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Abstract. We present a novel ensemble of logistic linear regressors that
combines the robustness of online Bayesian learning with the flexibility
of ensembles. The ensemble of classifiers are built on top of a Randomly
Varying Coefficient model designed for online regression with the fusion
of classifiers done at the level of regression before converting it into a class
label using a logistic link function. The locally weighted logistic regressor
is compared against the state-of-the-art methods to reveal its excellent
generalization performance with low time and space complexities.

1 Introduction

Research in classification has been dominated by kernel based methods like Sup-
port Vector Machine (SVM)[9] and more recently by non-parametric methods
like Gaussian Process Classification (GP)[6]. Non-parametric methods like GP
derives its success by using a covariance function of the input to model the de-
pendency amongst the responses. The response for a test input is then computed
as a linear smooth of all the training responses. This in turn leads to a large
overhead in the time and space complexities for training and prediction. The
need to store away all of the training points in order to produce a prediction
for an unseen input makes the kernel machines ill suited for online learning. On
the other hand ensemble learning paradigm is ideal for online learning where the
learning model has to adjust its complexity in tune with the training data. When
new data is observed from a new region of input space an ensemble learner can
add a new model to the region of space and adjust its parameters to model that
particular region of space. To implement such an ensemble we need classifiers
that have varying responsibilities in different regions of space and are able to
learn independent of each other. Conventional ensemble learners combine the
classifier predictions either by a majority voting or by linear combination of the
votes. This would not work when the ensembles have different levels of confidence
over the input space. The prediction would be more robust if the predictions are
weighted by confidence of individual classifiers before combining them. In this
paper we use a linear logistic regression as the base classifier with Bayesian
learning for the regression. The combination of the predictions is done at the re-
gression level wherein each learner is endowed with a predictive distribution and
the variances of the distribution are used to weigh the predictions of the base
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learners. The real value of the regression is then converted to a class label using
a logistic link function. In this paper we combine the robustness and efficiency
of a Bayesian learning with the flexibility of ensemble learning to produce an
online classifier that is able to adapt its complexity in tune with the observed
data. We reuse a Randomly Varying Coefficient model [3] designed for regression
to build our ensemble classifier system.

2 Randomly Varying Coefficient model

The Randomly Varying Coefficient model approximates a multivariate non-linear
function using a set of local models. Each of the local models has a probabilistic
formulation with a parametric model for the linear fit and the extent of linearity
at a particular location in the input space. The strength of RVC arises from the
fact that the local models are trained independent of each other unlike [5]. Apart
from minimizing the interference between two models, this also allows models
to be dynamically allocated and deallocated without the need for relearning.
Furthermore, the probabilistic formulation of RVC provides an estimate of the
uncertainty in its prediction and allows Bayesian inference rules to be applied
in order to learn the parameters. The end result of an RVC is a set of linear
regression models distributed in the input space that have different confidence
in their predictions in different regions of the input space.

3 Local logistic regression

In this section, we introduce the probabilistic model for a locally weighted logistic
regression based on the probabilistic formulation of RVC called the logistic RVC
(lRVC). Here, the probability of a binary class variable zi is modeled as the
output of a logistic link function over a continuous latent variable yi as :

p(zi = 1|yi) = 1/(1 + exp(−yi)), i = 1 . . . N (1)

where i is the index over the training data. In turn, the latent variable yi is
modeled as the response of a locally linear regression that follows the RVC
formulation. For a locally linear region centered around xc a conditional model
for the continuous latent variable yi can be written as:

yi = βT
i xi + ε (2)

where xi ≡ [(x′i − xc)T , 1]T represents the center subtracted, bias augmented
d dimensional input vector, βi ≡ [β(1)

i . . . β
(d+1)
i ]T represents the corresponding

regression coefficient and ε ∼ N (0, σ2) is the Gaussian mean zero noise with a
variance σ2. Crucially the latent regression coefficient βi has a Gaussian distri-
bution :

βi ∼ N (β̂,Ci) (3)

where the magnitude of the covariance Ci is made proportional to the distance
of x′i from the center by modeling it as a diagonal covariance with the elements
being a quadratic function of the input :

Ci(j, j) = xT
i xi/h2

j (4)



This has the effect that for points that lie near the center, the latent regression
coefficients βi have similar values, with the distribution of βi being peaked
around β̂. This in turn results in a linear region around the center.

