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Abstract. Newer spatial technologies, such as spatio-temporal databases,
geo-sensor networks, and other remote sensing methods, require mecha-
nisms to efficiently process spatial data and identify (and in some cases
fix) data items that do not conform to rigorously defined spatial data
type definitions. In this paper, we propose an O(nlgn) time complexity
algorithm that examines a spatial configuration, eliminates any portions
of the configuration that violate the definition of spatial regions, and
constructs a valid region out of the remaining configuration.

1 Introduction

Spatial databases have become rather mature and many commercial products
are based upon them; however, newer technologies have introduced new problems
in spatial data management, and highlighted problems in existing technologies
that have yet to be fully addressed. We illustrate this with an example from
moving objects databases. Current spatial technologies are built upon a rigid
definition of spatial data types. For example, a complez region [9] (which we will
refer to simply as a region) can consist of multiple faces, each containing zero
or more holes (e.g., Italy has multiple islands as faces and a hole where Vatican
City lies). A moving region is a complex region that moves and changes over
time (Figure la). A well known operation over moving regions is to extract a
region at a specific time ¢ [7]. Figure 1b depicts the region in Figure la at time
t; note that the region contains some lines that do not form a face, but are one-
dimensional components. Such components violate the definition of regions; yet,
in the case of moving regions they are typically required to indicate that a face
of a region is about to come into existence, or has just ceased to exist. Because
the configuration at time ¢ contains such anomalies, we cannot simply extract
the spatial configuration at that time and apply other spatial operations to it
since spatial operations must have valid input to preserve type closure properties.
Therefore, a mechanism is required to differentiate the invalid and valid portions
of the configuration. In the case of the region in Figure 1b, we must be able to
generate the region in Figure 1c. Additional occurrences of this type of problem
arise with respect to data quality issues in fields such as geo-sensor networks and
remote sensing, in which large amounts of data are generated.

More formally, we can characterize the problem highlighted above as follows:
given a set of straight line segments S in two dimensional space, does there exist



Fig. 1. A moving region (a), the scene at time ¢ (b), and the region at time ¢ (c).

some subset of segments R C S that forms a valid spatial region. We consider
a valid spatial region to fit the definition of complex regions as provided by [9].
We term this the region extraction and verification problem (REVP).

This paper provides a solution to the REVP that: i) identifies the parts of
a scene that form a valid region, ii) identifies the parts of the scene that are
invalid according to the definition of complex regions, iii) is efficient in terms of
both computation and space requirements, and iv) is suited for implementation
in spatial and spatio-temporal databases. Our algorithm takes an arbitrary set
of segments and returns two sets of segments: those that form a valid region,
and the remaining segments. Furthermore, the segments that form a valid region
will be properly annotated for input to existing algorithms for spatial operations
such as intersection, topological predicate operations, etc.

2 Related Work

Although much work has been completed in the literature with respect to geo-
metric algorithms for spatial data applications, the authors are unaware of any
work which directly addresses the problem stated in Section 1. Specifically, no
algorithm exists that is applicable to complex regions. Algorithms, such as those
presented in [1,2,5,6], detect polygon structures in arrangements of line seg-
ments, or create planar maps from arrangements of line segments; however, the
REVP is fundamentally different than the problems solved in these papers be-
cause (i) there are no restrictions on the polygons detected (i.e., they do not have
to be convex, they can contain holes, etc.) (ii) holes and outer cycles of regions
must be handled correctly, and (iii) all polygons formed must collectively fit the
constraints provided by the definition of complex regions.

We employ the well known plane-sweep algorithmic paradigm in our algo-
rithm. This type of algorithm is original to Shamos and Hoey [10], and a popular
version is introduced by Bentley and Ottmann [4], and much additional work
has been proposed on the technique [8, 3].

3 Data Model

A Halfsegment Representation of Regions: In this section, we provide an in-
formal type definition. For a formal definition, see [9]. Spatial operation imple-
mentations between regions based on the plane sweep algorithm require input
to be a region encoded not as a sequence of line segments, but as a sequence
of halfsegments. We define the type halfsegment = {(s,d,l,r)|s € segment,d €



Fig. 2. Invalid halfsegment configurations.

bool,l,r € Z} where a segment is a straight line segment between two endpoints
and [ and r are labels corresponding to the portion of the embedding space that
lies above or to the left of the line that the halfsegment lies on, and the portion
that lies below and to the right, respectively. Thus, a halfsegment is said to have
two sides, a left and right side corresponding to each label. For a halfsegment
h = (s,d,l,r), if d is true (false), the smaller (greater) endpoint of s is the domi-
nating point of h, and h is called a left (right) halfsegment. Hence, each segment
s is mapped to two halfsegments (s, true) and (s, false). Given one halfsegment
h, we denote the halfsegment with identical endpoints and an opposite boolean
flag as h’s brother. We require an order relation on halfsegments. Informally, a
complete ordering over halfsegments exists based on their dominating points. If
two halfsegments have the same dominating point, then the smaller halfsegment
is the one encountered first when rotating a vertical line extending above the
dominating point counter-clockwise around the dominating point. A simple poly-
gon is a connected sequence of segments that forms a single cycle. Two simple
polygons are edge-disjoint if their interiors are disjoint and they possibly share
single boundary points but not boundary segments. A face is a simple polygon
possibly containing a set of edge-disjoint holes, which are simple polygons, such
that these holes do not collectively separate the interior of the face. A complex
region is a set of edge-disjoint faces.

Classifying Invalid Cases: We make the assumption that halfsegments used as
input intersect at endpoints only. This can be enforced with geometric algorithms
without affecting the worst case time complexity of our algorithm (Section 4.3).
Based on our data model, we make the observation that all invalid configura-
tions fall into one of two categories: (i) adjacent cycles, when two cycles are not
edge-disjoint, and (ii) stick configurations, in which halfsegments do not form a
cycle. Figure 2 depicts an example of each case. In Figure 2a, either the right or
left cycle may be discarded and a valid region remains. In Figure 2b, Figure 2c,
and Figure 2d, the halfsegments forming the sticks must be discarded to form a
valid region. These figures respectively illustrate the various forms of the stick
configuration that must be handled correctly: (i) disconnected stick configura-
tions (when sticks do not connect to any cycle), (ii) internal stick configurations
(when sticks connect to the interior of a cycle), and (iii) external stick config-
urations (where sticks connect to the exterior of a cycle). Lemma 1 shows that
adjacent cycle and stick configurations are the only invalid configurations.

Lemma 1. The only invalid configurations that arise in the given data model
for complex regions are stick configurations and adjacent cycle configurations.
Proof Sketch.  Consider a region r of straight line segments. Clearly, the
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Fig. 3. An input to our algorithm containing adjacent cycle configurations (a), the
scene after identifying the leftmost cycle as valid (b), and the final valid region (c).

removal of any of the segments in r cannot cause segments to intersect at points
other than endpoints, but may cause stick or adjacent cycle configurations. Sec-
ond, consider the addition of new line segments to an already valid region. Be-
cause of our definition of regions, and the requirement that line segments only
intersect at endpoints, the addition of new segments can only result in the ad-
dition of new stick features or mew cycles. Therefore, stick and adjacent cycle
configurations are the only invalid configurations that must be handled. O

4 Algorithm

Our algorithm removes segments involved in adjacent cycle and stick configura-
tions in an input halfsegment sequence until no such configurations remain. The
result is a valid region with properly annotated halfsegments.

Our algorithm operates by removing halfsegments from consideration once
it is able to identify them as being part of a valid cycle or stick configuration.
Removing halfsegments is achieved by marking their labels to indicate that a
halfsegment is part of a valid cycle (in which case one label indicates the interior
of a region, and the other indicates the exterior), or that it is part of an invalid
configuration (in which case both labels are marked as being invalid). Thus, any
adjacent cycles will have some of their halfsegments removed; the result is that
adjacent cycles are converted into stick configurations (Figure 3). Therefore, the
algorithm is complete when all halfsegments are marked as valid or invalid. The
algorithm proceeds in the following steps: (i) find the first halfsegment that is
not yet removed from consideration, (ii) determine if the halfsegment lies on the
interior of a known face, (iii) discover all other halfsegments that form a cycle or
stick configuration containing the current halfsegment and label them, and (iv)
repeat until all halfsegments are properly labeled.

4.1 Finding and Labeling an Unprocessed Halfsegment

The algorithm begins by finding the least halfsegment h in halfsegment order
that is not yet removed from consideration. We say that such a halfsegment is
unprocessed. We must then determine if A lies on the interior of a known face of
a region, or if it lies in the exterior of a region (i.e., h is potentially part of an
outer cycle of a face of a region). Therefore, we frame our algorithm in terms of
a plane sweep algorithm. Recall that a plane sweep algorithm uses an imaginary
line that traverses the input halfsegment sequence and each time it encounters
a left halfsegment, that halfsegment is placed in the active list. The active list is



ordered according to the point at which each segment in the active list intersects
the sweep line. Each time a right halfsegment is encountered, its corresponding
left halfsegment is removed from the active list.

When a new halfsegment A is encountered, we can always determine whether
or not it is part of an outer cycle or hole cycle by looking at the labels of half-
segment b that will be immediately below h in the active list. This information
allows us to move on to the next step (the cycle walk in Section 4.2) and iden-
tify all halfsegments that form a cycle with h. b will always have been previously
processed due to the halfsegment ordering.

Once a cycle walk has been performed, the plane sweep portion of the algo-
rithm resumes and traverses the halfsegment sequence until a partially processed
(Section 4.2) or unprocessed halfsegment is found. If a halfsegment is found that
is unprocessed, then the cycle walk portion of the algorithm is executed. If the
halfsegment is partially processed, then it is marked as being part of an in-
valid configuration, and the plane sweep portion of the algorithm continues. The
reasoning is given in the following lemma:

Lemma 2. A partially processed halfsegment encountered in the plane sweep
portion of the algorithm is always part of a stick configuration.

Proof Sketch. According to Lemma 4, the cycle walk portion of the algorithm
will convert any adjacent cycle configurations to stick configurations. Further-
more, the only time a halfsegment is partially processed is during the cycle walk
portion of the algorithm. Therefore, since a partially processed halfsegment has
already been wvisited by a cycle walk, it must be part of a stick configuration since
the cycle walk will correctly identify halfsegments that belong to a valid cycle. O

4.2 Walking the Cycle

Once an unprocessed halfsegment A is found and it is known whether A lies in
the interior of a face of a region or not, the next step is to identify all halfseg-
ments that form the cycle or stick configuration that h is part of. In order to
identify the segments that form a cycle containing i, we make the observation
that according to the definition of complex regions, each cycle that forms part
of the boundary of a region separates the embedding space into three, disjoint
point sets: the interior, exterior, and boundary. Therefore, given a halfsegment h
and the knowledge of upon which side of the halfsegment the interior of the cycle
lies, the adjacent halfsegment in the cycle can be found by rotating h around
its submissive point through the interior of the cycle until a new halfsegment
hnezt is found. Because h was rotated through the interior of a cycle, the next
halfsegment encountered must also bound the interior of that cycle and we can
trivially determine on which side of the halfsegment the interior lies for labeling.
This is repeated until a stopping condition (see below) occurs. Due to halfseg-
ment ordering, a clockwise rotation around submissive points is always used.
We denote the procedure of visiting halfsegments in a cycle in cyclic order and
assigning their appropriate labels as a cycle walk.

Let the notation 1;, 1,- to refer to the left and right halfsegment of segment 1,
etc. A cycle walk beginning at halfsegment h proceeds until one of three stopping



Fig. 4. Instances of stick configurations.

conditions occurs: (i) h is encountered a second time, (ii) the brother of h, hy
is encountered, or (iii) a halfsegment j is encountered that is already correctly
labeled. In the first case, encountering h a second time during a cycle walk
indicates that the complete and valid cycle has been walked (e.g., walking of the
leftmost cycle in Figure 4a by visiting 1; then 5; then 2,.). The second case deals
with a leading stick configuration. In this case, the exterior of a cycle (or cycles)
is walked (e.g., a cycle walk on Figure 4b will visit 1;, then 4; then continue
until it reaches 1,.). In this case, any segment that has had both corresponding
halfsegments visited is a stick. Any other halfsegments cannot be marked as valid
or invalid, so they are labeled as being partially processed (we know upon which
side of the halfsegment the exterior lies, but cannot ensure that the segments
are part of a valid cycle). The final case indicates that a stick configuration was
formed due to the previous identification of a valid cycle. We denote this case a
trailing stick configuration, and it arises in Figure 4a. Internal stick configurations
are identified when the first stopping condition occurs, and both corresponding
halfsegments forming internal stick configurations are visited.

Lemma 3. The cycle walk portion of the algorithm correctly identifies segments
belonging to stick configurations and segments that form wvalid cycles.

Proof Sketch. A halfsegment rotation through a cycle’s interior guarantees
that halfsegments that bound the cycle will be visited. It is clear that segments
forming internal stick configurations will have both corresponding halfsegments
visited, and will therefore be marked as invalid. In order to classify the boundary
halfsegments correctly, we must be able to identify if a cycle walk or an external
walk occurred. In a cycle walk, the halfsegment h that began the cycle walk will
be encountered before its brother hy. Otherwise, an external walk must have been
performed and h is the first halfsegment in a leading stick configuration. This
follows directly from the halfsegment ordering and a clockwise rotation around
endpoints. Therefore, we can discern the cycle walk scenarios. O

Lemma 4. The cycle walk portion of the algorithm must only be able to identify
stick configurations and valid cycles, not adjacent cycle configurations.

Proof Sketch.  Once a halfsegment has been identified as being part of a
valid cycle or is identified as being invalid, then it is removed from consideration
from the algorithm. In the case of adjacent cycles, a cycle walk will identify one
cycle, and remove its halfsegments from consideration. This effectively converts
adjacent cycles to a valid cycle and a stick configuration (Figure 3). Therefore,
the cycle walk algorithm must only be able to identify valid cycles and stick
configurations. O



4.3 Discussion

A plane sweep algorithm for finding line segment intersections can be imple-
mented in O(nlgn + k) time complexity and O(n + k) space complexity for
n segments and k segment intersections. We begin with the assumption that
line segments do not intersect; therefore, we have O(nlgn) and O(n) time and
space complexity, respectively. Each halfsegment is visited at most twice in the
algorithm, once to partially process it, and once to fully process it. Whenever a
halfsegment is marked as fully processed, we mark its brother identically. Thus,
a logarithmic search technique is used to locate the brother. The cycle walk
portion of the algorithm requires us to find a halfsegment in cyclic order from a
given halfsegment. This can be done in logarithmic time using a binary search
technique that takes advantage of halfsegment ordering. Therefore, the complete
algorithm is bounded by O(nlgn) in time complexity and O(n) space complex-
ity for an input configuration of n segments. Running a line segment intersection
algorithm to ensure that segments intersect only at endpoints takes O(nlgn+k)
time complexity, and in practice does not affect running time in typical cases.
Algorithm 1 shows the final algorithm as it has been described. The final
step is to ensure correctness. Our definition of correctness is that our algorithm
can effectively handle all invalid spatial configurations, and that it returns a
valid region. Lemmas 1-4 describe the possible invalid cases that must be han-
dled by the algorithm, and show that the algorithm handles the cases correctly.
Therefore, our algorithm will always return a valid region given a valid input:

Theorem 1. Given valid input, the proposed algorithm will identify, correctly
label, and return halfsegments forming a valid region.

Proof Sketch. Lemmas 1-4 indicate the cases that the algorithm must handle
and shows how the algorithm correctly handles each case. O

5 Conclusion

In this paper, we have identified the REVP as an important problem in the
growing fields of spatio-temporal and moving objects databases, and provided
examples of the problem in traditional spatial applications such as remote sens-
ing and geo-sensor networks. We have developed, implemented, and presented
an efficient O(nlgn) time complexity algorithm that can be used to solve this
problem that can be incorporated into spatial systems. Furthermore, our algo-
rithm uses an input format that is common in spatial algorithms and spatial
data representations so that it can be easily incorporated into existing systems.

References

1. N. M. Amato, M. T. Goodrich, and E. Ramos. Computing Faces in Segment and
Simplex Arrangements. ACM Symp. on Theory of Computing, pp. 672682, 1995.



Algorithm 1: A pseudo-code implementation of the proposed algorithm.

