Skip to main content

Selected Applications of LLL in Number Theory

  • Chapter
  • First Online:
Book cover The LLL Algorithm

Part of the book series: Information Security and Cryptography ((ISC))

  • 3543 Accesses

Abstract

In this survey, I describe some applications of LLL in number theory.I show in particular how it can be used to solve many different linear problems and quadratic equations and to compute efficiently in number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Agrell, T. Eriksson, A. Vardy, K. Zeger: Closest point search in lattices, IEEE Trans. Inf. Theory 48, No. 8, 2201–2214 (2002).

    Google Scholar 

  2. G. Almkvist, A.J. Granville: Borwein and Bradley’s Apéry-like formulae for ζ(4n + 3), Exp. Math. 8, No. 2, 197–203 (1999).

    Google Scholar 

  3. L. Babai: On Lovász lattice reduction and the nearest lattice point problem, Combinatorica 6, 1–13 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Belabas: Topics in computational algebraic number theory, J. Théor. Nombres Bordeaux 16, No. 1, 19–63 (2004).

    Google Scholar 

  5. J. Borwein, D. Bradley: Empirically determined Apéry-like formulae for ζ(4n + 3), Exp. Math. 6, No. 3, 181–194 (1997).

    Google Scholar 

  6. J. Borwein, D. Bradley: Experimental determination of Apéry-like identities for ζ(2n + 2), Exp. Math. 15, No. 3, 281–289 (2006).

    Google Scholar 

  7. W. Bosma, P. Stevenhagen: On the computation of quadratic 2-class groups J. Théor. Nombres Bordeaux. 8, No. 2, 283–313 (1996); erratum ibid. 9, No. 1, 249 (1997).

    Google Scholar 

  8. J. Buchmann: A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Sémin. Théor. Nombres, Paris/Fr. 1988–89, Prog. Math. 91, 27–41 (1990).

    Google Scholar 

  9. J. Buchmann, S. Düllmann: A probabilistic class group and regulator algorithm and its implementation, Computational number theory, Proc. Colloq., Debrecen/Hung. 1989, 53–72 (1991).

    Google Scholar 

  10. J.W.S. Cassels: Note on quadratic forms over the rational field , Proc. Cambridge Philos. Soc. 55, 267–270 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Cochrane, P. Mitchell: Small solutions of the Legendre equation, J. Number Theor. 70, No. 1, 62–66 (1998).

    Google Scholar 

  12. H. Cohen: A Course in Computational Algebraic Number Theory, Graduate Texts in Math. 138, Second corrected printing, Springer, Berlin, (1995).

    Google Scholar 

  13. H. Cohen: Advanced Topics in Computational Algebraic Number Theory, Graduate Texts in Math. 193, Springer, Berlin, (2000).

    Google Scholar 

  14. H. Cohen, F. Diaz y Diaz: A polynomial reduction algorithm, Sémin. Théor. Nombres Bordeaux., Sér. II 3, No. 2, 351–360 (1991).

    Google Scholar 

  15. H. Cohen, F. Diaz y Diaz, M. Olivier: Subexponential algorithms for class group and unit computations, J. Symbolic Comput. 24, No. 3–4, 433–441 (1997), Computational algebra and number theory (London, 1993).

    Google Scholar 

  16. J.E. Cremona, D. Rusin: Efficient solution of rational conics, Math. Comp. 72, 1417–1441 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  17. U. Dieter: Calculating shortest vectors in a lattice Ber. Math.-Stat. Sekt. Forschungszent. Graz 244, 14 p. (1985).

    Google Scholar 

  18. T. Dokchitser: LLL & ABC, J. Number Theor. 107, No. 1, 161–167 (2004).

    Google Scholar 

  19. N.D. Elkies: Rational points near curves and small nonzero |x 3 − y 2 | via lattice reduction, W. Bosma (ed.), Algorithmic number theory. 4th international symposium. ANTS-IV, Leiden, the Netherlands, July 2–7, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1838, 33–63 (2000).

    Google Scholar 

  20. H.R.P. Ferguson, D. Bailey, S. Arno: Analysis of PSLQ, an integer relation finding algorithm, Math. Comput. 68, No. 225, 351–369 (1999).

    Google Scholar 

  21. H.R.P. Ferguson, R.W. Forcade: Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two, Bull. Am. Math. Soc., New Ser. 1, 912–914 (1979).

    Google Scholar 

  22. U. Fincke, M. Pohst: On reduction algorithms in non-linear integer mathematical programming, Operations research, Proc. 12th Annu. Meet., Mannheim 1983, 289–295 (1984).

    Google Scholar 

  23. U. Fincke, M. Pohst: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput. 44, 463–471 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  24. C.F. Gauss: Disquisitiones Arithmeticae, Springer, Berlin, (1986).

    MATH  Google Scholar 

  25. J. Hafner, K. McCurley: A rigorous subexponential algorithm for computation of class groups, J. Amer. Math. Soc. 2, No. 4, 837–850 (1989).

    Google Scholar 

  26. G. Hanrot: LLL: A tool for effective diophantine approximation, this volume.

    Google Scholar 

  27. J. Håstad, B. Just, J.C. Lagarias, C.P. Schnorr (B. Helfrich): Polynomial time algorithms for finding integer relations among real numbers, SIAM J. Comput. 18, No. 5, 859–881 (1989).

    Google Scholar 

  28. G. Havas, B.S. Majewski, K.R. Matthews: Extended GCD and Hermite normal form algorithms via lattice basis reduction, Exp. Math. 7, No. 2, 125–136 (1998); Addenda and errata: Extended GCD and Hermite normal form algorithms via lattice basis reduction, Exp. Math. 8, No. 2, 205 (1999).

    Google Scholar 

  29. G. Ivanyos, A. Szánto: Lattice basis reduction for indefinite forms and an application, Discrete Math. 153, No. 1–3, 177–188 (1996).

    Google Scholar 

  30. G. Jäger. Reduction of Smith normal form transformation matrices Computing 74, No. 4,377–388 (2005).

    Google Scholar 

  31. E. Kaltofen, N. Yui: Explicit construction of the Hilbert class fields of imaginary quadratic fields by integer lattice reduction, Number theory, Proc. Semin., New York/NY (USA)1989–1990, 149–202 (1991).

    Google Scholar 

  32. R. Kannan: Lattices, basis reduction and the shortest vector problem, Theory of algorithms, Colloq. Pécs/Hung. 1984, Colloq. Math. Soc. János Bolyai 44, 283–311 (1986).

    Google Scholar 

  33. R. Kannan, A.K. Lenstra, L. Lovász: Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers, Math. Comput. 50, No. 181, 235–250 (1988).

    Google Scholar 

  34. R. Kannan, L.A. McGeoch: Basis reduction and evidence for transcendence of certain numbers, Foundations of software technology and theoretical computer science, Proc. 6th Conf., New Delhi/India 1986, Lect. Notes Comput. Sci. 241, 263–269 (1986).

    Google Scholar 

  35. J. Klüners: The van Hoeij algorithm for factoring polynomials, this volume.

    Google Scholar 

  36. T. Kotnik, H. te Riele: The Mertens Conjecture Revisited, F. Hes, S. Pauli, M. Pohst (ed.), ANTS 2006 Berlin, Lect. Notes Comput. Sci. 4076, 156–167 (2006).

    Google Scholar 

  37. J.C. Lagarias: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms, J. Algorithm. 1, 142–186 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  38. J.C. Lagarias: Knapsack public key cryptosystems and Diophantine approximation, in Advances in cryptology (Santa Barbara, Calif., 1983), 3–23, Plenum, New York, (1984).

    Google Scholar 

  39. J.C. Lagarias: The computational complexity of simultaneous diophantine approximation problems, SIAM J. Comput. 14, 196–209 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  40. A.K. Lenstra: Polynomial factorization by root approximation, EUROSAM 84, Symbolic and algebraic computation, Proc. int. Symp., Cambridge/Engl. 1984, Lect. Notes Comput. Sci. 174, 272–276 (1984).

    Google Scholar 

  41. A.K. Lenstra, H.W. Lenstra, L. Lovász: Factoring polynomials with rational coefficients Math. Ann. 261, 515–534 (1982).

    MATH  Google Scholar 

  42. K. Matthews: www.numbertheory.org/lll.html

  43. A.M. Odlyzko, H. te Riele: Disproof of the Mertens conjecture J. Reine Angew. Math. 357, 138–160 (1985).

    Google Scholar 

  44. M. Pohst: A modification of the LLL reduction algorithm, J. Symb. Comput. 4, 123–127 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Schönhage: Factorization of univariate integer polynomials by diophantine approximation and an improved basis reduction algorithm, in Automata, languages and programming, 11th Colloq., Antwerp/Belg. 1984, Lect. Notes Comput. Sci. 172, 436–447 (1984).

    Google Scholar 

  46. J.-P. Serre: Cours d’arithmétique, P.U.F. 3rd edition (1988).

    Google Scholar 

  47. A. Shamir: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem, in 23rd annual symposium on foundations of computer science (Chicago, Ill., 1982), 145–152, IEEE, New York, (1982)

    Google Scholar 

  48. D. Shanks: Gauss’s ternary form reduction and the 2-Sylow subgroup, Math. Comput. 25,837–853 (1971); Corrigendum: Gauss’s ternary form reduction and the 2-Sylow subgroup, Math. Comput. 32, 1328–1329 (1978).

    Google Scholar 

  49. D. Simon: Solving quadratic equations using reduced unimodular quadratic forms, Math. Comput. 74, No. 251, 1531–1543 (2005).

    Google Scholar 

  50. D. Simon: Quadratic equations in dimensions 4, 5, and more, preprint (2006).

    Google Scholar 

  51. N.P. Smart: The algorithmic resolution of diophantine equations, London Mathematical Society Student Texts. 41. Cambridge: Cambridge University Press. (1998).

    Google Scholar 

  52. B.M.M. de Weger: Approcimation lattices of p-adic numbers, J. Number Theor., 24(1), 70–88 (1986).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simon, D. (2009). Selected Applications of LLL in Number Theory. In: Nguyen, P., Vallée, B. (eds) The LLL Algorithm. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02295-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02295-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02294-4

  • Online ISBN: 978-3-642-02295-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics