
Expressing OLAP Preferences

Matteo Golfarelli and Stefano Rizzi

DEIS, University of Bologna, Italy
matteo.golfarelli@unibo.it, stefano.rizzi@unibo.it

Abstract. Multidimensional databases play a relevant role in statisti-
cal and scientific applications, as well as in business intelligence systems.
Their users express complex OLAP queries, often returning huge volumes
of facts, sometimes providing little or no information. Thus, expressing
preferences could be highly valuable in this domain. The OLAP domain is
representative of an unexplored class of preference queries, characterized
by three peculiarities: preferences can be expressed on both numerical
and categorical domains; they can also be expressed on the aggregation
level of facts; the space on which preferences are expressed includes both
elemental and aggregated facts. In this paper we propose a preference
algebra for OLAP, that takes into account the three peculiarities above.

Keywords: OLAP, database preferences, multidimensional databases.

1 Introduction and Motivation

Personalizing e-services by allowing users to express preferences is becoming
more and more common. When querying, expressing preferences is a natural
way to avoid empty results on the one hand, information flooding on the other.

Though a lot of research has been carried out during the last few years on
database preferences (e.g., [1,2]), the problem of developing a theory of prefer-
ences for multidimensional databases has been mostly neglected so far. We argue
that expressing preferences could be valuable in this domain because:

– Preferences enable users to focus on the most interesting data. This is par-
ticularly beneficial in the OLAP context, since multidimensional databases
typically store a huge amount of data. Besides, OLAP queries have a com-
plex structure. An OLAP query may easily return huge volumes of data, or
it may return little or no information as well. The data ranking entailed by
preferences allows users to cope with both these problems.

– During an OLAP session, the user may not exactly know what she is looking
for. The reasons behind a specific phenomenon or trend may be hidden, and
finding those reasons by manually applying different combinations of OLAP
operators may be very frustrating. Preferences enable users to specify the
pattern she is searching for. Since preferences express soft constraints, the
most similar data will be returned when no data exactly match that pattern.
From this point of view, preference queries can be regarded as a basic OLAM
(OnLine Analytical Mining) technique [3].

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 83–91, 2009.
� Springer-Verlag Berlin Heidelberg 2009

84 M. Golfarelli and S. Rizzi

– Scientific data are often distributed across separate databases. In the busi-
ness domain, federated data warehouse architectures are seen as an effective
shortcut to integration. In these cases, schema heterogeneity may prevent
from expressing distributed queries. Conversely, a schema preference can
produce meaningful results even when a common schema is not defined.

It is well-known that aggregation plays an essential role in OLAP queries, since
it enables decision-makers to get valuable, summary information out of the huge
quantity of detailed data available in multidimensional databases. OLAP queries
do not only formulate selections and projections on attributes and measures,
they also specify on what hierarchy attributes data are to be aggregated (group-
by set). The aggregation level has a strong impact on the size of the result
returned to the user, and its inappropriate setting may end in either obtaining
very coarse, useless information or being flooded by tons of detailed data, which
is particularly critical when working with devices with small bandwidth and
limited visualization capabilities. For this reason we argue that, in the OLAP
domain, users may wish to express their preferences on group-by sets too, for
instance by stating that monthly data are preferred to yearly and daily data.

Fig. 1. Sample census facts and preference relationships between them

Example 1. IPUMS is a public database storing census microdata for social and
economic research [4]. An analyst may wish to understand the reasons behind a
decrease in the average income of US citizens. She suspects that this is a state-
scale phenomenon mainly due to a decrease in the income of professionals. So
she expresses a query with a preference on data of professionals, grouped by
state, with low income (i.e. lower than � 1000). To evaluate this preference, it is
necessary to compare data characterized by different group-by sets and different
values for attributes and measures. If the analyst is right, this query will return
only the facts, aggregated by states, where professionals have an average income
lower than � 1000. In Figure 1, instead, we assume that the analyst’s hypothesis
is false and three relevant situations are pointed out. Fact f1 shows that the
lowest monthly income of professionals at the state-scale is in California, and it
not that low. Fact f2 shows significantly low income for professionals in the city
of Boston. Fact f3 shows that, in Colorado, waiters have very low income. Fact
f4 is worse than the previous three facts because it yields higher income, is not

Expressing OLAP Preferences 85

aggregated by state, and is not related to professionals. Finally, f5 is worse than
f4 because it yields an even higher income.

From Example 1, it is apparent that the OLAP domain is representative of
an unexplored class of preference queries, characterized by three peculiarities:

– Preferences can be expressed on both attributes and measures, that re-
spectively have categorical and numerical domains. This makes the existing
approaches, that are mainly geared to handling either only categorical or
numerical preferences, ineffective.

– Preferences can also be formulated on the aggregation level of data, which
comes down to expressing preferences on schema rather than on instances.
To the best of our knowledge, no approach includes this feature.

– The space on which preferences are declared includes both elemental and
aggregated facts. In relational OLAP implementations, materializing all facts
on all possible group-by sets is highly undesirable.

In this paper we present an approach for dealing with OLAP preferences.
Specifically, we propose an algebra for expressing complex OLAP preferences
including a set of base preference constructors on attributes, measures and hi-
erarchies, composed by the Pareto operator. The most original of the domain-
dependent aspects of our algebra is the possibility of declaring preferences on
group-by sets, which is done by recognizing that preferences on the space of
hierarchy attributes induce preferences on the space of facts.

2 Background Definitions and Working Example

In this section we introduce a basic formal setting to manipulate multidimen-
sional data. To keep the formalism simpler, and without actually restricting
the validity of our approach, we will consider hierarchies without branches, i.e.,
consisting of chains of attributes.

Definition 1 (Multidimensional Schema). A multidimensional schema (or,
briefly, a schema) is a triple M = 〈A, H, M〉 where:

– A = {a1, . . . ap} is a finite set of attributes, each defined over a categorical
domain Dom(ak);

– H = {h1, . . . , hn} is a finite set of hierarchies, each characterized by (1) a
subset Attr(hi) ⊆ A of attributes (such that the Attr(hi)’s for i = 1, . . . , n
define a partition of A); (2) a roll-up total order �hi over Attr(hi); and (3)
a family of roll-up functions including a function RollUpak

aj
: Dom(ak) →

Dom(aj) for each pair of attributes ak and aj such that ak �hi aj;
– a finite set of measures M = {m1, . . . , ml}, each defined over a numerical

domain Dom(mi).

For each hierarchy hi, the top attribute of the order is denoted by DIMi, and
determines the finest aggregation level of the hierarchy. Conversely, the bottom
attribute is denoted by ALLi and determines the coarsest aggregation level.

86 M. Golfarelli and S. Rizzi

Definition 2 (Group-by Set). Given schema M = 〈A, H, M〉, let Dom(H) =
Attr(h1) × . . . × Attr(hn); each G ∈ Dom(H) is called a group-by set of M.
Let G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1) × . . . × Dom(akn); each
g ∈ Dom(G) is called a coordinate of G. We denote with G.hi = aki the attribute
of hi included in G.

Let �H denote the product order of the roll-up orders over the hierarchies in H .
Then, (Dom(H),�H) is a lattice, that we will call group-by lattice, whose top and
bottom elements are G� = 〈DIM1, . . . , DIMn〉 and G⊥ = 〈ALL1, . . . , ALLn〉,
respectively.