Proceeding along the same lines as Chapter 3 of [6] we now assume a noise-
free latent variable yi by setting σ2 to zero. Setting σ2 to zero yields the following
model for yi :

yi ∼ N (βT
i xi, 0) (5)

or equivalently marginalizing yi :

p(zi = 1|βi) = 1/(1 + exp(−βT
i xi)) (6)

which corresponds to the classical formulation of a linear logistic regression with
regression coefficients βi.

We preserve the same probabilistic model as the original RVC for the rest
of parameters. This includes a Gamma regularizer prior over the bandwidth
parameters :

h2
j ∼ Gamma(aj , bj) (7)

and a noninformative Normal prior N (µ,S) for the parameter β̂.
We can now infer the posterior distribution over the parameters of the model

using a Variational Bayesian EM similar to [3]. In this procedure, the posterior
distribution over the parameters are assumed to be independent and these distri-
butions are iteratively determined one at a time by fixing all other distributions.

However, for a logistic regression, an additional complication arises in the
computation of the posterior distribution over the hidden variables βi. The like-
lihood term P (zi|βi) is given by a logistic link function whereas the prior over
βi is Gaussian and is not conjugate to the likelihood term. We solve this issue
by using a Laplacian approximation to approximate the posterior over βi by a
Gaussian distribution. The log posterior over the hidden variable βi is given by
:

M = ln Q(βi|z) = ln P (zi|βi) +
D
ln P (βi|β̂,Ci)

E
Q(β̂),Q(h)

− ln

Z
exp

„
ln P (zi|βi) +

D
ln P (βi|β̂,Ci)

E
Q(β̂),Q(h)

« (8)

Laplace approximation of the posterior corresponds to

Q(βi|z) ∼ N (νi,Gi)

where νi = argmaxβi
M and G−1

i = −∇∇M|βi=νi is the Hessian of the nega-
tive log posterior. The posterior mode νi can be obtained by setting the gradient
of M to zero. However, this procedure does not yield a closed form solution for
the posterior mode νi. We then have to resort to Newton’s update to find the
mode iteratively as shown :

νi = νold
i − (∇∇M)−1∇M (9)

Substituting the forms of P (βi|β̂,Ci) and P (zi|βi) from eqs. (3) and (6) into
eq. (8) and differentiating it with respect to βi we get :

∇M |βi=νold
i

= xi(zi − πi)− 〈Ci〉−1 (νold
i − µ̃) (10)

∇∇M |βi=νold
i

= −xix
T
i πi(1− πi)− 〈Ci〉−1 (11)



Algorithm 1 Training a local model
1: Initialize hyperparameters: Θ ≡ {µ0,S,a,b}.
2: Input: Batch training data X, z
3: repeat
4: Initialize νold

i = µ̃, πi = 1/(1 + exp(−xT
i νold

i )) and wi = 1
πi(1−πi)

.

5: Estimate posterior hyperparameters Θ̃ using Θ and eqs. (13) - (16).
6: Estimate values of the hyperparameters a and b of the regularizer prior using

eq. (17).
7: until convergence of Θ̃

where πi = 1/(1 + exp(−xT
i νold

i )) and 〈Ci〉 = diag(xT
i xi/

〈
h2

j

〉
Q(h2

j )
). It can be

found from eq. (11) that G−1
i = −∇∇M = xixT

i πi(1 − πi) + 〈Ci〉−1 and the
estimate for νi can be obtained by substituting eqs. (10) and (11) in eq. (9)
yielding :

νi = νold
i + Gi(xi(zi − πi)− 〈Ci〉−1 (νold

i − µ̃)) (12)

which can be simplified using Sherman-Morrison Woodbury theorem to yield :

Gi = 〈Ci〉 −
〈Ci〉xix

T
i 〈Ci〉

wi + xT
i 〈Ci〉xi

(13)

νi =
〈Ci〉xi

(wi + xT
i 〈Ci〉xi)

((zi − πi)wi + xT
i νold

i − xT
i µ̃) + µ̃ (14)

where wi = 1
πi(1−πi)

.

Posterior over β̂ based on its likelihood and prior can be derived similar to
[3] :

Q(β̂|z) ∼ N (µ̃, S̃)

where
S̃ = (

X
i

〈Ci〉−1 + S−1)−1, µ̃ = S̃(
X

i

〈Ci〉−1 νi + S−1µ) (15)

Similarly, the posterior over hj is given by :

Q(h2
j |z) ∼ Gamma(ãj , b̃j)

where

ãj = aj + N/2, b̃j = bj +
X

i

h
(νi,j − µ̃i,j)

2 + Gi,jj + S̃jj

i
/2xT

i xi (16)

and the optimal values for aj and bj are obtained by an update rule given by -

aj = ãj , bj = b̃j (17)

Hence, posterior parameters are inferred by using a partial Newton step to infer
the posterior of βi followed by EM updates as shown in Algorithm 1.

We observe from the training updates that the base classifier is extremely
efficient with a complexity of O(dMN) for training, where d is the number of
dimensions of the input space, M the number of local models and N the number
of training instances.



4 Prediction

Using the learning procedure discussed in the previous section we obtain in-
dependently trained local models of the logistic regression. Each of the local
models represent a separate classifier with a linear decision boundary. To obtain
an aggregate prediction for a particular query input we need to combine the
classifiers.

Ensemble learning has been a field of research which has seen considerable
amount of research into the ways of combining classifiers [4]. In this paper, we
use the same technique as RVC - combining the linear regressors to produce
a non-linear regression model and then, using a logistic transform to obtain a
classifier.

Given the ensemble of trained local experts, in order to predict the response
yq for a new query point xq, we take the normalized product of the predic-
tive distribution of each local expert. This is similar to the predictive routine
in Bayesian Committee Machines [8]. The predictive distribution of each local
expert is given by:

yq,k ∼ N (µ̃T xq,k,xq,k
T (S̃k + Ckhmode)xq,k)

where xq,k refers to the query point with the k-th center subtracted and aug-
mented with bias. Blending the prediction of different experts by taking their
product and normalizing it results in a Normal distribution given by:

yq ∼ N (µ, ζ2) where µ =

P
k αkµ̃T

k xq,kP
k αk

, ζ2 =
1P
k αk

. (18)

Here, µ is a sum of the means of each individual expert weighted by the confi-
dence expressed by each expert in its own prediction αk, ζ2 is the variance and
αk is the precision of each expert:

αk = 1/(xT
q,k(S̃k + Ck)xq,k) (19)

The predictive probability for the logistic regression can be obtained by com-
bining the predictive probability of the latent variable yq with the link function
and marginalizing the latent variable to yield :

P (zq = 1|z) =

Z
P (zq = 1|yq)P (yq|z)dyq (20)

where P (zq = 1|yq) is a logistic function and P (yq|z) is the predictive distribution
given by eq. (18). The integral given in eq. (20) cannot be evaluated analytically
and we must rely on numerical methods or sampling to evaluate the integral.
In the context of binary classification if we threshold the predictive probability
at 1

2 in order to discriminate between classes, a maximum aposteriori(MAP)
prediction would be the same as an averaged prediction as shown in [1] and
explained in [6]. Therefore we use MAP predictive estimate for classification. To
obtain the MAP prediction we evaluate the integral in eq. (20) by approximating
P (yq|z) by a delta function at its mode. The prediction routine is listed in
Algorithm 2.



Algorithm 2 Global prediction using local models
1: Input: Query point xq

2: Initialize: sumα = 0, yq = 0
3: for k = 1 to #local models do
4: xq,k = xq − xc,k

5: Calculate αk using eq. (19)
6: yq = yq + αkµ̃T

k xq,k

7: sumα = sumα + αk

8: end for
9: yq = yq/sumα

10: Output : P (zq = 1) = 1/(1 + exp(−yq))

5 Online classification

We can use the same technique as in the original RVC [3] to convert the batch
updates derived earlier into online updates. For this we make use of the fact that
in a Bayesian inference posterior is given by :

posteriorN =

NY
i

(likelihoodi)× prior0

where i is an index over the data points. The same can be expressed as a set of
online updates :

posteriori ∝ likelihoodi × priori ; priori+1 = posteriori

This set of updates implies that at every step of the online update the prior
computed over the data seen so far is combined with the likelihood of the current
data point to yield the posterior. This new posterior distribution of the parameter
is then used as the prior during the next update. Based on this, we can derive the
online updates for the logistic RVC that correspond to the batch results derived
earlier :

S̃i = (〈Ci〉−1 + S−1
i )−1 (21)

µ̃i = S̃i(〈Ci〉−1 νi + S−1
i µi) (22)

ãi,j = ai,j + 1/2 (23)

b̃i,j = bi,j +
h
(νi,j − µ̃i,j)

2 + Gi,jj + S̃i,jj

i
/(2xT

i xi) (24)

where νi and Gi are given by eq. (13). We repeat the above updates for a single
data point {xi,yi} till the posteriors Θ̃ ≡ {S̃, µ̃, ã, b̃} converge. For the (i+1)-th
point, we then use posterior Θ̃ of i-th step as the prior Θ ≡ {S,µ,a,b}.

When learning from data in an online fashion, we need to dynamically adapt
the model complexity of the learning to reflect the complexity of the data be-
ing modeled. This can be accomplished by adding and deleting local models
depending on whether we need to increase the model complexity or decrease it.
We employ a heuristic similar to [3] for addition and deletion of models. Here
a new local model is added when the predictive probability of a class falls be-
low a certain threshold. A local model is pruned when there is sufficient overlap
between the local regions of two local models.



6 Evaluation

Before we proceed to detailed evaluation experiments, we need to specify the
evaluation measures that would be used to compare different classifiers. We
compare classifiers based on two different measures - misclassification error and
target information. The former is the often used loss function that measures the
mean number of misclassifications produced by a classifier on a test set. The
target information criteria refers to a loss function that takes into account the
confidence expressed by the classifier about its prediction. The loss function is
given by :

I =
1

N

" X
zi=1

log2(P (zi = 1|xq
i )) +

X
zi=0

log2(1− P (zi = 1|xq
i ))

#
+ 1 (25)

and it measures in bits, the information conveyed by the classifier about the
test target. For a baseline classifier that assigns classes at random I → 0 and
for a more confident discrimination of classes I → 1. It must be noted that
this measure has a strong penalty for confident misclassification and can lead to
I < 0.

6.1 Comparison of generalization performance and efficiency of
learning

In the first evaluation, we compare the generalization performance of lRVC
against a Gaussian Process classifier with squared exponential covariance func-
tion and a baseline probabilistic linear logistic regressor. The lRVC used in the
evaluation used around 20 local models initialised at the cluster centers in the
input space. The Gaussian process uses a square exponential kernel and a logistic
link function. Hyperparameters of the GP are learnt using a gradient descent.
The two classifiers are compared on different benchmark datasets listed in Ta-
ble 1. The Breast cancer, Heart (Cleveland) and the Ionosphere dataset were
obtained from the UCI repository, Pima and synthetic datasets are the same as
the ones used in [7] 1. The USPS dataset corresponds to the digit discrimination
task listed in [6]. The Catalysis and Gatineau datasets were obtained from the
predictive uncertainty challenge 2 were the validation set has been used as test
set. The evaluations on the datasets obtained from UCI was carried out on 10
train-test splits of the data and the mean and standard deviations are reported
here. For all other datasets a single train-test trial was carried out using the
train and test files provided. This makes it possible to compare other classifiers
that have previously used the latter datasets. For the Gatineau dataset GP was
trained using a subset of 1000 training points due to practical considerations
of time and space complexity. The evaluation statistics are listed in Table 2.
Also shown in the table is the results for a LIBSVM[2] (with an RBF kernel)
evaluation over the same datasets with the parameters being chosen using a 5

1 The datasets can be obtained from http://www.stats.ox.ac.uk/pub/PRNN/
2 http://predict.kyb.tuebingen.mpg.de/pages/home.php



fold cross validation. The comparison for SVM is restricted to the misclassifi-
cation error since SVM does not provide a predictive probability. One can see
from the results that lRVC is able to match the performance of GP for all the
datasets and outperforms the baseline linear classifier especially when the target
information is used for the comparison. It must be noted that while lRVC used
only a small number of local models for prediction, GP used all of the training
set for training and prediction. To emphasize this difference Table 3 shows the
time taken by lRVC and GP for training and prediction on a dataset consisting
of the USPS digit 3 classified against the rest of the digits. lRVC can be seen to
achieve a good generalization performance with a low overhead.

Dataset #train pts. #test pts #dim

Breast cancer 142 427 30
Heart(Cleveland) 149 148 13
Ionosphere 175 176 33
Pima 200 332 7
Synthetic 250 1000 2
USPS(3-5) 767 773 256
Catalysis 873 300 617
Gatineau 3000 2176 1092
Table 1. Statistics of the benchmark datasets

lRVC GP Linear SVM
Error Information Error Information Error Information Error

Breast 0.028(0.007) 0.807(0.010) 0.026(0.009) 0.805(0.045) 0.042(0.014) 0.797(0.050) 0.028(0.009)
Heart 0.166(0.017) 0.432(0.049) 0.169(0.017) 0.423(0.039) 0.173(0.024) 0.388(0.113) 0.173(0.022)
Ionosphere 0.152(0.027) 0.338(0.170) 0.123(0.025) 0.535(0.054) 0.163(0.027) -2.288(0.963) 0.078(0.025)
Pima 0.202 0.361 0.222 0.276 0.198 0.364 0.198
Synthetic 0.100 0.649 0.093 0.658 0.114 0.611 0.100
USPS(3-5) 0.045 0.798 0.025 0.794 0.040 0.476 0.023
Catalysis 0.303 0.143 0.303 0.150 0.343 -3.516 0.323
Gatineau 0.090 0.570 0.090 0.588 0.154 -0.484 0.090

Table 2. Performance comparison between lRVC and GP in terms of the mis-
classification error rate and the target information (measured in bits) conveyed
by the classifier. The values in parenthesis indicate the standard deviation.

6.2 Use of predictive confidence bounds for rejection

In the next evaluation, we evaluate the confidence bounds learnt by lRVC by
plotting the relation between the reject rate, the misclassification error and the
target information. In this experiment the first and second moments for the



Method 0 1 2 4 5 6 7 8 9
# training pts. 1173 1028 881 815 767 826 796 783 828
# testing pts. 1204 1065 872 861 773 832 820 749 817

GP

Error 0.011 0.002 0.018 0.005 0.026 0 0.002 0.025 0.006
Information 0.894 0.903 0.863 0.869 0.794 0.886 0.868 0.855 0.849
Train time(sec) 1915.9 1475.8 1020.8 877.0 911.4 963.7 919.9 845.8 993.0
Test time(sec) 47.8 37.6 25.0 22.1 20.2 23.8 23.4 20.5 24.4

lRVC

Error 0.009 0.005 0.022 0.005 0.045 0.003 0.009 0.032 0.012
Information 0.944 0.960 0.886 0.966 0.798 0.972 0.955 0.883 0.946
Train time(sec) 582.59 509.67 440.44 402.23 382.08 400.75 370.25 363.13 383.42
Test time(sec) 0.87 0.74 0.61 0.61 0.55 0.55 0.54 0.49 0.55

Table 3. Comparison between the time taken for training and prediction using
a Matlab implementation of lRVC and GP on the USPS dataset.

predictive probability were computed by using sampling to evaluate the integral
in eq. (20). The test samples which had a variance above a threshold were rejected
and the misclassification error was evaluated for the rest of the test data. The
dataset used for this purpose was the USPS data. The misclassification error
typically decreases as test samples are rejected and an ideal classifier would have
a larger reduction in the misclassification error with respect to the rejection rate.
The error and the target information versus the rejection rate for lRVC, GP and
the Bayesian linear logistic regressor were evaluated and plotted in fig. (1(a)).
It can be seen that lRVC’s performance exceeds that of the linear classifier by a
large margin and is not significantly different from GP.
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Fig. 1. (a) Comparison of error-reject curve for lRVC and GP (b) Online learning
dynamics of lRVC compared with GP. The plots are the average performance over 10
trials of different orders of data presentations

6.3 Dynamics of online learning

In the last evaluation, we use the online updates derived in Section 5 to learn
a classifier on the synthetic dataset. The data points are presented to the on-



line learner one at a time and the misclassification error is evaluated over the
test data after each training update. The dynamics of the learning process is
shown in fig. (1(b)). The learning dynamics is compared with the generalization
performance of GP which uses increasing number of training data points and
the corresponding test error at each stage is displayed. It can be seen from the
figure that online version of lRVC exhibits fast convergence and matches the
performance of GP asymptotically.

7 Discussion

Local logistic regression is a very competitive method as can be seen from the re-
sults of the evaluation. The result makes it more significant when we take it into
account that the logistic regression is able to achieve such a good performance
using a small number of local models. Moreover the time and space efficiency is
linear in terms of the data points and the dimension. In contrast, kernel classi-
fication paradigms like GP and SVM have a much higher overhead in training
and testing.

The logistic regression formulation in this paper is restricted to binary classi-
fication. It can be easily extended to a multi-class classification using a softmax
link function instead of a logistic link function. The treatment of the learning
remains the same in that case too.

In conclusion, the contribution of this paper has been a probabilistic formu-
lation of a local linear logistic regressor that combines the modeling guarantees
of a Bayesian method with the efficiency of an ensemble learner thus making it
ideal candidate for online real-time learning.
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