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Abstract

There are a variety of methods for inducing predictive systems from
observed data. Many of these methods fall into the field of study of
machine learning. Some of the most effective algorithms in this domain
succeed by combining a number of distinct predictive elements to form
what can be described as a type of committee. Well known examples of
such algorithms are AdaBoost, bagging and random forests. Stochastic
discrimination is a committee-forming algorithm that attempts to combine
a large number of relatively simple predictive elements in an effort to
achieve a high degree of accuracy. A key element of the success of this
technique is that its coverage of the observed feature space should be
uniform in nature. We introduce a new uniformity enforcement method,
which on benchmark datasets, leads to greater predictive efficiency than
the currently published method.

1 Introduction

There are many techniques available for inducing predictive algorithms from
observed data. Those methods that use a combination of classifiers, called a
committee or ensemble, such as AdaBoost[5], bagging[2] and random forests[7]
have demonstrated very good performance on real-world problems. Stochastic
discrimination is an alternative method of constructing committees of classifiers.
It has a sound theoretical basis and is robust to sources of over-fitting, other
than those attributable to small sample size effects[4, 8, 10]. It intrinsically deals
with two class problems but can be extended to multi-class problems by the
use of such techniques as one-versus-all and error correcting output coding[11]
decompositions.

One of the principle differences between conventional ensemble methods,
such as bagging, and stochastic discrimination is that in conventional ensembles
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Figure 1: A collection of 10 rectangular parallelepiped thick models centred
around two data instances from the training set. Additional instances from the
two classes are shown and they are all embedded in a three dimensional feature
space.

each individual classifier is normally expert, to some degree, on the whole data
space. In a stochastic discrimination ensemble this is not the case[9]. The set
of weak classifiers in a stochastic discrimination ensemble may view the data
space in a uniform fashion but individual classifiers may not, and in general will
not, do this. More specifically, they will only consider a limited subspace of
the feature space, with each dimension in the feature space having a degree of
coverage selected at random.

The extent to which a stochastic discrimination ensemble views the feature
space without unduly favouring one region over another is known as its uni-
formity. The method of uniformity enforcement is one of the key elements of
an implementation of stochastic discrimination. Uniformity ensures that the
ensemble as a whole can generalise effectively over the full extent of the feature
space.

The implementation of stochastic discrimination described in detail in [9,
12] uses a method of uniformity enforcement that is based on measurements
relating to the average coverage for elements of the ensemble predicting a specific
class. We propose an alternative uniformity enforcement scheme based on the
minimum instance coverage.
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2 Stochastic Discrimination

Typically classifier combination methods such as AdaBoost, bagging and ran-
dom forests seek to merge base classifiers that have knowledge of the full extent
of the feature space via the training set. Stochastic discrimination differs in its
approach to combining weak base classifiers, which it refers to as thick models,
in that it seeks to assemble elements that cover subsets of the training data.
These are drawn from embedded subspaces of a finite n dimensional space,
F ∈ Rn. These subspaces are constructed from a geometric model centered on
an instance of the training set and which form an n dimensional rectangular
parallelepiped.

The coverage of the parallelepiped in each feature dimension is a random
proportion of the feature extent. This sub-sampling of the feature space is one
of the methods responsible for ensuring diversity in the produced population of
thick models and additionally acts as a regularisation mechanism to alleviate
the potential for over-fitting.

A stream of thick models is generated by randomly selecting an instance
from the training set and generating a geometric model around it. This stream
is then thinned according to each model’s ability to discriminate between in-
stances of classes within its embedded subspace of the feature domain. Suitably
discriminating models undergo further selection based on the existing coverage
of the feature domain. The underlying theory of stochastic discrimination[9]
requires that coverage should be uniform to ensure that there is no bias towards
particular areas of the feature space. This implies that the number of thick
models capturing each instance in the training set should be equal.

In the context of a two class classification problem in which feature vectors,
q, are drawn from two classes, {1, 2}, embedded in feature space F , instances
from the available dataset are randomly partitioned into a training and test set,
{TR, TE}. TR is further partitioned into instances from class 1 and class 2,
{TR1, TR2}. Stochastic discrimination creates a stream of models by randomly
sampling instances from TR and builds a space-enveloping thick model around
them. The thick model, m, is constructed from random proportions of the
feature extent in each of the n dimensions of the feature space, as depicted in
Figure 1.

It is worthwhile observing that the generalisation ability of the stochastic
discrimination algorithm is a function sensitive to a number of factors

SDAcc = f(ModelNumber, EnrichmentDegree,

CoverageUniformity,ModelSize).

It is resistant to overtraining and in general the more models in the ensemble
the higher the accuracy. Additionally there is a strong relationship between the
number and distribution of instances in TR and the number of thick models
required to adequately capture their distribution. Stochastic discrimination
also relies on the assumption, which is a requirement for other machine learning
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Algorithm 1 Stochastic discrimination thick model stream production algo-
rithm, P.

Do
Generate a Thick Model from a random instance in TR1

If ( Enriched( Thick Model ) )
If( ImprovesUniformity( Thick Model ) )

Accept( Thick Model )
Until ( Enough( Thick Models ) )

algorithms, that there is a projectability between the distribution of samples in
the training set and the test set.

2.1 Enrichment

For the stream of stochastically generated thick models to be useful for the
task of classification it is necessary that they possess some discriminative power
to separate the classes. To this end the thick models are selectively filtered
based on their enrichment. Enrichment is calculated from the proportion of
instances for each of the classes in the training set which are captured by the
thick model, m. If the proportion of instances of class 1 captured from TR1

is greater than those of class 2 that are captured from TR2, then the model is
considered enriched with respect to class 1.

| m ⊂ TR1 |
| TR1 |

>
| m ⊂ TR2 |

| TR2 |
. (1)

2.2 Uniformity Enforcement Strategies

In the standard version of stochastic discrimination[9] each thick model subset,
m, that satisfies the enrichment criteria is further subjected to a uniformity
forcing step as indicated in Algorithm1 and referred as algorithm P . Uniformity
is enforced via the measurement of coverage. The coverage of a data instance,
cq, is defined as the number of thick models that include the data instance, q,
within their volume, divided by the size of the set of thick models, M , produced
so far, | M |. Thus,

cq =
| {m ∈ M : q ∈ m} |

| M |
. (2)

A thick model, m, is considered an acceptable candidate for the ensemble of
thick models if it is enriched and its average coverage for points captured from
TR1, cTR1 , is below the average cover for all points in TR1, C̄TR1 .

(
1

|{q ∈ TR1 : q ∈ m}|
∑

{q∈TR1:q∈m}

cq) < C̄TR1 . (3)
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Algorithm 2 Stochastic discrimination thick model stream production algo-
rithm, L.

Do
Generate a Thick Model using least covered instance in TR1

If ( Enriched( Thick Model ) )
Accept( Thick Model )

Until ( Enough( Thick Models ) )

In effect this filters models from the stream that favour instances which are
under-represented in the current thick model working set, M .

We propose an alternative strategy to achieve uniformity. This entails se-
lecting the least covered instance in TR1. By choosing the instance that has
minimum coverage as the basis for the new thick model, we aggressively focus
on the area in the feature space that instantaneously exhibits the least coverage
and ensure that it is increased. If there are ties for the least covered instance
then these can be broken randomly or, as an enhancement, an instance from
particularly ill represented region can be searched for.

{q : arg min
q∈TR1

cq}. (4)

Our modified algorithm, described in Algorithm 2 and referred to as L,
seeks to improve the mean coverage and improve the variance of the coverage
array by decreasing the contribution from the largest reducible component. If
the minimum value in the coverage array, C, is not unique then one of the
corresponding instances is selected at random.

To quantify the degree of uniformity, D, present in the thick model streams
we calculate the standard deviation of the instance wise coverage.

D =
√

1
|TR|

∑
q∈TR

(cq − C̄)2, (5)

where C is the mean value of the coverage set. The minimum value for D
is zero and this indicates that all instances in the training set have equivalent
coverage, higher values of D represent increasingly poor levels of uniformity.

2.3 Discriminant

Once a thick model set of the desired size has been formed, a discriminant
function can be used to classify instances. The discriminant function uses the
difference in probabilities of capture by the thick models in M to assign class
membership. In the case where the models have been enriched for TR1, an
unknown instance, x, will be captured by a larger number of thick models if
it is of class 1 than were it of class 2. A suitable threshold can be chosen to
optimise the classification accuracy of the discriminant function.
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3 Theoretical Exploration

Under the assumption that variance is a valid measurement of uniformity we
examine the behaviour of the classic uniformity algorithm P as defined in section
2.2 and Algorithm 1. and L Algorithm 2. These algorithms have simplified to
highlight the essential differences between the two approaches. For more detailed
implementation information see [9].

The coverage values, C, form a set of positive integers in the range from 0 to
the size of the thick model set , | M |. Considering the limiting case in which a
thick model captures only one point from TR, the addition of this thick model
to M will result in a unity increment of a single value within C. The maximum
reduction to the variance of C will be achieved if that point is the one that is
the furthest below the mean value of the coverage set, C, known as cmin. Ties
in the value of cmin should be broken randomly.

By considering the contribution made to the change in variance by incre-
menting either cmin or another arbitrary member of C with a value larger than
cmin we can show that

((k + 1)− C)2 + (l − C)2

| M |
≤ ((l + 1)− C)2 + (k − C)2

| M |
, (6)

where k, l are positive real integers representing values within C and with
k ≤ l. It follows that the reduction in variance , and hence increase in the
uniformity, will be greatest if k is the minimum value in C. The change to the
mean value of C is constant in this limiting case. Thus for the special case
where the thick model covers only a single instance in TR, algorithm L should
always improve uniformity by at least as much as algorithm P .

When the thick model covers more than one point, the analysis of perfor-
mance is more complicated. The degree of improvement of uniformity and the
mean value of cover,C, will depend on the specific sample of instances captured
by the thick model, m. At the limit, where all points in TR1 are captured by
m, there will no difference in the change in uniformity and C between algo-
rithms P and L. Where m only captures a percentage of TR1 and if points
are chosen at random, the expectation will be that the reduction in variance
from algorithm L will always exceed or equal that from algorithm P . But this
ignores the contribution from the average cover related enforcement strategy
employed by algorithm P , which will undoubtedly improve the situation over a
purely random selection. Furthermore, the performance will be dependent on
the exact distribution of the dataset under consideration.

However, each new thick model under algorithm L will always contain the
most beneficial point, cmin, whilst under algorithm P , m will only have some
probability of capturing cmin. This probability will be dependent on the size of
TR1, the amount of the feature space that m captures and the distribution of
instances in the feature space. Our experimental results suggest that on average
algorithm L is more effective.
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4 Experiment Details

Experiments were performed on twenty datasets, eighteen datasets from the
UCI Machine Learning Repository [1] and 2 synthetic ones from [3]. These
contained a mixture of binary and multi-class problems. Multi-class problems
are handled using a one-versus-all decomposition strategy. To estimate the
generalisation error of the induced classifiers, ten repetitions of ten-fold cross
validation were performed for each dataset within a WEKA[6] framework. Iden-
tical trials were performed for the standard uniformity enforcement algorithm,
described in [9], based on mean class coverages and our method of uniformity
enforcement using the least covered point. The number of thick models used
for each classifier was fixed at 3001. The minimum allowable thick model size
was adjusted between 0.01 and 0.5 percent of the feature space. The following
datasets were used. Balance[BAL], credit-a[CRA], diabetes[DIA], ecoli[ECO],
glass[GLA], heart[HRT], hepatitis[HEP], ionosphere[ION], iris[IRS], labor[LAB],
lymph[LYM], parkinsons[PAR], satellite[SAT], segment[SEG], sonar[SON], ve-
hicle[VEH], vowel[VOW], Wisconsin breast cancer[WIS], twonorm[2NM] and
threenorm[3NM].

5 Experimental Results

We present individual experimental results for a selection of the datasets in
Figure 2. These show the test error rates and normalised standard deviation of
the coverage, D, plotted against minimum model size for algorithms L and P .
From Figure 2. it is not easy to determine a direct relationship between test
accuracy and D, the trend, except in the case of WIS, is that lower coverage
deviation leads to lower test error. The averaged values Figure 3. support this
view. The minimum error rates in Table 1. confirm that neither algorithm is
superior on all datasets. Where L performs worse than P then the difference
is generally small, as is the case with datasets DIA, HEP and SAT. Where
algorithm L exceeds the performance of P the difference can be significant, as is
the case with datasets GLA, IRS, LYM, SEG, VEH, VOW and the exceptions
being PAR, 3NM.

Figure 3. contains averaged results over all datasets for test error and aver-
age cover on the left and normalised thick model retry rates and the normalised
standard deviation of the coverage on the right. The averaged graphs give a
clearer indication of the relative performance of the two algorithms. L consis-
tently outperforms P in terms of test accuracy across all minimum thick model
sizes and also for absolute coverage values. This implies that L is building larger
thick models that capture more points and will tend to generalise better.

The right of Figure 3. shows that the averaged normalised standard devia-
tion, D, is consistently better for L across all model sizes. It also shows that the
stream production efficiency for L, measured by the number of retries required
to find a suitable model, can be as little as half the value of P .

Table 1. shows the minimum value of the test error for each of the twenty
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BAL CRA DIA ECO GLA HRT HEP ION IRS LAB

L .10 .03 .24 .14 .29 .17 .23 .09 .04 .19

P .10 .04 .23 .16 .42 .17 .21 .10 .11 .19

LYM PAR SAT SEG SON VEH VOW WIS 2NM 3NM

L .35 0.17 .12 .09 .12 .29 .14 .03 .03 .16

P .47 0.13 .11 .16 .13 .32 .20 .04 .03 .14

Mean test error L 0.151
Mean test error P 0.173

Table 1: Minimum test error rates for algorithms L and P and mean values for
L and P .

datasets for uniformity enforcement algorithms L and P . Averaging over all
datasets, algorithm P has a minimum test error that is 15 percent worse than
L. Subjecting these results to a paired T test rejects the null hypothesis at a
significance level of 0.05.

6 Conclusion

The strategy of uniform coverage enforcement is an important element of the
stochastic discrimination method. Our experiments indicate that simply select-
ing the least covered instance in the training set is an effective alternative to
the standard method of choosing a random instance and then checking for its
effect on coverage. Though it is not certain for any particular dataset which
strategy will be most effective, over a range of datasets, algorithm L achieves
better accuracy, more uniform coverage, larger thick models and a lower retry
rate than algorithm P . Finally, we would like to thank the reviewers for their
helpful comments.
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Figure 2: Test error versus minimum thick model size and normalised standard
deviation of coverage for uniformity enforcement algorithms L and P.
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