Example 2. Our working schema is CENSUS, that includes hierarchies RES (for
“Residence”), OCC (for “Occupation”), and TIME, and measure AvgIncome. The
roll-up orders are as follows:

City �RES State �RES Country �RES AllCountries

Job �OCC MinorGroup �OCC MajorGroup �OCC AllGroups

Month �TIME Quarter �TIME Year �TIME AllYears

For instance, it is RollUpCity
State(’Miami’) = ’Florida’. Some examples of group-

by sets are G� = 〈City, Job, Month〉, G1 = 〈Country, Job, Month〉, G2 = 〈State,
AllGroups, Quarter〉, and G⊥ = 〈AllCountries, AllGroups, AllYears〉. It is G� �H

G1 �H G⊥, G� �H G2 �H G⊥, while G1 and G2 are incomparable according
to �H . A coordinate of G1 is 〈’USA’, ’Dentist’, ’Oct-08’〉.
A schema is populated with facts. A fact is characterized by a group-by set G
that defines its aggregation level, by a coordinate of G, and by a value for each
measure. While the facts at the top group-by set of the lattice (primary facts) are
those storing elemental data, those at the other group-by sets store summarized
information.

Definition 3 (Fact). Given schema M = 〈A, H, M〉 and a group-by set G ∈
Dom(H), a fact at G is a triple f = 〈G, g, v〉, where g ∈ Dom(G) and v ∈
Dom(M) = Dom(m1) × . . . × Dom(ml). The space of all facts of M is FM =⋃

G∈Dom(H)({G} × Dom(G) × Dom(M)).

Example 3. An example of fact of CENSUS is f = 〈G1, 〈’USA’, ’Dentist’,
’Oct-08’〉, 4000〉.
Finally, an instance of schema M is a datacube and is defined as a set of facts
C ⊂ FM. Intuitively, C includes a set of primary facts at the top group-by set
of Dom(H), united with all the other facts determined by aggregating primary
facts at all the other group-by sets in Dom(H).

3 Preferences on Facts

Before we start to deal with preferences, we briefly recall that a strict partial
order (s.p.o.) on a given set S is an irreflexive and transitive (thus asymmetric)

Expressing OLAP Preferences 87

binary relation on the elements of S. A negatively transitive s.p.o. is also called
a weak order (w.o.). A w.o. on S partitions S into n (disjoint) levels such that
the levels are totally ordered and each level determines an SV-relation on the
w.o. itself.

In relational databases, a preference is commonly defined as a s.p.o. over the
set of possible tuples. Here, we define a preference as a s.p.o. on the space of all
facts at all group-by sets, which implies that a preference may involve two facts
defined at different group-by sets.

Definition 4 (Preference). Given schema M, a preference P on M is a cou-
ple (<P ,∼=P) where <P⊆ FM × FM is a s.p.o. and ∼=P⊆ FM × FM is an
SV-relation on <P .

The semantics of f1 <P f2 is that f2 is preferred to f1; the semantics of f1
∼=P f2

is that f2 is equivalent (or substitutable) to f1 [5].
In our approach, complex preferences on the space of facts are inductively

engineered by applying a set of base preference constructors and an operator
for preference composition. In particular, a preference is defined by a preference
expression q ruled by the following grammar:

< expr >::= < baseConstr > | < expr > ⊗ < baseConstr >

< baseConstr >::=POS|NEG|BETWEEN|LOWEST|HIGHEST|
CONTAIN|NEAR|COARSEST|FINEST

where base preference constructors operate either on attributes, measures, or
hierarchies. Adopting the SV-semantics allows for closing the set of composition
operators on the set of preferences, thus obtaining an algebra [5].

In the next subsections we will introduce the set of base preference construc-
tors and the composition operator we provide. For simplicity, in this work base
preferences are defined over single attributes, measures and hierarchies; the ex-
tension to multiple attributes, measures and hierarchies is straightforward and
smoothly supported by our approach. Besides, for space reasons, the formaliza-
tion of some base constructors will be omitted.

3.1 Base Preferences on Attributes

While in the relational case each tuple is characterized by the same attributes,
the attributes that characterize a fact depend on its group-by set. For instance,
a fact reporting the average income for the California state does not explicitly
provide values for City and Country. On the other hand, hierarchies allow for
relating values of attributes belonging to the same hierarchy by means of roll-
up functions. In order to avoid introducing an undesired relationship between
preferences on attributes and preferences on hierarchies, in this work we use roll-
up functions to propagate preferences expressed on attributes along the whole
hierarchy, as explained in the following.

Given fact f and hierarchy h, let ā be the attribute of h included in the
group-by set of f . Then, let c̄ be the (categorical) value assumed by ā in the

88 M. Golfarelli and S. Rizzi

coordinate of f . Given any attribute a ∈ Attr(h), we denote with f.a ∈ 2Dom(a)

the value(s) assumed in f by a, defined as follows:

f.a =

{
{Rollupā

a(c̄)}, if ā �h a

{c ∈ Dom(a)|Rollupa
ā(c) = c̄}, otherwise

For instance, if ā = State and c̄ = ’California’ for fact f , it is f.City =
{’LosAngeles’, ’S. Francisco’, . . .} and f.Country = {’USA’}.

Let c ∈ Dom(a); the base preference constructors we provide for declaring
preferences on a are:

– POS(a, c). Facts whose coordinate on h maps to c are preferred to the others:

f1 <P f2 iff c �∈ f1.a ∧ c ∈ f2.a

f1
∼=P f2 iff (c �∈ f1.a ∧ c �∈ f2.a) ∨ (c ∈ f1.a ∧ c ∈ f2.a)

– NEG(a, c). Facts whose coordinate on h does not map to c are preferred to
the others.

It is easy to verify that, for both POS and NEG constructors, <P is a w.o. and
∼=P is an SV-relation on <P ; thus, the result is a preference according to Def. 4.

Example 4. POS(Month,’Oct-08’) states that the monthly data of October 2008,
the daily data for all days of October 2008, and the yearly data for 2008 are
preferred to all the other facts.

3.2 Base Preferences on Measures

Let m ∈ M be a measure. Let v, vlow, vhigh ∈ Dom(m) (vlow ≤ vhigh); we define

Δ(v, [vlow , vhigh]) =

⎧
⎪⎨

⎪⎩

0 if v ∈ [vlow, vhigh]
vlow − v if v < vlow

v − vhigh if v > vhigh

Also, given fact f , we denote with f.m ∈ Dom(m) the (numerical) value assumed
in f by m. Let v ∈ Dom(m); the base preference constructors for declaring
preferences on measure m are, like in [2]:

– BETWEEN(m, vlow, vhigh). Facts whose value on m is between vlow and vhigh

are preferred; the other facts are ranked according to their distance from the
interval:

f1 <P f2 iff Δ(f1.m, [vlow, vhigh]) > Δ(f2.m, [vlow, vhigh])
f1

∼=P f2 iff Δ(f1.m, [vlow, vhigh]) = Δ(f2.m, [vlow, vhigh])

– LOWEST(m), HIGHEST(m). Facts whose value on m is as low (high) as
possible are preferred.

All three constructors return w.o. preferences.

Example 5. BETWEEN(AvgIncome, MININC, 1000) states that the facts (aggre-
gated at any group-by set) yielding average incomes lower than 1000 are preferred
over the others, that are ranked according to increasing incomes.

Expressing OLAP Preferences 89

3.3 Base Preferences on Hierarchies

As stated in the Introduction, one key feature of our approach is the possibility of
declaring preferences on the aggregation level of facts, i.e., on their group-by sets.
The basic idea is that of defining preferences on the space of hierarchy attributes,
to let them induce preferences on the space of facts through a function that maps
each fact into its group-by set. In particular, given fact f and hierarchy h, let
G(f) denote its group-by set and G(f).h denote the attribute of h in G(f).

Definition 5 (G-order and G-relation). Let <P ′ and ∼=P ′ be, respectively,
an order and an equivalence relation on the attributes of h, Attr(h). We call G-
order the order <P induced on FM by <P ′ as follows: for each f1, f2 ∈ FM, it
is f1 <P f2 iff G(f1).h <P ′ G(f2).h. We call G-relation the equivalence relation
∼=P induced on FM by ∼=P ′ as follows: for each f1, f2 ∈ FM, it is f1

∼=P f2 iff
G(f1).h ∼=P ′ G(f2).h.

Theorem 1 shows that the properties of the relationships on hierarchy attributes
are preserved in the relationships induced on facts through G().

Theorem 1. Let <P ′ and ∼=P ′ be, respectively, an order and an equivalence
relation on Attr(h), and let <P and ∼=P be their G-order and G-relation, respec-
tively. Then, (<P ,∼=P) is a preference iff (<P ′ ,∼=P ′) is a preference. Besides,
<P is a w.o. iff <P ′ is a w.o.

We now introduce the notion of distance between two attributes in a hierarchy
h, that is necessary for declaring NEAR preferences:

Definition 6 (Distance). Let a1, a2 ∈ Attr(h). The distance between a1 and
a2, Dist(a1, a2), is the difference between the levels of a1 and a2 within the roll-
up total order �h.

For instance, with reference to the CENSUS schema, it is Dist(Month, Year) = 2.
Given a, afine, acoarse ∈ Attr(h), afine �h acoarse, let

Δ(a, [afine, acoarse]) =

{
0, if afine �h a �h acoarse

min{Dist(a, afine), Dist(a, acoarse)}, otherwise

We are now ready to define the following base preference constructors on
hierarchies. Let h ∈ H and a, afine, acoarse ∈ Attr(h) (afine �h acoarse):

– CONTAIN(h, a). The facts whose group-by set includes a are preferred to the
others:

f1 <P f2 iff a �= G(f1).h ∧ a = G(f2).h
f1

∼=P f2 iff (a �= G(f1).h ∧ a �= G(f2).h) ∨ (a = G(f1).h ∧ a = G(f2).h)

– NEAR(h, afine, acoarse). The facts whose group-by set along h is between
afine and acoarse are preferred; the other facts are ranked according to the
distance of their group-by set along h from the interval:

f1 <P f2 iff Δ(G(f1).h, [afine, acoarse]) > Δ(G(f2).h, [afine, acoarse])
f1

∼=P f2 iff Δ(G(f1).h, [afine, acoarse]) = Δ(G(f2).h, [afine, acoarse])

90 M. Golfarelli and S. Rizzi

– COARSEST(h). Aggregated facts along h are preferred to detailed ones:

f1 <P f2 iff G(f1).h �h G(f2).h
f1

∼=P f2 iff G(f1).h = G(f2).h

– FINEST(h). Detailed facts along h are preferred to aggregated ones.

All four constructors return w.o. preferences over Attr(h) and, for Theorem
1, w.o. preferences over FM. FINEST returns the roll-up order on h, �h.

Example 6. CONTAIN(RES,State) selects a set of preferred group-by sets (those
including State combined with any attribute of OCC and TIME). In other terms,
it states that the census data aggregated by residence state are preferred to the
others, regardless of what their aggregation is on the occupation and time hierar-
chies. NEAR(TIME,Quarter,Year) states that data aggregated by either quarter or
year are preferred to the others. Data aggregated by month and data completely
aggregated along the time hierarchy are substitutable. FINEST(TIME) ranks the
group-by sets (and their facts) according to the roll-up lattice of TIME.

3.4 Preference Composition

The most common operator for preference composition is the Pareto operator:

– P1 ⊗ P2 (Pareto composition). A fact is better than another if it is better
according to one preference and better or substitutable according to the
other (the composed preferences are considered equally important):

f1 <P1⊗P2 f2 iff (f1 <P1 f2 ∧ (f1 <P2 f2 ∨ f1
∼=P2 f2))

∨(f1 <P2 f2 ∧ (f1 <P1 f2 ∨ f1
∼=P1 f2))

f1
∼=P1⊗P2 f2 iff f1

∼=P1 f2 ∧ f1
∼=P2 f2

As reported in [5], Pareto composition with SV-semantics preserves s.p.o.’s.
Thus, the result of applying this composition operator starting from the base
preference constructors defined in this section is still a preference according to
Def. 4. Note that Pareto composition is commutative and associative.

Example 7. The preference query introduced in Example 1 can be for-
mulated as BETWEEN(AvgIncome,MININC,1000) ⊗ CONTAIN(RES,State) ⊗
POS(MajorGroup,’Professional’).

4 Conclusions and Related Works

In this paper we have argued that preferences are a valuable technique for many
OLAP applications. On the other hand, ad-hoc base preference constructors are
needed to handle the required expressiveness. Thus, we have defined an algebra

Expressing OLAP Preferences 91

that allows preferences to be formulated, besides attributes and measures, also
on hierarchies, i.e., on the aggregation level of facts.

The literature on preference queries is huge, but only few works may be related
to queries involving preferences on schema and aggregated data. An attempt to
situate preferences in the context of multidimensional databases is [6], whose
focus is to enable efficient computation of Boolean predicates and preference
expressions on numerical domains. Preferences on categorical domains are not
supported, and there is no mention to the possibility of expressing preferences
on aggregation levels. Finally, in [7] preferences are expressed on a hierarchy of
concepts, but information is always retrieved at the finest level of detail and
preferences cannot be expressed on schema.

To close this section, we briefly discuss the effectiveness of our approach. We
start by observing that OLAP preferences play a major role in reducing the ef-
fort of decision-makers to find the most interesting information. This effort can
be quantitatively estimated by counting the number of OLAP queries necessary
to “manually” retrieve the facts that best match the user preferences. Running
an OLAP session entails formulating a sequence of queries, each specifying a
group-by set, a list of required measures and an optional set of predicates on
attributes and measures. To minimize her effort, a decision-maker should run
an OLAP session by first formulating queries that may return best-matching
facts. For instance, consider the preference in Example 7. To manually obtain
the same results, the decision-maker should first formulate all possible queries
including State (i.e., 16 queries) in the group-by set and select the facts related
to professionals and yielding an average income lower than � 1000. However, if no
facts exactly matching the preference are found, more queries will be required;
in the worst case, 256 queries must be formulated, which means retrieving the
whole datacube. In presence of complex preferences on measures (such as HIGH-
EST(AvgIncome) ⊗ LOWEST(AvgMortgage)), the decision-maker would also have
to analyze the results to check for numerical domination since this cannot be
expressed by an OLAP query.

References

1. Chomicki, J.: Preference formulas in relational queries. ACM Trans. on Database
Systems 28(4), 427–466 (2003)

2. Kießling, W.: Foundations of preferences in database systems. In: Proc. VLDB,
Hong Kong, China, pp. 311–322 (2002)

3. Han, J.: Towards on-line analytical mining in large databases. ACM SIGMOD
Record 27, 97–107 (1998)

4. Minnesota Population Center: Integrated public use microdata series (2008),
http://www.ipums.org

5. Kiessling, W.: Preference queries with SV-semantics. In: Proc. COMAD, Goa, India,
pp. 15–26 (2005)

6. Xin, D., Han, J.: P-cube: Answering preference queries in multi-dimensional space.
In: Proc. ICDE, Cancún, México, pp. 1092–1100 (2008)

7. Koutrika, G., Ioannidis, Y.: Answering queries based on preference hierarchies. In:
Proc. VLDB, Auckland, New Zealand (2008)

http://www.ipums.org

	Expressing OLAP Preferences
	Introduction and Motivation
	Background Definitions and Working Example
	Preferences on Facts
	Base Preferences on Attributes
	Base Preferences on Measures
	Base Preferences on Hierarchies
	Preference Composition

	Conclusions and Related Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