Input: Sequence of non-labeled halfsegments H
Output: Sequence of labeled halfsegments J

1 while not end of plane sweep do

2 Advance sweep line to h, the left-most unprocessed or partially processed halfsegment.;

3 Find halfsegment j below h in the sweep line active list;

4 var isOutercycle < True;

5 var interior[sAboveHal fsegment «— True;

6 var currCycle < 5; var unvisitedLabel < 0;

7 var exteriorLabel «— 3; var interiorLabel «— 4;

8 var invalidAndInExterior «<— 1; var invalidAndInInterior «— 2;

9 var invalidLabel «— invalidAndInExterior;

// check to see if h lies in the interior of the face bordered by j

10 if j.labelAbove # exteriorLabel OR j.label Above = invalidAndInInterior then

11 isOutercycle «— False;

12 invalidLabel «— invalidAndInInterior;
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// Fully process h, setting the labels of both sides to the invalid label

14 h.aboveLabel «— h.below Label «— invalidLabel;

15 Find hp, the brother of h;
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17 else

// Walk the cycle

18 if isOutercycle then

19 | h.label Above «— currCycle; h.labelBelow «— exteriorLabel;

20 else h.label Above «— exteriorLabel; h.labelBelow «— currCycle;

21 interiorIsAboveHal fsegment «— 1sOuterCycle;

22 prev < h;

23 k «— findNextInCycle(h);

24 visitedStack «— emptystackofhal fsegments;
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Algorithm 1: (continued).

25

26
27

while True do

// find if the interior of the face is above this halfsegment
if —samelnterior Above(prev, k) then
|_ interiorIsAboveHal fsegment «— —interiorlsAboveHal f segment;

// Check to see if the cycle walk is complete
if k = h then
// Convert the partially processed labels to fully processed labels
foreach halfsegmenti in visitedStack do
if i.label Above > interior Label then
i.label Above «— interior Label;

else if i.label Above = unwvisitedLabel then

|_ i.label Above <+ exterior Label;

if i.labelBelow > interiorLabel then
| i.label Below «— interior Label;

else if i.labelBelow = unvisited Label then
|_ i.label Below «— exterior Label;

Find 4, the brother of i
ip.aboveLabel «— i.aboveLabel;
ip.below Label < i.below Label;

goto ENDOFCYCLEWALK;

// Now check for the invalid cases
// First invalid case: we encounter the same segment twice in a cycle walk
Find ky, the brother of k;
if kp.label Above = currCycle OR ky.labelBelow = currCycle AND k # hp then
// Mark the halfsegment as invalid
k.label Above «— k.label Below «+— invalidLabel;
kp.label Above «— ky.label Below «— invalidLabel;
// Second invalid case: we started on a stick and performed an exterior walk
// Third invalid case: we encounter a fully processed halfsegment, which means we
performed an exterior cycle walk on some halfsegments
else if (k = hy) OR (k.labelAbove # currCycle AND k.label Above # unvisitedLabel
AND k.labelBelow # currCycle AND k.labelBelow # unvisitedLabel) then
// Flip the labels since we have walked the exterior
foreach halfsegment ¢ in visitedStack do
tmp «— i.label Above;
i.label Above <+ i.label Below;
i.label Below «— tmp;
if i.labelAbove = i.labelBelow then
// Visited the halfsegment twice in a cycle walk. It is a stick
i.label Above «— i.label Below «+ invalidLabel;

else
// Assign the label that is not on the exterior side to unknown label
if i.labelAbove > interiorLabel then i.labelAbove «— unwvisitedLabel;
if i.labelBelow > interiorLabel then i.labelBelow «— unwvisitedLabel;

// Mark h and hpas being invalid

h.label Above < h.labelBelow «— invalidLabel;
hy.label Above «— hy.label Below «— invalidLabel;
goto ENDOFCYCLEWALK;

else
// 1f we get here, then there is nothing wrong. process this halfsegment.
if interiorIsAboveHal fsegment then
k.label Above «— currCycle;
‘ if k.labelBelow = unwvisitedLabel then k.labelBelow «— exterior Label;
else
k.labelBelow «— currCycle;
L if k.label Above = unwvisitedLabel then k.labelAbove «— exteriorLabel;

// Set up for the next iteration of the cycle walk loop
prev «— k;
k «— findNextInCycle(prev);

ENDOFCYCLEWALK;




