) w (z A1) (y As)



These clauses are mostly straightforward for Kripke logical relations, but
we draw the reader’s attention to the clause for 7[Va.7]. We have used im-
predicative quantification over all sets here. We also constrain the denotations
of polymorphic types to be those that preserve all W-Kripke relations, for all
preorders W. It is this parametricity property that we will use to prove the
isomorphisms in Section 3.

Lemma 1. The following hold, for all T and preorders W :

1. For all v1,v2 and p, RVQ/T]]Wp is a W-Kripke relation over T [t]v1, T [7]v2-
2. For all y and w, R[r]V AV w x y iff v = y.

Proof. Both by induction over the structure of 7.

Note that this denotational semantics of types validates the usual represen-
tations of inductive types in System F, e.g. T[Va.a — (@ — o) — oy ® N
ete.

Denotations of System F terms We also define a denotation for every well-typed
System F term, but we have elided these for lack of space. Please see the formal
development for more details. The main result is that every well-typed System
F term has a meaning in the model as a function from the denotation of the
context to the denotation of the result type, such that all Kripke relations over
any preorder are preserved by this function.

3 Representing A-terms using parametricity

We will show that, in our model, the denotation of the type
g =Va.(la—a) s a) = (a—a—a) -«

is isomorphic to the set of closed de Bruijn terms. This task is not so straight-
forward as producing two functions and showing that they are mutually inverse:
we must show that the function from the above type to de Bruijn terms actually
does give a well-formed closed de Bruijn term.

We define the set of well-formed de Bruijn terms as a natural number-indexed
inductively defined set Term : N — Set with constructors:

Var: {i : N |i < n} — Term(n)
Lam : Term(n + 1) — Term(n)
App : Term(n) — Term(n) — Term(n)
The set of all closed de Bruijn terms is hence given by Term(0). This definition

admits the following recursion principle3:

term_rec : VP : N — Set.
(Vn{i:N|i<n}— P(n)) —
(Vn.P(n+1) — P(n)) —
(Vn.P(n) — P(n) — P(n)) —
VYn.Term(n) — P(n)

3 This is less general than the one Coq provides, but suffices for our purposes.



We will also need the set of “pre-de Bruijn” terms—terms that are not necessarily
known to be well-formed—as an intermediate staging ground. The set preTerm
is defined inductively with the following constructors:

preVar : N — preTerm
preLam : preTerm — preTerm

preApp : preTerm — preTerm — preTerm

There is an obvious relation n - ¢ relating context sizes to preTerms well-formed
in that context, and an isomorphism between Term(n) and {¢ : preTerm | n I ¢}.

Note that the type preTerm is a normal inductive type and is therefore rep-
resentable in parametric System F. The mapping from 75 to preTerm that we
give is also expressible in pure System F.

We are now ready to define this mapping from denotations of the type 7
to Term(0). We do this first by mapping to preTerm and then showing that the
produced term satisfies 0 F ¢. By the definition of 7[[7g], the underlying set
for this type is VA : Set.(A — A) - A) - (A - A — A) — A. We define
¢(t) =t (N — preTerm) lam app 0, where:

lam = Af.Xi.preLam (f (Aj.preVar (j — (i +1))) (1 +1))
app = \x. y.Ni.preApp (z ) (y 1)

We instantiate a value of type 7y with the set N — preTerm, intending that
applying a function of this type to a number n will produce a term well-formed
in the context of size n. Inside the definition of these functions, the argument
represents the depth of context (or the number of binders) surrounding the
current term. In the case for app, we do not go under a binder, so we do not
increase the depth when applying it to the sub-terms. In the case for lam, given
a function f of type (N — preTerm) — (N — preTerm), and a depth i, we apply f
to an argument that will evaluate to a bound variable for a future depth j. The
arithmetic computes the distance between the bound variable and its binder.
Crucially, it is always the case that j > 4, since we only ever count upwards in
the depth of terms. This is the meat of the following:

Lemma 2. For allt: T[rg]y, 0+ ¢(t).

Proof. We use the parametricity of the denotation of 7. Unfolding the definition
of R[rx], this tells us that the following property holds of all ¢ : 7T [7x]y:

VVV, Al,AQ,R : KRGI(W,Al,Ag),U} : W.
(le Z w, lam1 : (A1 — Al) — Al, lamg : (AQ — AQ) — A2.
(Vwg > wy, f1: Ay — Ay, fa: Ay — Ao,
(Vwsg > wo,x: A,y : As. Rws x y — Rws (f1 ) (fay)) —
R wy (lamy f1) (lama f2)) —
(Vw4 2 w1, appq - A1 — A1 — Al, appo A2 — A2 — A2.
(Vws > wy, @1+ A1, 221 As.R ws o1 T2 —
(Ywe > ws,y1 : A1, y2 0 AR we y1 Yo —
R we (app; w1 y1) (appe 2 y2))) —
R wy (t Ay lamy app,) (t Az lama app,)))



We let W be N with the usual ordering. We will not need to use both type
arguments for this proof, so we set A; = N — preTerm and A; = 1, the one
element set (we use dummy implementations of lam and app for this type). We
set Rnx yiff Vn' > n.n' b x(n'). It is easy to verify that this is a Kripke relation.
This relation will suffice to prove our lemma, provided we can prove that our
implementations of lam and app in the definition of ¢ satisfy the requirements
of t’s parametricity property.

For lam, we must prove that at all depths n > 0, if we are given a functional
argument f : (N — preTerm) — (N — preTerm) satisfying the property at all
n' > n, then for all n” > n, we have

n' F preLam (f(Nj.preVar (j — (" +1))) (n” +1))
This is true if
n" +1F f(AjpreVar (j — (n” +1))) (" +1)

Since f preserves R, we need only show that the argument Aj.preVar (j—(n"+1))
satisfies R at all n”/ > n” + 1. This amounts to showing that

n” F preVar(n”' — (n” + 1))

which is trivial.
The case for app is easier and is a straightforward application of the required
property being satisfied by the two arguments.

This proof is very similar to the Kripke logical relations proof employed by
Rhiger [17] to prove that a single language embedded using higher-order abstract
syntax always gives well-formed terms. We have extended this by allowing mul-
tiple languages to be embedded in a single meta-language. Rhiger also considers
the use of type constructors to embed typed languages, something we cannot
do in our System F setting. We also note that the proofs here are very simi-
lar in structure to the proofs used for proving adequacy of higher-order syntax
encodings in LF [8].

Corollary 1. The map ¢ can be seen as a map from T [rg]y to Term(0).

The map ¢! from closed de Bruijn terms is defined by recursion over the
structure of terms. We make use of an auxiliary data structure of vectors vec A n,
representing lists of elements of type A : Set of length n. These have two con-
structors:

vecNil : vec A 0
vecCons: A —vec An—vec A (n+1)

and a look-up function lookup :vec An — {i : N|i < n} — A.



The mapping ¢! : Term(0) — 7 [rx]y is defined as:

¢ (t) = AA: Set.\lam.\app. term_rec (An.vec A n — A)
(An, i, env. lookup env )
(An, h, env. lam (Ax. h (vecCons x env)))
(An,z,y, env. app (x env) (y env))
0 ¢t vecNil

The basic idea is to recurse down the term, maintaining a vector of representa-
tions of bound variables. Every time we go under a binder, we extend the vector
by the object provided by the implementation of lam. For this mapping to be
well-defined, we must prove the following:

Lemma 3. For all t : Term(0), ¢~ 1(t) is parametric.

Proof. We must prove, essentially, that for any preorder W, pair of sets Aj, Ag
and W-Kripke relation R over Aj, A, then if lamy, lams and app,, app, are
related pairs of functions, then the bodies of ¢! are related by R at some index
w. We strengthen the statement from talking about terms in Term(0) with empty
starting environments to: for all n and ¢ : Term(n), vy : vec Ay n, vy : vec As n
and w’ > w,

Vi:{i:N]i<n}w”>w. Rw" (lookup v1 i) (lookup v %)

implies R w’ (term_rec ... t v1) (term_rec ... t v9). This is easily proved by induction
on t, and implies the lemma statement.

We now prove that our two mappings are mutually inverse. We first do the
direction that does not require parametricity:

Lemma 4. For allt: Term(0), ¢(¢~1(t)) = t.

Proof. As with the previous proof, we strengthen the statement to prove that
for all n, ¢t : Term(n) and v : vec (N — preTerm) n,

Vi <n,n’.n<n' — (lookup v i) n’ = Var(i + (n —n’))

implies term_rec ... t v n = t. This is easily proved by induction on ¢, and implies
the lemma statement.

The other direction requires the use of parametricity:

Lemma 5. For allt: T [ry], ¢~ 1(p(t) =t.

Proof. We are given a set A and operations lam and app. We apply the para-
metricity property of ¢ (as given in the proof of Lemma 2) with the following
data. The preorder W consists of lists of elements of A with the prefix ordering.
The set A; is set to N — preTerm, and A, is set to A. We set the relation R to
be R env z y iff:

Venv' J env. term_rec ... (z (length env’)) (toVec env’) =y



where length gives the length of a list, and toVec maps lists [ of As to a value of
type vec A (length ). It is easy to prove that is is a Kripke relation. The proof
then proceeds in a very similar way to the proof of Lemma 2.

Summing up, we have:

Theorem 1. Term(0) = T [ru]7.

4 Alternative representations of variables

Washburn and Weirich [18] also consider terms with a fixed maximum number
of free variables by using types of the form:

T =Va.((a—a) = a) = (a—a—a) = a”

where o = o and "' = @ — a”. By extending the proof in the previous

section, we have been able to prove T [r5]y = Term(n) for various n, but unfor-
tunately we have not been able to formally prove this for all n.

Washburn and Weirich further claim ([18], in the definition of iterList)
that the type

Va.((a—a) »a) = (a—a—a) = [o -«

represents terms with arbitrary numbers of free variables, where [o] is shorthand
for lists of o. However, it is easy to see that this is not the case. Consider the
following inhabitant of this type:

A Nlam. Aapp.Aenv. match env with nil = lam(A\z.x) | cons(x,t) = x

(where we allow ourselves some syntactic sugar for lists in System F). This
“term” represents Ax.x when the free variable list is empty, and the first available
free variable otherwise. This does not correspond to any single A-term.

We now look at two other representations of variables in higher-order abstract
syntax and evaluate them in the light of the techniques of Section 3.

4.1 Parameterised and weak higher-order abstract syntax

In [6] the authors note that the normal higher-order abstract syntax type cannot
be directly translated to an inductive type in Coq due to the negative occurrence
in the case for A-abstraction. They propose weak higher-order abstract syntax,
defined by an inductive type parameterised by a type of variables. We can rep-
resent this type in System F like so, using the normal encoding of inductive

types:
Twa(V) =Va.(v —a) > (r—0a) ma) > (a—>a—a) >«

Choosing something obvious for v, like natural numbers, results in inhabitants
of this type that do not represent A-terms (because they can inspect the variable



names they are given). The solution is to keep the type v abstract, so that in-
habitants cannot inspect their variables. Hofmann [9] analysed this construction
in the setting of presheaves, using a presheaf of variables for v.

Following on from [6], Chlipala [3] noticed that, if the meta language has
parametric polymorphism, then the type Vv.rywg(v) can be used to represent
A-terms, but he did not have a proof. He called this technique parameterised
higher-order abstract syntax. We can supply such a proof:

Theorem 2. T[]y = T[Vv.rwa (v)]y (=2 Term(0)).
Proof. Define (in System F) ¢ : 7 — Vv.rwpg (v) and ¢~ : (Vvrwr (V) — i
by:
¢ = M. Av. Ao var Mam. dapp. t [o] (Af. lam (Az. f (var x))) app
o~ = Xt.AaNam.Napp. t [o] [o] (A\z.x) lam app
Since these functions are terms of System F, the parametricity properties auto-
matically hold. The ¢=1(¢(t)) direction is particularly easy to prove:
¢~ H(Av. A var Xam.Xapp. t [a] (\f. lam (Mz. f (var x))) app)
= Aa.Nlam.Aapp. t [o] (Af. lam (Ax. f ((Az. z) ))) app
= Aa.Mlam.Aapp. t [a] lam app
=1
In the reverse direction we can prove ¢(¢~1(t)) = t by applying parametricity
over ordinary relations (Kripke relations are not needed here). If we have sets V/

for v and A for «, the key idea is to relate the A and V by Rzy iff x = var y
and relate A and A by the equality relation.

4.2 Locally higher-order abstract syntax

We now consider explicitly representing free variables in terms using any data
type we choose, but representing bound variables using higher-order abstract
syntax. This approach is inspired by locally nameless representations using de
Bruijn indicies only for bound variables [1]. We consider the type:

Tg(v) =Voa.(v — a) = ((a —a) s a) = (a —a—a) -«

This type has three “constructors”, one for injecting free variables of type v
into terms, and the two higher-order abstract syntax constructors. We are free
to choose any type we like for v, such as natural numbers or strings. Selecting
naturals, we can define the following combinators:

var : N — 75(N)

var = Ax. Aa. v Nl.Xa. v

app : TLH(N) — TLH<N) — TLH(N)

app = Azy. A v Al ha. a x y

lam : N — 7,5 (N) — 75 (N)

lam = Awt. Aa. vl | (M\y. t [o] (A\2".if 2 =2 then y else v 2') [ a)



The var combinator constructs a term with a single free variable, and app con-
structs the object-level application of two terms. The lam combinator is more
complicated: for free variable x and term t, it creates a new object-level A-
abstraction, with the body being t with x substituted for the variable bound by
the object-level A-abstraction.

It is also possible to define a pattern matching combinator of type:

Lo (N) = N+ (1,5 (N) X 705 (N)) + (700 (N) — 715 (N))

that analyses a term in our representation, and returns either a free variable, the
pair of terms involved in an application, or a term abstracted over another term
in the case of object-level A-abstraction. We cannot give this term here due to
lack of space: please see the OCaml files contained with the Coq development.
By using the techniques of Section 3 we can prove that this representation is
actually equivalent to a representation using de Bruijn terms. We define such a
representation LNTerm(A, n) inductively by the following constructors:

freeVar : A — LNTerm(A,n)
boundVar: {i : N|i <n} — LNTerm(A4,n)
Lam : LNTerm(A,n + 1) — LNTerm(A4,n)
App : LNTerm(A,n) — LNTerm(A4,n) — LNTerm(A, n)

Theorem 3. For closed types T, LNTerm(T [7]vy,0) = T [rru(7)]y-

The significance of this theorem arises from the fact that we can use a lan-
guage with parametric polymorphism to represent locally nameless A-terms; a
type that would normally seem to require some kind of indexed types to repre-
sent. We speculate that it would be possible to build a convenient (if inefficient)
library for manipulating syntax with binders in OCaml using this representation.

5 Mixing computation and representation

We now go beyond the representation of pure syntax to embed the computational
power of System F in abstract syntax trees. Licata, Zeilberger and Harper [11]
define a system based on a proof theoretic analysis of focusing that allows for a
mixing of computational and representational data. Note that the locally higher-
order abstract syntax example from the previous section already demonstrates
this in action: the ¥ — « constructor for free variables is computational in the
sense that it can inspect the values it is given.

5.1 Arithmetic expressions

Our first example is from Licata et al [11], that of the abstract syntax of arith-
metic expressions with embedded “semantic” binary operations. Binding struc-
ture is introduced into the type by a “let” construct. We make the following



definition, assuming some primitive type of integers int:

74 =Va.(int — a) — ((int — int - int) D a - a — a) —
(a—=(a—a)—a)—a

From the type, we have three “constructors”: one to introduce integers into
terms, one for terms representing binary operations, with a function expressing
the actual operation to perform, and one to handle lets, using the normal higher-
order abstract syntax representation for binding. We can write an evaluator for
expressions in this type very easily:

eval(t) = ¢ [int] (Az. ) (A fzy. fxy) Aaf. fx)

A de Bruijn-style representation for these arithmetic expressions is given by the
following constructors for an indexed type AExp : N — Set:

Num : int — AExp(n)
Binop : (int — int — int) — AExp(n) — AExp(n) — AExp(n)
Let : AExp(n) — AExp(n + 1) — AExp(n)

Again, using the same method as Section 3 we can prove:

Theorem 4. AExp(0) = T [ra]y.

5.2 Encapsulated side-effects with dynamic allocation

The Haskell programming languages contains a monad called ST, that is used
to represent encapsulated side-effects with dynamic allocation. A simplified ver-
sion of this monad, with a single type of data stored in references o, a type
of references p and result type 7 is given by the following data: a family of
types ST 7 o p, with associated monadic return and bind operations, plus three
operations:

newg,:0 = ST pop
upd,,:p—oc—ST1lop
lkup,,:p—ST o op

corresponding to dynamic allocation of a new memory cell, updating a memory
cell and looking up the value of a memory cell. This monad has an associated
function runST : V7.¥o.(Vp.7s7 (7,0, p)) — 7 that takes a computation and runs
it, producing a final result value of type 7. The intention is that the nested
quantification over p prevents references leaking or entering from outside the
computation.

Moggi and Sabry [12] used operational techniques to prove the safety of the
full ST monad with typed references. They represent values of the monadic type



using a polymorphic type. Simplified to the System F setting with a single type
for stored data, this type can be given as:
Tsr(T,0,p) =Va. (1 = a) = (0 = (p— a) = a) —
(p—0—a—a)—(p—(c—a)—a)—a

We can make this family of types into a monad with the following definitions:

returng, : T — Ts7(T,0,p)

returng, ., = Ax.Aa.Aret new upd lkup. ret x

bindr, ryop = TsT(T1,0,p) = (11 = Tsr(T2,0,p)) = Ts7(T2, 0, p)

bind ., r,0p = Acf . AaAret new upd lkup. clo](Ax. fzla]ret new upd lkup)
new upd lkup

Note that, unlike Moggi and Sabry, we have not included a “constructor” in our
type to represent bind, it can already be defined from the ret “constructor”. We
define the operations of the monad like so:

newy, = As.Aa.Aret new upd lkup. new s (Ar. ret )
upd,, = Ars.Aa.Aret new upd lkup. upd r s (ret )
lkup,, = Ar.Aa.Aret new upd lkup. lkup r (As. ret s)

Using these combinators we can write programs in monadic style that issue
commands to dynamically allocate new memory cells via the new operation and
access them using the upd and lkup operations.

Moggi and Sabry note that (their version of) the type 757 (7, 0, p) almost fits
the schema for the polymorphic representation of an inductive type in System
F, were it not for the negative occurrence of p in the new “constructor”. Using
the techniques of Section 3, we can show that this type actually does correspond
to an inductively defined type using de Bruijn representation for variables. The
appropriate type is given by by the following constructors for an indexed type
ST(A,S,—) : N — Set, for sets A and S.

Ret: A — ST(A,S,n)
New: S — ST(4,S,n+1) — ST(A4,S,n)
Update: {i : N |i <n} — S — AExp(4, S,n) — AExp(4, S, n)
Lookup : {i : N |i < n} — (S — AExp(4, S,n)) — AExp(A, S,n)
Theorem 5. For closed types T and o,
ST(T[7]v,T[o]y,0) = T[Vp.rsr(T,0,p)]7-
An obvious question now is whether this result extends to the case with typed
references. Following Moggi and Sabry, we would expect that the F,, type
ATVp = xNa. (T — a) —
(Vo. 7 = (plo] = @) = a) —

. pl

(Vo. plo] 20— a—a) —
(Yo plo] — (o — @) — @) —



should have a de Bruijn-style representation similar to ST above. However, there
is a problem with proceeding naively here. Consider the following program writ-
ten in this monad (using Haskell’s do notation):

do = « new (A(). return ())
upd x (A(). do {y «— lkup x; y ()})
y «— lkup x

y ()

which uses “Landin’s knot” to represent a non-terminating computation using
mutable references. However, the “obvious” de Bruijn-style type (using a context
consisting of lists of types) does not admit the translation of this term.

6 Related Work and Conclusions

Aside from the work of Washburn and Weirich [18], the closest work to ours is
that of Rhiger [17], who shows that a higher-order abstract syntax encoding for
a single typed object-language is sound and complete in a simply-typed meta-
language with a type constructor Exp : « — *. We have extended his work by
allowing multiple embedded languages. The use of System F also allows the use
of iteration constructs to access terms from the outside, as demonstrated by
Washburn and Weirich.

Also related is the work of Carette et al [2]. They use the same method
as Rhiger to embed languages inside an existing typed language (OCaml in this
case). They abstract over the carrier type and actual implementations of lam and
app, as we do here, but do not make the connection to concrete terms explicit.

It seems obvious, though we have not yet formally proved it, that there is a
natural extension of the representation of inductive types in System F as poly-
morphic types Va.(F[a] — «) — «, where « is positive in F' to ones, where we
allow negative a occurrences, and the represented type is some kind of abstract
syntax with binding. We leave formulating and proving a general theorem of this
kind to future work, but we suspect that it will be a straightforward application
of the ideas in Section 3, the key idea being the use of Kripke logical relations.

In future work we also wish to consider more powerful type theories than
System F for use as the meta-language. An obvious first step is the use of System
F,, which will allow the use of type parameters to represent object languages
with type systems that are subsets of the meta-language type system, although
the case of the multi-typed ST monad from Section 5.2 shows that this extension
may not be straightforward. Pfenning and Lee [14] have considered the use of
F, as a meta language, using a form of weak higher-order abstract syntax, but
did not prove the close connection between representation and syntax that we
have here. A yet more powerful route may be to consider the combination of
dependent types and parametric polymorphism, so that representations of logics
in the same style as the Logical Framework approach maybe used, combined with
powerful ways of computing with them. The work of Izumi [10] on parametricity
in dependent types may be useful here.
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