Skip to main content

The LLL Algorithm and Integer Programming

  • Chapter
  • First Online:
The LLL Algorithm

Part of the book series: Information Security and Cryptography ((ISC))

Abstract

The LLL algorithm has proven to be a powerful theoretical and practical tool in many areas of discrete mathematics. In this chapter, we review some structural and algorithmic results involving basis reduction and integer programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear Diophantine equations. Proceedings of the American Mathematical Society 55, 299–304 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp 85–103. Plenum Press, NY (1972)

    Google Scholar 

  3. Lenstra, Jr., H.W.: Integer programming with a fixed number of variables. Technical Report 81-03, University of Amsterdam, Amsterdam (1981). Available at http://staff/science/uva.nl/∼peter/mi8103/mi8103c.html

  4. Lenstra, Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)

    Google Scholar 

  5. Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mahematische Annalen 261, 515–534 (1982)

    Google Scholar 

  6. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  7. Grötschel, M. Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Google Scholar 

  8. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  10. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency (3 volumes). Algorithms and Combinatorics 24. Springer, Berlin (2003)

    Google Scholar 

  11. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics. Springer, Berlin (1997). Second Printing, Corrected, Reprint of the 1971 ed.

    Google Scholar 

  12. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics 54. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  13. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. The Kluwer International Series in Engineering and Computer Science 671. Kluwer Academic Publishers, Boston, Massachusetts (2002)

    Google Scholar 

  14. Lenstra, Jr., H.W.: Lattices. Chapter 6 in Algorithmic Number Theory, Mathematical Sciences Research Institute Publications, Vol 44, Cambridge University Press, Cambridge, UK, 127–181, 2008.

    Google Scholar 

  15. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM, Philadelphia, PA (1986)

    Google Scholar 

  16. Kannan, R.: Algorithmic geometry of numbers. Annual Review of Computer Science 2,231–267 (1987)

    Article  MathSciNet  Google Scholar 

  17. Aardal, K., Eisenbrand, F.: Integer programming, lattices and results in fixed dimension. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds) Handbook on Discrete Optimization, Chapter 4. North Holland, Amsterdam (2005)

    Google Scholar 

  18. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe, P. (eds) Recent Advances in Mathematical Programming, pp 269–302. McGraw-Hill (1963)

    Google Scholar 

  20. Gomory, R.E.: Early integer programming. In: Lenstra, J.K., Rinnooy Kan, A.H.G., Schrijver, A. (eds) History of Mathematical Programming: A Collection of Personal Reminiscences, pp 55–61. CWI and North-Holland, Amsterdam (1991)

    Google Scholar 

  21. Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities. In: Koopmans, T.C. (ed) Activity Analysis of Production and Allocation, pp 339–347. John Wiley & Sons, New York (1951)

    Google Scholar 

  22. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Operations Research 2, 393–410 (1954)

    Article  MathSciNet  Google Scholar 

  23. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: On a linear-programming, combinatorial approach to the traveling-salesman problem. Operations Research 7, 58-66 (1959)

    Article  MathSciNet  Google Scholar 

  24. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)

    MATH  MathSciNet  Google Scholar 

  25. Grötschel, M.: On the symmetric traveling salesman problem: Solution of a 120-city problem. Mathematical Programming Study 12, 61–77 (1980)

    MATH  Google Scholar 

  26. Grötschel, M., Padberg, M.W.: Partial linear characterizations of the asymmetric traveling salesman problem. Mathematical Programming 8, 378–381 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grötschel, M., Padberg, M.W.: On the symmetric traveling salesman problem I: Inequalities. Mathematical Programming 16, 265–280 (1978)

    Article  Google Scholar 

  28. Grötschel, M., Padberg, M.W.: On the symmetric traveling salesman problem I: Lifting theorems and facets. Mathematical Programming 16, 281–302 (1978)

    Article  Google Scholar 

  29. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146–164 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hammer, P.L., Johnson, E., Peled, U.N.: Facets of regular 0-1 polytopes. Mathematical Programming 8, 179–206 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wolsey, L.A.: Faces for a linear inequality in 0-1 variables. Mathematical Programming 8, 165–178 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  32. Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econometrica 28, 497–520 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  33. ILOG. Cplex. http://www.ilog.com/products/cplex

  34. Dash Optimization. Xpress-mp optimization software. http://www.dashoptimization.com/home/index.html

  35. Karp, R.M., Papadimitriou, C.H.: On linear characterizations of combinatorial optimization problems. In: 21st Annual Symposium on Foundations of Computer Science, Syracuse, N.Y., pp 1–9. IEEE, New York (1980)

    Google Scholar 

  36. Khinchine, A.: A quantitative formulation of Kronecker’s theory of approximation (in russian). Izvestiya Akademii Nauk SSR Seriya Matematika 12, 113–122 (1948)

    Google Scholar 

  37. Lovász, L., Scarf, H.E.: The generalized basis reduction algorithm. Mathematics of Operations Research 17(3), 751–764 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lagarias, J., Lenstra, Jr., H.W., Schnorr, C.: Korkin-zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)

    Google Scholar 

  39. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in I​Rn. II. Application of K-convexity. Discrete Computational Geometry 16(3), 305–311 (1996)

    Google Scholar 

  40. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research 12(3), 415–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kannan, R., Lovász, L.: Covering minima and lattice-point-free convex bodies. Annals of Mathematics 128, 577–602 (1988)

    Article  MathSciNet  Google Scholar 

  42. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. Proceedings of the 33rd Annual ACM symposium on Theory of Computing, pp 601–610. ACM Press, New York (2001)

    Google Scholar 

  43. Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9–15, 2000, Proceedings. Lecture Notes in Computer Science 1853, pp 248–259. Springer, Berlin (2000)

    Google Scholar 

  44. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Mathematics of Operations Research 19(4), 769–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  45. Dyer, M.E., Kannan, R.: On Barvinok’s algorithm for counting lattice points in fixed dimension. Mathematics of Operations Research 22(3), 545–549 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Frumkin, M.A.: Algorithms for the solution in integers of systems of linear equations. In: Fridman, A.A. (ed) Studies in discrete optimization (Russian), pp 97–127, Izdat. “Nauka”, Moscow (1976)

    Google Scholar 

  47. Frumkin, M.A.: An application of modular arithmetic to the construction of algorithms for the solution of systems of linear equations. Doklady Akademii Nauk SSSR 229(5), 1067–1070 (1976) [English translation: Soviet Mathematics Doklady 17, 1165–1168 (1976)]

    Google Scholar 

  48. Gathen, von zur, J., Sieveking, M.: Weitere zum Erfüllungsproblem polynomial äquivalente kombinatorische Aufgaben. In: Specker, E. Strassen, V. (eds) Komplexität von Entscheidungsproblemen: Ein Seminar, Lecture Notes in Computer Science 43, pp 49–71. Springer, Berlin (1976)

    Google Scholar 

  49. Votjakov, A.A., Frumkin, M.A.: An algorithm for finding the general integer solution of a system of linear equations. In: Studies in discrete optimization (Russian), pp 128–140. Izdat. “Nauka”, Moscow (1976)

    Google Scholar 

  50. Frumkin, M.A.: An algorithm for the reduction of a matrix of integers to triangular form with power complexity of the computations. Èkonomika i Matematicheskie Metody 12(1), 173–178 (1976)

    MATH  MathSciNet  Google Scholar 

  51. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM Journal on Computing 8(4), 499–507 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  52. Havas, G., Majewski, B.S., Matthews, K.R.: Extended GCD and Hermite normal form algorithms via lattice basis reduction. Experimental Mathematics 7(2), 125–136 (1998) (Addenda and errata: Experimental Mathematics 8, 179–206)

    Google Scholar 

  53. Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of linear Diophantine equations with lower and upper bounds on the variables. Mathematics of Operations Research 25(3), 427–442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Aardal, K.A., Lenstra, A.K.: Hard equality constrained integer knapsacks. Mathematics of Operations Research, 29(3), 724–738 (2004). Erratum: Mathematics of Operations Research 31(4), 846 (2006)

    Google Scholar 

  55. Aardal, K., Wolsey, L.A.: Lattice based extended formulations for integer linear equality systems. Mathematical Programming 121, 337–352 (2010).

    Article  MathSciNet  Google Scholar 

  56. Gao, L., Zhang, Y.: Computational experience with Lenstra’s algorithm. Technical Report TR02-12, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2002)

    Google Scholar 

  57. Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.: An implementation of the generalized basis reduction algorithm for integer programming. ORSA Journal on Computing 5(2),206–212 (1993)

    MATH  MathSciNet  Google Scholar 

  58. Aardal, K., Bixby, R.E., Hurkens, C.A.J., Lenstra, A.K., Smeltink, J.W.: Market split and basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS Journal on Computing 12(3), 192–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  59. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  60. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New results and new trends in computer science (Graz, 1991), Lecture Notes in Computer Science 555, pp 359–370. Springer, Berlin (1991)

    Google Scholar 

  61. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the Association for Computing Machinery 42, 488–499 (1995)

    MATH  MathSciNet  Google Scholar 

  62. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Battista, G.D., Zwick, U. (eds) Algorithms – ESA 2003. Lecture Notes in Computer Science 2832, 196–207. Springer, Berlin (2003)

    Google Scholar 

  63. Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in the plane. Mathematical Programming 102(2), 249 – 259 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  64. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen (Fast multiplication of large numbers). Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  65. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed) Advances in Cryptology — EUROCRYPT 2005. Lecture Notes in Computer Science 3494, pp 215–233. Springer, Berlin (2003)

    Google Scholar 

Download references

Acknowledgements

This work was partly carried out within the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438. The first author is financed in part by the Dutch BSIK/BRICKS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Aardal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aardal, K., Eisenbrand, F. (2009). The LLL Algorithm and Integer Programming. In: Nguyen, P., Vallée, B. (eds) The LLL Algorithm. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02295-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02295-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02294-4

  • Online ISBN: 978-3-642-02295-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics