Skip to main content

Hermite’s Constant and Lattice Algorithms

  • Chapter
  • First Online:

Part of the book series: Information Security and Cryptography ((ISC))

Abstract

We introduce lattices and survey the main provable algorithms for solving the shortest vector problem (SVP), either exactly or approximately. In doing so, we emphasize a surprising connection between lattice algorithms and the historical problem of bounding a well-known constant introduced by Hermite in 1850, which is related to sphere packings. For instance, we present Lenstra–Lenstra–Lovász (LLL) as an (efficient) algorithmic version of Hermite’s inequality on Hermite’s constant. Similarly, we present blockwise generalizations of LLL as (more or less tight) algorithmic versions of Mordell’s inequality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1896

    Google Scholar 

  2. C. L. Siegel. Lectures on the Geometry of Numbers. Springer, 1989

    Google Scholar 

  3. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1987

    Google Scholar 

  4. J. Cassels. An Introduction to the Geometry of Numbers. Springer, 1997

    Google Scholar 

  5. L. Lagrange. Recherches d’arithmétique. Nouv. Mém. Acad., 1773

    Google Scholar 

  6. C. Gauss. Disquisitiones Arithmeticæ. Leipzig, 1801

    Google Scholar 

  7. C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. J. Reine Angew. Math., 40:279–290, 1850. Also available in the first volume of Hermite’s complete works, published by Gauthier-Villars

    Google Scholar 

  8. J. Conway and N. Sloane. Sphere Packings, Lattices and Groups. Springer, 1998. Third edition

    Google Scholar 

  9. S. Khot. Inapproximability results for computational problems on lattices. Springer, 2009. In this book

    Google Scholar 

  10. R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proc. of 15th STOC, pages 193–206. ACM, 1983

    Google Scholar 

  11. R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):415–440, 1987

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Hanrot and D. Stehlé. Improved analysis of kannan’s shortest lattice vector algorithm. In Advances in Cryptology – Proc. CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 170–186. Springer, 2007

    Google Scholar 

  13. G. Hanrot and D. Stehlé. Worst-case hermite-korkine-zolotarev reduced lattice bases. CoRR, abs/0801.3331, 2008

    Google Scholar 

  14. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proc. 33rd STOC, pages 601–610. ACM, 2001

    Google Scholar 

  15. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. J. of Mathematical Cryptology, 2(2):181–207, 2008

    Article  MATH  MathSciNet  Google Scholar 

  16. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Ann., 261:513–534, 1982

    Google Scholar 

  17. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Sci., 53:201–224, 1987

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant and blockwise lattice reduction. In Proc. of Crypto ’06, volume 4117 of LNCS, pages 112–130. Springer, 2006

    Google Scholar 

  19. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology – Proc. EUROCRYPT ’08, Lecture Notes in Computer Science. Springer, 2008

    Google Scholar 

  20. J. Martinet. Perfect lattices in Euclidean spaces, volume 327 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 2003

    Google Scholar 

  21. H. Cohn and A. Kumar. The densest lattice in twenty-four dimensions. Electron. Res. Announc. Amer. Math. Soc., 10:58–67 (electronic), 2004

    Google Scholar 

  22. J. Milnor and D. Husemoller. Symmetric Bilinear Forms. Springer, 1973

    Google Scholar 

  23. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer Academic Publishers, 2002

    Google Scholar 

  24. R. A. Rankin. On positive definite quadratic forms. J. London Math. Soc., 28:309–314, 1953

    Article  MATH  MathSciNet  Google Scholar 

  25. J. L. Thunder. Higher-dimensional analogs of Hermite’s constant. Michigan Math. J., 45(2):301–314, 1998

    Article  MATH  MathSciNet  Google Scholar 

  26. M. I. Boguslavsky. Radon transforms and packings. Discrete Appl. Math., 111(1–2):3–22, 2001

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Korkine and G. Zolotareff. Sur les formes quadratiques positives ternaires. Math. Ann., 5:581–583, 1872

    Article  MathSciNet  Google Scholar 

  28. A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Ann., 6:336–389, 1873

    Article  MathSciNet  Google Scholar 

  29. K. Mahler. A theorem on inhomogeneous diophantine inequalities. In Nederl. Akad. Wetensch., Proc., volume 41, pages 634–637, 1938

    Google Scholar 

  30. J. C. Lagarias, H. W. Lenstra, Jr., and C. P. Schnorr. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica, 10:333–348, 1990

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50. SIAM Publications, 1986. CBMS-NSF Regional Conference Series in Applied Mathematics

    Google Scholar 

  32. O. Regev. On the Complexity of Lattice Problems with Polynomial Approximation Factors. Springer, 2009. In this book

    Google Scholar 

  33. P. Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical report, Mathematische Instituut, University of Amsterdam, 1981. Report 81-04. Available at http://turing.wins.uva.nl/∖verb+∼+peter/

  34. M. Ajtai. The shortest vector problem in L 2 is NP-hard for randomized reductions. In Proc. of 30th STOC. ACM, 1998. Available at [35] as TR97-047

    Google Scholar 

  35. ECCC. http://www.eccc.uni-trier.de/eccc/. The Electronic Colloquium on Computational Complexity

  36. D. Aharonov and O. Regev. Lattice problems in NP ∩ coNP. J. ACM, 52(5):749–765 (electronic), 2005

    Google Scholar 

  37. O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. In Proc. of 30th STOC. ACM, 1998. Available at [35] as TR97-031

    Google Scholar 

  38. I. A. Semaev. A 3-dimensional lattice reduction algorithm. In Proc. of CALC ’01, volume 2146 of LNCS. Springer, 2001

    Google Scholar 

  39. P. Q. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited (extended abstract). In Proc. of the 6th Algorithmic Number Theory Symposium (ANTS VI), volume 3076 of LNCS, pages 338–357. Springer, 2004. Full version to appear in ACM Transactions on Algorithms, 2009

    Google Scholar 

  40. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming, 66:181–199, 1994

    Article  MathSciNet  Google Scholar 

  41. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Technical report, Mathematisch Instituut, Universiteit van Amsterdam, April 1981. Report 81-03

    Google Scholar 

  42. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1995. Second edition

    Google Scholar 

  43. C. Dwork. Lattices and Their Application to Cryptography. Stanford University, 1998. Lecture Notes, Spring Quarter. Several chapters are translations of Claus Schnorr’s 1994 lecture notes Gittertheorie und algorithmische Geometrie, Reduktion von Gitterbasen und Polynomidealen

    Google Scholar 

  44. M. Pohst. On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications. ACM SIGSAM Bull., 15(1):37–44, 1981

    Article  MATH  MathSciNet  Google Scholar 

  45. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp., 44(170):463–471, 1985

    Article  MATH  MathSciNet  Google Scholar 

  46. P. Q. Nguyen and D. Stehlé. LLL on the average. In Proc. of ANTS-VII, volume 4076 of LNCS. Springer, 2006

    Google Scholar 

  47. L. J. Mordell. Observation on the minimum of a positive quadratic form in eight variables. J. London Math. Soc., 19:3–6, 1944

    MATH  MathSciNet  Google Scholar 

  48. M. Ajtai. The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. In Proc. 35th Annual ACM Symposium on Theory of Computing, pages 396–406 (electronic), ACM, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, P.Q. (2009). Hermite’s Constant and Lattice Algorithms. In: Nguyen, P., Vallée, B. (eds) The LLL Algorithm. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02295-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02295-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02294-4

  • Online ISBN: 978-3-642-02295-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics