
ar
X

iv
:1

00
5.

07
37

v1
 [

cs
.L

O
]

 5
 M

ay
 2

01
0

YAPA: A generic tool for computing intruder

knowledge

Mathieu Baudet

MLstate, France

Véronique Cortier

LORIA - CNRS, France

Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France

Reasoning about the knowledge of an attacker is a necessary step in many formal analyses of
security protocols. In the framework of the applied pi calculus, as in similar languages based
on equational logics, knowledge is typically expressed by two relations: deducibility and static
equivalence. Several decision procedures have been proposed for these relations under a variety
of equational theories. However, each theory has its particular algorithm, and none has been
implemented so far.

We provide a generic procedure for deducibility and static equivalence that takes as input
any convergent rewrite system. We show that our algorithm covers most of the existing decision
procedures for convergent theories. We also provide an efficient implementation, and compare it
briefly with the tools ProVerif and KiSs.

Categories and Subject Descriptors: []:

General Terms:

Additional Key Words and Phrases: Security protocols, deduction, static equivalence

1. INTRODUCTION

Understanding security protocols often requires reasoning about the information
accessible to an on-line attacker. Accordingly, many formal approaches to secu-
rity rely on a notion of deducibility [Lowe 1996; Millen and Shmatikov 2001] that
models whether a piece of data, typically a secret, is retrievable from a finite set of
messages. Deducibility, however, does not always suffice to reflect the knowledge of
an attacker. Consider for instance a protocol sending an encrypted Boolean value,
say, a vote in an electronic voting protocol. Rather than deducibility, the key idea
to express confidentiality of the plaintext is that an attacker should not be able to

Author’s address: S. Delaune, Laboratoire Spécification & Vérification - 61, avenue du président
Wilson - 94 230 Cachan.
This work has been partly supported by the ANR-07-SESU-002 AVOTÉ. A large part of it was
done while the first author was working at the ANSSI.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

http://arxiv.org/abs/1005.0737v1

2 · Mathieu Baudet et al.

distinguish between the sequences of messages corresponding to each possible value.
(Such security considerations typically motivate the use of randomized encryption.)

In the framework of the applied pi-calculus [Abadi and Fournet 2001], as in sim-
ilar languages based on equational logics [Blanchet et al. 2008], indistinguishability
corresponds to a relation called static equivalence: roughly, two sequences of mes-
sages are statically equivalent when they satisfy the same algebraic relations from
the attacker’s point of view. Static equivalence plays an important role in the study
of guessing attacks (e.g. [Corin et al. 2004; Baudet 2005; Abadi et al. 2006]), as
well as for anonymity properties and electronic voting protocols (e.g. [Delaune et al.
2009]). Static equivalence is also used for specifying privacy in the context of RFID
protocols [Arapinis et al. 2009]. In several cases, this notion has also been shown
to imply the more complex and precise notion of cryptographic indistinguishabil-
ity [Baudet et al. 2005; Abadi et al. 2006], related to probabilistic polynomial-time
Turing machines. Two sequences of messages are cryptographically indistinguish-
able when their corresponding bit-string implementations are indistinguishable to
any probabilistic polynomial-time Turing machine.
We emphasize that both deducibility and static equivalence apply to observa-

tions on finite sets of messages, and do not take into account the dynamic behav-
ior of protocols. (This justifies the expression static equivalence.) Nevertheless,
deducibility is used as a subroutine by many general decision procedures [Comon-
Lundh and Shmatikov 2003; Chevalier et al. 2003]. Besides, it has been shown that
observational equivalence in the applied pi-calculus coincides with labeled bisimu-
lation [Abadi and Fournet 2001], that is, corresponds to checking a number of static
equivalences and some standard bisimulation conditions.

Deducibility and static equivalence rely on an underlying equational theory for
axiomatizing the properties of cryptographic functions. Many decision procedures
[Abadi and Cortier 2006; Cortier and Delaune 2007] have been proposed to compute
these relations under a variety of equational theories, including symmetric and
asymmetric encryptions, signatures, exclusive OR, and homomorphic operators.
However, except for the class of subterm convergent theories [Abadi and Cortier
2006], which covers the standard flavors of encryption and signature, each of these
decision results introduces a new procedure, devoted to a particular theory. Even
in the case of the general decidability criterion given in [Abadi and Cortier 2006],
we note that the algorithm underlying the proof has to be adapted for each theory,
depending on how the criterion is fulfilled.
Perhaps as a consequence of this fact, none of these decision procedures has been

implemented so far. When we began this work, the only tool able to verify static
equivalence was ProVerif [Blanchet 2001; Blanchet et al. 2008]. This general tool
can handle various equational theories and analyze security protocols under active
adversaries. However termination of the verifier is not guaranteed in general, and
protocols are subject to (safe) approximations. Since then, a new tool, called KiSs,
has been developed [Ciobâcă et al. 2009]. The procedure implemented in KiSs has
many concepts in common with a preliminary version of this work [Baudet et al.
2009] but targets a different class of equational theories.

The present work aims to fill this gap between theory and implementation and

YAPA: A generic tool for computing intruder knowledge · 3

propose an efficient tool for deciding deducibility and static equivalence in a uniform
way. It is initially inspired from a procedure for solving more general constraint
systems related to active adversaries and equivalence of finite processes, presented
in [Baudet 2005], with corrected extended version in [Baudet 2007] (in French).
However, due to the complexity of the constraint systems, this decision procedure
was only studied for subterm convergent theories, and remains too complex to
enable an efficient implementation.

Our Contributions. In this paper, we provide and study a generic procedure for
checking deducibility and static equivalence, taking as input any convergent theory
(that is, any equational theory described by a finite convergent rewrite system).
We prove the algorithm sound and complete, up to explicit failure cases. Note
that (unfailing) termination cannot be guaranteed in general since the problem
of checking deducibility and static equivalence is undecidable, even for convergent
theories [Abadi and Cortier 2006]. To address this issue and turn our algorithm into
a decision procedure for a given convergent theory, we provide two criteria. First, we
define a syntactic criterion on the rewrite rules that ensures that the algorithm never
fails. This criterion is enjoyed in particular by any convergent subterm theory, as
well as the theories of blind signature and homomorphic encryption. Termination
often follows from a simple analysis of the rules of the algorithm: as a proof of
concept, we obtain a new decidability result for deducibility and static equivalence
for the prefix theory, representing encryption in CBC mode. Second, we provide
a termination criterion based on deducibility: provided that failure cannot occur,
termination on a given input is equivalent to the existence of some natural finite
representation of deducible terms. As a consequence, we obtain that our algorithm
can decide deducibility and static equivalence for all the convergent theories shown
to be decidable in [Abadi and Cortier 2006].
Our second contribution is an efficient implementation of this generic procedure,

called YAPA. After describing the main features of the implementation, we report
several experiments suggesting that our tool computes static equivalence faster
and for more convergent theories than the general tool ProVerif [Blanchet 2001;
Blanchet et al. 2008]. We also outline the main differences between YAPA and the
recent tool Kiss.

Outline. We introduce our setting in Section 2, in particular the notion of term
algebra and equational theory, that are used to model cryptographic primitives.
Deducibility and static equivalence are defined in Section 3. We describe our pro-
cedure in Section 4 and prove its correctness and completeness in Section 5. We
provide criteria for preventing failure in Section 6 and for ensuring termination in
Section 7. The implementation of our procedure is discussed in Section 8. Some
concluding remarks and perspectives can be found in Section 9. A number of tech-
nical proofs have been postponed to the appendix to ease the presentation.

2. PRELIMINARIES

2.1 Term algebra

We start by introducing the necessary notions to describe cryptographic messages
in a symbolical way. For modeling cryptographic primitives, we assume given a

4 · Mathieu Baudet et al.

set of function symbols F together with an arity function ar : F → N. Symbols
in F of arity 0 are called constants. We consider a set of variables X and a set
of additional constants W called parameters. The (usual, first-order) term algebra
generated by F over W and X is written F [W ∪ X] with elements denoted by
T, U, T1 . . . More generally, we write F ′[A] for the least set of terms containing a
set A and stable by application of symbols in F ′ ⊆ F .
We write var(T) (resp. par(T)) for the set of variables (resp. parameters) that

occur in a term T . These notations are extended to tuples and sets of terms in the
usual way. The set of positions of a term T is written pos(T) ⊆ N

∗, and its set of
subterms st(T). The subterm of T at position p ∈ pos(T) is written T |p. The term
obtained by replacing T |p with a term U in T is denoted T [U]p.

A (finite, partial) substitution σ is a mapping from a finite subset of variables,
called its domain and written dom(σ), to terms. The image of a substitution is
its image as a mapping im(σ) = {σ(x) | x ∈ dom(σ)}. Substitutions are extended
to endomorphisms of F [X ∪ W] as usual. We use a postfix notation for their
application. A term T (resp. a substitution σ) is ground if var(T) = ∅ (resp.
var(im(σ)) = ∅).

For our cryptographic purposes, it is useful to distinguish a subset Fpub of F ,
made of public function symbols, that is, intuitively, the symbols made available
to the attacker. A recipe (or second-order term) M , N , M1. . . is a term in
Fpub[W ∪X], that is, a term containing no private (non-public) function symbols.
A plain term (or first-order term) t, r, s, t1. . . is a term in F [X], that is, contain-
ing no parameters. A (public, ground, non-necessarily linear) n-ary context C is a
recipe in Fpub[w1, . . . ,wn], where we assume a fixed countable subset of parameters
{w1, . . . ,wn, . . .} ⊆ W . If C is a n-ary context, C[T1, . . . , Tn] denotes the term
obtained by replacing each occurrence of wi with Ti in C.

2.2 Rewriting

A rewrite system R is a finite set of rewrite rules l → r where l, r ∈ F [X] and such
that var(r) ⊆ var(l). A term S rewrites to T by R, denoted S →R T , if there exist
l → r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ and T = S[rσ]p.
We write →+

R for the transitive closure of →R, →∗
R for its reflexive and transitive

closure, and =R for its reflexive, symmetric and transitive closure.

A rewrite system R is convergent if it is:

—terminating, i.e. there is no infinite chains T1 →R T2 →R . . .; and

—confluent, i.e. for every terms S, T such that S =R T , there exists U such that
S →∗

R U and T →∗
R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗
R S

and S is R-reduced then S is a R-reduced form of T . When this reduced form is
unique (in particular if R is convergent), we write S = T ↓R (or simply T ↓ when R
is clear from the context).

2.3 Equational theories

We equip the signature F with an equational theory represented by a set of equa-
tions E of the form s = t with s, t ∈ F [X]. The equational theory E generated by E

YAPA: A generic tool for computing intruder knowledge · 5

is the least set of equations containing E that is stable under the axioms of congru-
ence (reflexivity, symmetry, transitivity, application of function symbols) and under
application of substitutions. We write =E for the corresponding relation on terms.
Equational theories have proved very useful for modeling algebraic properties of
cryptographic primitives (see e.g. [Cortier et al. 2006] for a survey).

We are particularly interested in theories E that can be represented by a con-
vergent rewrite system R, i.e. theories for which there exists a convergent rewrite
system R such that the two relations =R and =E coincide. The rewrite system R
—and by extension the equational theory E— is weakly subterm convergent if, in
addition, we have that for every rule l → r ∈ R, r is either a subterm of l or a
ground R-reduced term. This class encompasses the class of subterm convergent
theories used in [Abadi and Cortier 2006] (for every rule l → r ∈ R, r is a sub-
term of l or a constant), the class of dwindling theories used in [Anantharaman
et al. 2007], and the class of public-collapsing theories introduced in [Delaune and
Jacquemard 2004].

Example 2.1. Consider the signature Fenc = {dec, enc, 〈 , 〉, proj1, proj2}. The
symbols dec, enc and 〈 , 〉 are functional symbols of arity 2 that represent respec-
tively the decryption, encryption and pairing functions, whereas proj1 and proj2
are functional symbols of arity 1 that represent the projection function on the first
and the second component of a pair, respectively. The equational theory of pair-
ing and symmetric (deterministic) encryption, denoted by Eenc, is generated by the
equations

Eenc = {dec(enc(x, y), y) = x, proj1(〈x, y〉) = x, proj2(〈x, y〉) = y}.

Motivated by the modeling of the ECB mode of encryption, we may also consider
an encryption symbol that is homomorphic with respect to pairing:

Ehom = Eenc ∪

{

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

}

.

If we orient the equations from left to right, we obtain two rewrite systems Renc

and Rhom. Both rewrite systems are convergent, only Renc is (weakly) subterm
convergent. Other examples of subterm convergent theories can be found in [Abadi
and Cortier 2006].

From now on, we assume given a equational theory E represented by a convergent
rewrite system R. A symbol f is free if f does not occur in R. In order to model
(an unbounded number of) random values possibly generated by the attacker, we
assume that Fpub contains infinitely many free public constants. We will use free
private constants to model secrets, for instance the secret keys used to encrypt a
message. Private (resp. public) free constants are closely related to bound (resp.
free) names in the framework of the applied pi calculus [Abadi and Fournet 2001].
Our formalism also allows one to consider non-constant private symbols.

3. DEDUCIBILITY AND STATIC EQUIVALENCE

In order to describe the cryptographic messages observed or inferred by an attacker,
we introduce the following notions of deduction facts and frames.

6 · Mathieu Baudet et al.

A deduction fact is a pair, written M ✄ t, made of a recipe M ∈ Fpub[W ∪ X]
and a plain term t ∈ F [X]. Such a deduction fact is ground if var(M, t) = ∅. A
frame, denoted by letters ϕ, Φ, Φ0. . . , is a finite set of ground deduction facts. The
image of a frame is defined by im(Φ) = {t | M ✄ t ∈ Φ}. A frame Φ is one-to-one
if M1 ✄ t, M2 ✄ t ∈ Φ implies M1 =M2.

A frame ϕ is initial if it is of the form ϕ = {w1 ✄ t1, . . . , wℓ ✄ tℓ} for some
distinct parameters w1, . . . , wℓ ∈ W . The parameters wi can be seen as labels that
refer to the messages observed by an attacker. Initial frames are closely related
to the notion of frames in the applied pi-calculus [Abadi and Fournet 2001]. The
only difference is that, in initial frames, values initially unknown to an attacker
are modeled by private constants while they are modeled by restricted names in
the applied pi-calculus. Name generation and binding are important features of
the (general) applied calculus but are unessential when considering finite processes,
and in particular frames. Given such an initial frame ϕ, we denote by dom(ϕ) its
domain dom(ϕ) = {w1, . . . , wℓ}. If par(M) ⊆ dom(ϕ), we write Mϕ for the term
obtained by replacing each wi by ti in M . We note that if in addition M is ground
then t =Mϕ is a ground plain term.

3.1 Deducibility, recipes

Classically (see e.g. [Abadi and Cortier 2006]), a ground term t is deducible modulo E
from an initial frame ϕ, written ϕ ⊢E t, if there exists M ∈ Fpub[dom(ϕ)] such that
Mϕ =E t. This corresponds to the intuition that the attacker may compute (infer) t
from ϕ. For the purpose of our study, we generalize this notion to arbitrary (i.e.
non-necessarily initial) frames, and even sets of (non-necessarily ground) deduction
facts φ, using the notations ✄φ and ✄

E
φ defined as follows.

Definition 3.1 Deducibility. Let φ be finite set of deductions facts. We say that
M is a recipe of t in φ, written M ✄φ t, if there exist a (public, ground, non-
necessarily linear) n-ary context C and some deduction facts M1✄ t1, . . . , Mn✄ tn
in φ such that M = C[M1, . . . ,Mn] and t = C[t1, . . . , tn]. In that case, we say that
t is syntactically deducible from φ, also written φ ⊢ t.
We say that M is a recipe of t in φ modulo E, written M ✄

E
φ t, if there exists

a term t′ such that M ✄φ t
′ and t′ =E t. In that case, we say that t is deducible

from φ modulo E, written φ ⊢E t.

We note that M ✄ϕ t is equivalent to Mϕ = t when ϕ is an initial frame and
when t (or equivalently M) is ground. We also note that in the case of a frame ϕ,
since our contexts C are ground and public, M ✄ϕ t implies var(M, t) = ∅ and
par(M) ⊆ par(ϕ).

Example 3.2. Consider the equational theory Eenc described in Example 2.1.
Let ϕ0 = {w1 ✄ enc(c0, k),w2 ✄ k} where c0 is a public constant and k is a private
constant. We have that ϕ0 is a set of deduction facts. Since, these facts are
ground, ϕ0 is actually a frame. Moreover, this frame is initial. We have that
〈w2,w2〉✄ϕ0

〈k, k〉, c0 ✄ϕ0
c0, and dec(w1,w2)✄

Eenc
ϕ0

c0.

YAPA: A generic tool for computing intruder knowledge · 7

3.2 Static equivalence, visible equations

Deducibility does not always suffice for expressing the knowledge of an attacker.
In particular, it does not account for the partial information that an attacker may
obtain about secrets. Sometimes, the attacker can deduce exactly the same set
of terms from two different frames but he could still be able to tell the difference
between these two frames. This issue motivates the study of visible equations and
static equivalence (see [Abadi and Fournet 2001]), defined as follows.

Definition 3.3 Static equivalence. Let ϕ be an initial frame. The set of visible
equations of ϕ modulo E is defined as

eqE(ϕ) = {M ⊲⊳ N |M,N ∈ Fpub[dom(ϕ)], Mϕ =E Nϕ}

where ⊲⊳ is a dedicated commutative symbol. Two initial frames ϕ1 and ϕ2 with
the same domain are statically equivalent modulo E, written ϕ1 ≈E ϕ2, if their sets
of visible equations are equal, i.e. eqE(ϕ1) = eqE(ϕ2).

This definition is in line with static equivalence in the applied pi calculus [Abadi
and Fournet 2001] where bounds names would be replaced by free private constants.

Example 3.4. Consider again the equational theory Eenc given in Example 2.1.
Let ϕ0 = {w1 ✄ enc(c0, k), w2 ✄ k} and ϕ1 = {w1 ✄ enc(c1, k), w2 ✄ k} where c0, c1
are public constants and k is a private constant. We have that:

—(enc(c0,w2) ⊲⊳ w1) ∈ eqEenc
(ϕ0), and

—(enc(c0,w2) ⊲⊳ w1) 6∈ eqEenc
(ϕ1).

Hence, eqEenc
(ϕ0) 6= eqEenc

(ϕ1) and the two frames ϕ0 and ϕ1 are not statically
equivalent. However, it can be shown that {w1✄ enc(c0, k)} ≈Eenc

{w1✄ enc(c1, k)}.

For the purpose of finitely describing the set of visible equations eqE(ϕ) of an
initial frame, we introduce quantified equations of the form ∀z1, . . . , zq.M ⊲⊳ N

where z1, . . . , zq ∈ X , q ≥ 0 and var(M,N) ⊆ {z1, . . . , zq}. In what follows, finite
sets of quantified equations are denoted Ψ, Ψ0,. . . We write Ψ |= M ⊲⊳ N when
the ground equation M ⊲⊳ N is a consequence of Ψ in the usual, first-order logics
with equality axioms for the relation ⊲⊳ (that is, reflexivity, symmetry, transitivity
and compatibility with symbols in Fpub). When no confusion arises, we may refer
to quantified equations simply as equations. As usual, quantified equations are
considered up to renaming of bound variables.

Example 3.5. Consider the equational theory Ehom given in Example 2.1. Let
ϕ = {w1 ✄ enc(〈c0, c1〉, k), w2 ✄ 〈enc(c0, k), enc(c1, k)〉, w3 ✄ k} where c0 and c1 are
public constants and k is a private constant. In the set eqEhom

(ϕ), we have, among
others, w1 ⊲⊳ w2 and dec(w1,M) ⊲⊳ 〈dec(proj1(w1),M), dec(proj2(w1),M)〉 for every
term M ∈ Fpub[dom(ϕ)]. Indeed, we have that:

dec(w1,M)ϕ = dec(enc(〈c0, c1〉, k),Mϕ)
=Ehom

〈dec(enc(c0, k),Mϕ), dec(enc(c1, k),Mϕ)〉
=Ehom

〈dec(proj1(w1),M), dec(proj2(w1),M)〉ϕ

This infinite set will be represented with the quantified equation:

∀z. dec(w1, z) ⊲⊳ 〈dec(proj1(w1), z), dec(proj2(w1), z)〉.

8 · Mathieu Baudet et al.

4. MAIN PROCEDURE

In this section, we describe our algorithms for checking deducibility and static
equivalence on convergent rewrite systems. After some additional notations, we
present the core of the procedure, which consists of a set of transformation rules
used to saturate a frame and a finite set of quantified equations. The result of
the saturation can be seen as a finite description of the deducible terms and visi-
ble equations of the initial frame under consideration. We then show how to use
this procedure to decide deducibility and static equivalence, provided that satura-
tion succeeds. (Recall that static equivalence and deduction are undecidable for
convergent theories [Abadi and Cortier 2006].)
Soundness and completeness of the saturation procedure are detailed in Sec-

tion 5. We provide sufficient conditions on the rewrite systems to ensure success of
saturation and termination in Section 6 and Section 7.

4.1 Decompositions of rewrite rules

Before stating the procedure, we introduce the following notion of decomposition
to account for the possible superpositions of an attacker’s context (that is, a recipe
in our setting) with a left-hand side of rewrite rule.

Definition 4.1 Decomposition. Let n, p, q be non-negative integers. A (n, p, q)-
decomposition of a term l (and by an extension of any rewrite rule l → r) is a
(public, ground, non-necessarily linear) context D ∈ Fpub[W] such that par(D) =
{w1, . . . ,wn+p+q} and l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] where

—l1, . . . , ln are mutually-distinct non-variable terms,

—y1, . . . , yp and z1, . . . , zq are mutually-distinct variables, and

—y1, . . . , yp ∈ var(l1, . . . , ln) whereas z1, . . . , zq 6∈ var(l1, . . . , ln).

A decomposition D is proper if it is not a parameter (i.e. D 6= w1).

In order to avoid unnecessary computations, (n, p, q)-decompositions are considered
up to permutations of parameters in the sets {w1, . . . ,wn}, {wn+1, . . . ,wn+p} and
{wn+p+1, . . . ,wn+p+q} respectively.

Example 4.2. Consider the rewrite rule dec(enc(x, y), y) → x. This rule admits
two proper decompositions up to permutation of parameters:

—D1 = dec(enc(w1,w2),w2) where n = 0, p = 0, q = 2, z1 = x, z2 = y;

—D2 = dec(w1,w2) where n = 1, p = 1, q = 0, l1 = enc(x, y) and y1 = y.

Now, consider the rewrite rule dec(〈x, y〉, z) → 〈dec(x, z), dec(y, z)〉. This rule
also admits two proper decompositions:

—D3 = dec(〈w1,w2〉,w3) where n = 0, p = 0, q = 3, z1 = x, z2 = y, z3 = z;

—D4 = dec(w1,w2) where n = 1, p = 0, q = 1, l1 = 〈x, y〉, z1 = z.

4.2 Transformation rules

To check deducibility and static equivalence, we proceed by saturating an initial
frame, adding some deduction facts and equations satisfied by the frame. We

YAPA: A generic tool for computing intruder knowledge · 9

A. Inferring deduction facts and equations by context reduction

Assume that

l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] is a proper decomposition of (l → r) ∈ R
M1 ✄ t1, . . . ,Mn+p ✄ tn+p ∈ Φ
(l1, . . . , ln, y1, . . . , yp)σ = (t1, . . . , tn+p)

(1) If there exists M = Ctx(Φ ∪ {z1 ✄ z1, . . . , zq ✄ zq} ⊢?
R

rσ), then

(Φ,Ψ) =⇒ (Φ,Ψ ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1 . . . , zq] ⊲⊳ M}) (A.1)

(2) Else, if (rσ)↓R is ground, then

(Φ,Ψ) =⇒ (Φ ∪ {M0 ✄ (rσ)↓R},
Ψ ∪ {∀z1, . . . , zq .D[M1, . . . ,Mn+p, z1 . . . , zq] ⊲⊳ M0})

(A.2)

where M0 = D[M1, . . . ,Mn+p, a, . . . , a] for some fixed public constant a.

(3) Otherwise, (Φ,Ψ) =⇒ ⊥ (A.3)

B. Inferring deduction facts and equations syntactically

Assume that M0 ✄ t0, . . . ,Mn ✄ tn ∈ Φ t = f(t1, . . . , tn) ∈ st(t0) f ∈ Fpub

(1) If there exists M such that (M ✄ t) ∈ Φ,

(Φ,Ψ) =⇒ (Φ,Ψ ∪ {f(M1, . . . ,Mn) ⊲⊳ M}) (B.1)

(2) Otherwise, (Φ,Ψ) =⇒ (Φ ∪ {f(M1, . . . ,Mn)✄ t},Ψ) (B.2)

Fig. 1. Transformation rules

consider states that are either the failure state ⊥ or a couple (Φ,Ψ) formed by a
one-to-one frame Φ in R-reduced form and a finite set of quantified equations Ψ.

Given an initial frame ϕ, our procedure starts from an initial state associated
to ϕ, denoted by Init(ϕ), obtained by reducing ϕ and replacing duplicated terms
by equations. Formally, Init(ϕ) is the result of a procedure recursively defined as
follows: Init(∅) = (∅, ∅), and assuming Init(ϕ) = (Φ,Ψ), we have

Init(ϕ ⊎ {w ✄ t}) =

{

(Φ,Ψ ∪ {w ⊲⊳ w′}) if there exists some w′
✄ t↓R ∈ Φ

(Φ ∪ {w ✄ t↓R},Ψ) otherwise.

Example 4.3. Consider the frames ϕ0, ϕ1 and ϕ introduced respectively in Ex-
ample 3.4 and Example 3.5. We have that Init(ϕ0) = (ϕ0, ∅), Init(ϕ1) = (ϕ1, ∅)
and Init(ϕ) = ({w1 ✄ 〈enc(c0, k), enc(c1, k)〉,w3 ✄ k}, {w1 ⊲⊳ w2}).

The main part of our procedure consists in saturating a state (Φ,Ψ) by means
of the transformation rules described in Figure 1. The A rules are designed for
applying a rewrite step on top of existing deduction facts. If the resulting term
(rσ)↓R is already deducible (in some specific sense that we make precise below)
then a corresponding equation is added (rule A.1); or else if it is ground, the corre-
sponding deduction fact is added to the state (rule A.2); otherwise, the procedure
may fail (rule A.3). The B rules are meant to add syntactically deducible subterms
(rule B.2) or related equations (rule B.1).

For technical reasons, rule A.1 is parametrized by a function Ctx that outputs
either a recipeM or the special symbol ⊥. This function has to satisfy the following
properties:

10 · Mathieu Baudet et al.

(a) if φ ⊢ t↓R, then Ctx(φ ⊢?
R t) 6= ⊥;

(b) if M = Ctx(φ ⊢?
R t) then there exists s such that M ✄φ s and t →∗

R s. (This
justifies the notation φ ⊢?

R t used to denote a specific deducibility problem.)

Property (a) ensures that the rules transform a state into a state (and more precisely
that the resulting frame in (A.2) is still one-to-one). Property (b) guarantees the
soundness of the new equation in (A.1). Requiring t →∗

R s instead t =E s is
necessary for the proof of completeness. In what follows, a function Ctx is any
function satisfying the two properties (a) and (b).

A simple choice for Ctx(φ ⊢?
R t) is to solve the deducibility problem φ ⊢? t↓R

in the empty equational theory, and then return a corresponding recipe M , if any.
(This problem is easily solved by induction on t↓R.) We will see in Section 6 that
this choice is sufficient to avoid failure for a large class of equational theories, namely
the class of layered convergent theories. However the proof of this fact relies on an
intermediate result that uses a different choice of Ctx.

Example 4.4. Consider the frame ϕ0 previously described in Example 3.4. We
can apply rule A.1 as follows. Consider the rewrite rule dec(enc(x, y), y) → x,
the decomposition D2 given in Example 4.2 and t1 = enc(c0, k). We have that
Init(ϕ0) = (ϕ0, ∅) =⇒ (ϕ0, {dec(w1,w2) ⊲⊳ c0}). In other words, since we know the
key k through w2, we can check that the decryption of w1 by w2 leads to the public
constant c0. Next we apply rule B.1 as follows:

(ϕ0, {dec(w1,w2) ⊲⊳ c0}) =⇒ (ϕ0, {dec(w1,w2) ⊲⊳ c0, enc(c0,w2) ⊲⊳ w1}).

No more rules can then modify the state. Similarly for ϕ1, we obtain that:

Init(ϕ1) = (ϕ1, ∅)
=⇒ (ϕ1, {dec(w1,w2) ⊲⊳ c1})
=⇒ (ϕ1, {dec(w1,w2) ⊲⊳ c1, enc(c1,w2) ⊲⊳ w1}).

Example 4.5. Consider the frame ϕ described in Example 3.5. We can apply
rule A.1 as follows. Consider the rewrite rule dec(〈x, y〉, z) → 〈dec(x, z), dec(y, z)〉,
the decomposition D4 given in Example 4.2 and t1 = 〈enc(c0, k), enc(c1, k)〉. We
have that rσ = 〈dec(enc(c0, k), z1), dec(enc(c1, k), z1)〉, and thus Init(ϕ) =⇒ ⊥. We
have that rσ↓R = rσ. The condition required in case (1) is not fulfilled and the
condition stated in case (2) is false.
However, note that another strategy of rules application allows us to consider this

decomposition. For this, it is sufficient to apply first B rules to add the deduction
facts proj1(w1) ✄ enc(c0, k) and proj2(w1) ✄ enc(c1, k). Now, we have that rσ↓R is
syntactically deducible: the condition required in case (1) is full-filled and we finally
add the equation: ∀z1.dec(w1, z1) ⊲⊳ 〈dec(proj1(w1), z1), dec(proj2(w1), z1)〉.

We write =⇒∗ for the transitive and reflexive closure of =⇒. The definitions of
Ctx and of the transformation rules ensure that whenever S =⇒∗ S′ and S is a
state, then S′ is also a state, with the same parameters unless S′ = ⊥.

4.3 Main theorem

We now state the soundness and the completeness of the transformation rules pro-
vided that a saturated state is reached, that is, a state S 6= ⊥ such that S =⇒ S′

YAPA: A generic tool for computing intruder knowledge · 11

implies S′ = S. The technical lemmas involved in the proof of this theorem are
detailed in Section 5.

Theorem 4.6 soundness and completeness. Let E be an equational theory
generated by a convergent rewrite system R. Let ϕ be an initial frame and (Φ,Ψ)
be a saturated state such that Init(ϕ) =⇒∗ (Φ,Ψ).

(1) For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have that:

Mϕ =E t ⇔ ∃N such that Ψ |=M ⊲⊳ N and N ✄Φ t↓R.

(2) For all M , N ∈ Fpub[par(ϕ) ∪ X], we have that:

Mϕ =E Nϕ ⇔ Ψ |=M ⊲⊳ N.

We note that this theorem applies to any saturated state reachable from the
initial frame. Moreover, while the saturation procedure is sound and complete, it
may not terminate, or it may fail if rule A.3 becomes the only applicable rule at
some point of computation. In Section 6 and Section 7, we explore several sufficient
conditions to prevent failure and ensure termination.

4.4 Application to deduction and static equivalence

Decision procedures for deduction and static equivalence modulo E follow from
Theorem 4.6.

Algorithm for deduction. Let ϕ be an initial frame and t be a ground term. The
procedure for checking ϕ ⊢E t runs as follows:

(1) Apply the transformation rules to obtain (if any) a saturated state (Φ,Ψ) such
that Init(ϕ) =⇒∗ (Φ,Ψ);

(2) Return yes if there exists N such that N ✄Φ t↓R (that is, the R-reduced form
of t is syntactically deducible from Φ); otherwise return no.

Proof. If the algorithm returns yes, this means that there exists N such that
N ✄Φ t↓R. Thanks to Theorem 4.6 (1), we have that Nϕ =E t, i.e. N ✄

E
ϕ t.

Conversely, if t is deducible from ϕ, then there exists M such that Mϕ =E t.
By Theorem 4.6 (1), there exists N such that N ✄Φ t↓R. The algorithm returns
yes.

Example 4.7. Consider the frame ϕ0 = {w1 ✄ enc(c0, k),w2 ✄ k} introduced in
Example 3.2 and let t1 = 〈k, k〉 and t2 = c0. Let (Φ0,Ψ0) be the saturated state
described in Example 4.4. We have that:

(Φ0,Ψ0) = (ϕ0, {dec(w1,w2) ⊲⊳ c0, enc(c0,w2) ⊲⊳ w1}).

Then, it is easy to see that our algorithm for deduction will return yes for both
terms t1 and t2. Indeed, those terms are syntactically deducible from ϕ0.

Algorithm for static equivalence. Let ϕ1 and ϕ2 be two initial frames. The pro-
cedure for checking ϕ1 ≈E ϕ2 runs as follows:

(1) Apply the transformation rules to obtain (if possible) two saturated states
(Φ1,Ψ1) and (Φ2,Ψ2) such that Init(ϕi) =⇒∗ (Φi,Ψi), i = 1, 2;

12 · Mathieu Baudet et al.

(2) For {i, j} = {1, 2}, for every equation (∀z1, . . . , zℓ.M ⊲⊳ N) in Ψi, check that
Mϕj =E Nϕj — that is, in other words, (Mϕj)↓R = (Nϕj)↓R;

(3) If so return yes ; otherwise return no.

Proof. If the algorithm returns yes, this means that Mϕ2 =E Nϕ2 for every
equation (∀z1, . . . , zℓ.M ⊲⊳ N) in Ψ1. Let M ⊲⊳ N ∈ eqE(ϕ1). By definition of
eqE(ϕ1), we have that Mϕ1 =E Nϕ1. Thanks to Theorem 4.6 (2), we have that
Ψ1 |=M ⊲⊳ N . As all the equations in Ψ1 are satisfied by ϕ2 modulo E, we deduce
that Mϕ2 =E Nϕ2, i.e. M ⊲⊳ N ∈ eq(ϕ2). The other inclusion, eqE(ϕ2) ⊆ eqE(ϕ1),
is proved in the same way.

Conversely, assume now that ϕ1 ≈E ϕ2, i.e. eqE(ϕ1) = eqE(ϕ2). Consider a
quantified equation ∀z1, . . . , zℓ.M ⊲⊳ N in Ψ1 and let us show that Mϕ2 =E Nϕ2.
(The other case is done in a similar way, and we will conclude that the algorithm
returns yes.) Let c1, . . . , cℓ be free public constants not occurring in M and N ,
and let (M ′, N ′) = (M,N){z1 7→ c1, . . . , zℓ 7→ cℓ}. Since Ψ1 |= M ′ ⊲⊳ N ′, by
Theorem 4.6 (2), we have that M ′ϕ1 =E N

′ϕ1. Besides, M ′ and N ′ are ground
and par(M ′, N ′) ⊆ par(Ψ1) ⊆ par(ϕ1). Thus, (M

′ ⊲⊳ N ′) ∈ eqE(ϕ1) ⊆ eqE(ϕ2) and
M ′ϕ2 =E N

′ϕ2. As the constants c1, . . . , cℓ are free in E and do not occur in M

and N , by replacement, we obtain that Mϕ2 =E Nϕ2.

Example 4.8. Consider the frames ϕi = {w1 ✄ enc(ci, k),w2 ✄ k} introduced in
Example 3.4. Let (Φ0,Ψ0) and (Φ1,Ψ1) be the two saturated states described in
Example 4.4. We have that dec(w1,w2) ⊲⊳ c0 ∈ Ψ0, and

(dec(w1,w2)ϕ1 =Eenc
c1 6=Eenc

c0 = c0ϕ1.

Hence, our algorithm returns no. The two frames ϕ0 and ϕ1 are not statically
equivalent.

5. SOUNDNESS AND COMPLETENESS OF THE SATURATION

The goal of this section is to prove Theorem 4.6. Section 5.1 is devoted to estab-
lish soundness of our saturation procedure, i.e. the ⇐ direction of Theorem 4.6.
Showing the other direction, i.e. completeness, is more involved and is detailed in
Section 5.2.

5.1 Soundness

First, the transformation rules are sound in the sense that, along the saturation
process, we add only deducible terms and valid equations with respect to the initial
frame.

Lemma 5.1 soundness. Let ϕ be an initial frame and (Φ,Ψ) be a state such
that Init(ϕ) =⇒∗ (Φ,Ψ). Then, we have that

(1) M ✄Φ t ⇒ Mϕ =E t for all M ∈ Fpub[dom(ϕ)] and t ∈ F [∅];

(2) Ψ |=M ⊲⊳ N ⇒ Mϕ =E Nϕ for all M,N ∈ Fpub[dom(ϕ) ∪ X].

Proof. We prove this result by induction on the derivation Init(ϕ) =⇒∗ (Φ,Ψ).

Base case: We have that (Φ,Ψ) = Init(ϕ) and we easily conclude.

Induction case: In such a case, we have Init(ϕ) =⇒∗ (Φ′,Ψ′) =⇒ (Φ,Ψ).
Let us first notice two facts.

YAPA: A generic tool for computing intruder knowledge · 13

(1) Let M and t be such that M ✄Φ t. By definition of ✄Φ, there exist a public
context C and some deduction facts M ′

1 ✄ t′1, . . . ,M
′
n ✄ t′n ∈ Φ such that M =

C[M ′
1, . . .M

′
n] and t = C[t′1, . . . , t

′
n]. In order to prove 1., it is sufficient to show

that M ′
✄

E
ϕ t

′ for every M ′
✄ t′ ∈ Φ. By induction hypothesis, this holds for

the deduction facts in Φ′, thus it remains to show that M ′
✄

E
ϕ t

′ for every fact
M ′

✄ t′ ∈ Φ− Φ′.

(2) Let M,N be two terms such that Ψ |=M ⊲⊳ N . To establish 2., it is sufficient
to prove that M ′ϕ =E N

′ϕ for every (∀z1, . . . , zq.M ′ ⊲⊳ N ′) in Ψ. By induction
hypothesis, this holds for the equations in Ψ′, thus it remains to show that
M ′ϕ =E N

′ϕ for every equation (∀z1, . . . , zq.M ′ ⊲⊳ N ′) in Ψ−Ψ′.

Next we perform a case analysis on the inference rule used in (Φ′,Ψ′) =⇒ (Φ,Ψ).

First, consider the case of rule A. Let l → r ∈ R be the rewrite rule, D the
decomposition, and M1 ✄ t1, . . . ,Mn+p ✄ tn+p the facts involved in this step.

Rule A.2 : We need to show that

—D[M1, . . . ,Mn+p, a, . . . , a]ϕ =E (rσ)↓R, and

—D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E D[M1, . . . ,Mn+p, a, . . . , a]ϕ.

We note that D[t1, . . . , tn+p, z1, . . . , zq] = lσ → rσ →∗ (rσ)↓R. Besides, by induc-
tion hypothesis we have that Miϕ =E ti for 1 ≤ i ≤ n + p. Given that (rσ)↓R
is ground, and applying the substitution {z1 7→ a, . . . , zq 7→ a} to the equation
D[t1, . . . , tn+p, z1, . . . , zq] =E (rσ)↓R, we obtain:

D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E D[t1, . . . , tn+p, z1, . . . , zq]

=E (rσ)↓R
=E D[t1, . . . , tn+p, a, . . . , a]

=E D[M1, . . . ,Mn+p, a, . . . , a]ϕ

Rule A.1 : We need to show D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E Mϕ. As before, we
have D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E (rσ)↓R. We also know that there exists s
such that M ✄Φ+ s and rσ →∗

R s where Φ+ = Φ ∪ {z1 ✄ z1, . . . , zq ✄ zq} thanks
to property (b) of Ctx. Let θ be the substitution {z1 7→ a, . . . , zq 7→ a}. We have
thatMθ✄Φ s. Hence, using the induction hypothesis, we have thatMθϕ =E s thus
Mϕ =E s, i.e. Mϕ =E (rσ)↓R. This allows us to conclude.

Rule A.3 : In such a case, the result trivially holds.

Second, we consider the case of B rules. Let t = f(t1, . . . , tn) ∈ st(t0), f ∈ Fpub

and M0 ✄ t0, . . . ,Mn ✄ tn ∈ Φ be involved in the step (Φ′,Ψ′) =⇒ (Φ,Ψ).

Rule B.1 : By induction hypothesis, Miϕ =E ti for every 1 ≤ i ≤ n, hence
f(M1, . . . ,Mn)ϕ =E f(t1, . . . , tn) = t.

Rule B.2 : By induction hypothesis, Miϕ =E ti for every 1 ≤ i ≤ n and Mϕ =E t,
hence f(M1, . . . ,Mn)ϕ =E f(t1, . . . , tn) = t =E Mϕ.

5.2 Completeness

The next three lemmas are dedicated to the completeness of B rules (Lemma 5.2
and Lemma 5.3) and A rules (Lemma 5.4).

14 · Mathieu Baudet et al.

Lemma 5.2 ensures that a saturated state (Φ,Ψ) contains all the deduction
facts M ✄ t where t is a subterm of Φ that is syntactically deducible, whereas
Lemma 5.3 ensures that saturated states account for all the syntactic equations
possibly visible on the frame.

Lemma 5.2 completeness, syntactic deduction. Let (Φ,Ψ) be a state,M0✄

t0 ∈ Φ. Let N , t be two terms such that t ∈ st(t0) and N ✄Φ t. Then there exists
(Φ′,Ψ′) and N ′ such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—N ′
✄ t ∈ Φ′ and Ψ′ |= N ⊲⊳ N ′.

The proof of Lemma 5.2 is postponed to the appendix. It uses a simple induction
on the context C witnessing the fact that t is syntactically deducible from Φ.

Lemma 5.3 completeness, syntactic equations. Let (Φ,Ψ) be a state, and
M , N be two terms such that M ✄Φ t and N ✄Φ t for some term t. Then there
exists (Φ′,Ψ′) such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—Ψ′ |=M ⊲⊳ N .

Proof. (sketch) Let C, C′ be the contexts witnessing M ✄Φ t and N ✄Φ t. As-
sume that C is smaller than C′. The proof is done by induction on C. When C

is reduced to an hole, we apply Lemma 5.2 to conclude. Otherwise, we have that
C = f(C1, . . . , Cr) and C′ = f(C′

1, . . . , C
′
r). We easily conclude by applying our

induction hypothesis on Ci, C
′
i for each 1 ≤ i ≤ r. The detailed proof is presented

in appendix A.

Now, we know that terms that are syntactically deducible from the frame and
syntactic equation visible on the frame will be added during our saturation proce-
dure. It remains to take into account the underlying equational theory. This is the
purpose of Lemma 5.4 that deals with the reduction of a deducible term along the
rewrite system R. Using that R is convergent, this allows us to prove that every
deducible term from a saturated frame is syntactically deducible.

Lemma 5.4 completeness, context reduction. Let (Φ,Ψ) be a state and
M , t, t′ be three terms such that M ✄Φ t and t →R t′. Then, either (Φ,Ψ) =⇒∗ ⊥
or there exist (Φ′,Ψ′), M ′ and t′′ such that

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′),

—M ′
✄Φ′ t′′ with t′ →∗

R t′′, and

—Ψ′ |=M ⊲⊳ M ′.

Besides, in both cases, the corresponding derivation from (Φ,Ψ) can be chosen to
consist of a number of B rules, possibly followed by one instance of A rule involving
the same rewrite rule l → r as the rewrite step t→R t′.

Proof. (sketch) The detailed proof of Lemma 5.4 is left to the appendix. We
describe here its main arguments. Since t→R t′, there exist a position α, a substi-
tution σ and a rewrite rule l → r ∈ R such that t|α = lσ and t′ = t[rσ]α. Let C be

YAPA: A generic tool for computing intruder knowledge · 15

a context witnessing the fact that M ✄Φ t. Since terms in im(Φ) are R-reduced, α
is actually a position in C. Thus, the rewriting step mentioned above corresponds
to a proper (n, p, q)-decomposition D of l: l = D[l1, . . . , ln, y1, . . . yp, z1, . . . zq]. We
can show that M |α ✄Φ lσ and D[M1, . . . ,Mn, N1, . . . , Np+q]✄Φ lσ where

—M1 ✄ t1, . . . , Mn ✄ tn are deduction facts in Φ,

—for every 1 ≤ j ≤ p, Nj ✄Φ yjσ, and

—for every 1 ≤ k ≤ q, Np+k ✄Φ zkσ.

Thus, by Lemma 5.3, there exists a derivation (Φ,Ψ) =⇒∗ (Φ1,Ψ1) using B rules
such that Ψ1 |=M |α ⊲⊳ D[M1, . . . ,Mn, N1, . . . , Np+q].
Besides, yjσ is a subterm of some liσ = ti. Since Nj ✄Φ yjσ, by applying

Lemma 5.2 repeatedly, we deduce that there exist some termMn+1, . . . , Mn+p and
a derivation (Φ1,Ψ1) =⇒∗ (Φ2,Ψ2) using B rules such that for all j,

—Mn+j ✄ yjσ is in Φ2, and

—Ψ2 |=Mn+j ⊲⊳ Nj.

Let N = D[M1, . . . ,Mn+p, Np+1, . . . , Np+q]. We deduce that N ✄Φ2
lσ, and

Ψ2 |=M |α ⊲⊳ D[M1, . . . ,Mn, N1, . . . , Np+q] ⊲⊳ N

We now consider the application to (Φ2,Ψ2) of aA rule that involves the rewrite rule
l → r, the decompositionD, the plain terms (t1, . . . , tn+p) = (l1, . . . , ln, y1, . . . , yp)σ.
Depending on whether (rσ)↓R is ground and Ctx(Φ+

2 ⊢?
R rσ′) = ⊥, we conclude

by applying A.1, A.2 or A.3.

5.3 Main theorem

We are now able to prove soundness and completeness of our transformation rules
provided that a saturated state is reached.

Theorem 4.6 soundness and completeness. Let E be an equational theory
generated by a convergent rewrite system R. Let ϕ be an initial frame and (Φ,Ψ)
be a saturated state such that Init(ϕ) =⇒∗ (Φ,Ψ).

(1) For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have that:

Mϕ =E t ⇔ ∃N such that Ψ |=M ⊲⊳ N and N ✄Φ t↓R.

(2) For all M , N ∈ Fpub[par(ϕ) ∪ X], we have that:

Mϕ =E Nϕ ⇔ Ψ |=M ⊲⊳ N.

Proof. Let ϕ be an initial frame and (Φ,Ψ) be a saturated state such that
Init(ϕ) ⇒∗ (Φ,Ψ).

1.(⇐) Let M , N and t be such that Ψ |=M ⊲⊳ N and N ✄Φ t↓R (thus in particular
N ✄

E
Φ t). Thanks to Lemma 5.1, we have that Mϕ =E Nϕ =E t.

(⇒) LetM and t be such thatMϕ =E t. We have thatM ✄Φ t0 →∗ t↓R for some
term t0. We show the result by induction on t0 equipped with the order < induced
by the rewriting relation (t < t′ if and only if t′ →+ t).

Base case: M ✄Φ t0 = t↓R. Let N =M , we have Ψ |=M ⊲⊳ N and N ✄Φ t↓R.

16 · Mathieu Baudet et al.

Induction case: M ✄Φ t0 →+ t↓R. Let t′ be such that M ✄Φ t0 → t′ →∗ t↓R.
Thanks to Lemma 5.4 and since (Φ,Ψ) is already saturated1, we deduce that there
exist N ′ and t′′ such that N ′

✄Φ t
′′, t′ →∗ t′′, and Ψ |= M ⊲⊳ N ′. We have that

N ′
✄Φ t

′′ →∗ t↓R and t′′ ≤ t′ < t0. Thus, we can apply our induction hypothesis
and we obtain that there exists N such that Ψ |= N ′ ⊲⊳ N and N ✄Φ t↓R.

2.(⇐) By Lemma 5.1, Ψ |=M ⊲⊳ N implies Mϕ =E Nϕ.

(⇒) LetM and N such thatMϕ =E Nϕ. This means that there exists t such that
Mϕ =E t and Nϕ =E t. By applying 1, we deduce that there exists M ′, N ′ such
that: ψ |=M ⊲⊳ M ′,M ′

✄Φt↓R, ψ |= N ⊲⊳ N ′ andN ′
✄Φt↓R. Thanks to Lemma 5.3

and since (Φ,Ψ) is already saturated, we easily deduce that Ψ |= M ′ ⊲⊳ N ′, and
thus Ψ |=M ⊲⊳ N .

We proved that saturated frames yield sound and complete characterizations of
deducible terms and visible equations of their initial frames. Yet, the saturation
procedure may still not terminate, or fail due to rule A.3.

6. NON-FAILURE

As shown by the following example (from [Ciobâcă et al. 2009]), our procedure may
fail.

Example 6.1. Consider the theory Emal given below:

Emal = {dec(enc(x, y), y) = x, mal(enc(x, y), z) = enc(z, y)}.

The mal function symbol allows one to arbitrarily change the plaintext of an en-
cryption. Such a malleable encryption is not realistic. It is only used for illustrative
purpose.
By orienting from left to right the equations, we obtain a convergent rewrite

system. Thus, Emal is a convergent equational theory. Let ϕ = {w1 ✄ enc(s, k)}
where s and k are private constants. The only rule that is applicable is an instance
of an A rule. Consider the rewrite rule mal(enc(x, y), z) → enc(z, y) and the only
deduction fact in Init(ϕ) = (ϕ, ∅). We obtain rσ↓R = enc(z, k). This term is not
ground and the condition required in case (1) is not fulfilled. Thus, we have that
Init(ϕ) =⇒ ⊥. Note that, since no other rule is applicable, there is no hope to find
a strategy of rule applications to handle this case.

In this section, we identify a class of theories, called layered convergent theories,
(a syntactically defined class of theories) for which failure is guaranteed not to
occur.

6.1 Layered convergent theories

We prove that the algorithm never fails for layered convergent theories. Layered
convergent theories consist in a generalization of subterm theories, considering each
decomposition of the rewrite rules of the theory.

Definition 6.2 layered rewrite system. A rewrite system R, and by extension
its equational theory E, are layered if there exists an ascending chain of sub-
sets ∅ = R0 ⊆ R1 ⊆ . . . ⊆ RN+1 = R (N ≥ 0), such that for every 0 ≤

1Note that rule A.3 is never applicable on a saturated state.

YAPA: A generic tool for computing intruder knowledge · 17

i ≤ N , for every rule l → r in Ri+1 − Ri, for every (n, p, q)-decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], one of the following two conditions holds:

(i) var(r) ⊆ var(l1, . . . , ln);

(ii) there exist C0, C1, . . . , Ck and s1, . . . , sk such that
—r = C0[s1, . . . , sk];
—for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in zero
or one step of rewrite rule in head position along Ri.

In the latter case, we say that the context C = C0[C1, . . . , Ck] is associated to the
decomposition D of l → r. Note that C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] →∗

Ri
r.

The large class of weakly subterm convergent is an (easy) particular case of
layered convergent theories.

Lemma 6.3. Any weakly subterm convergent rewrite system R is layered con-
vergent.

Proof. LetN = 0 andR1 = R. For any l → r inR and for every decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], the term r is a subterm of l, thus either
r = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] for some context C, or r is a subterm of
some li thus var(r) ⊆ var(l1, . . . , ln).

Consider the convergent theories of blind signatures Eblind and prefix encryp-
tion Epref defined by the following sets of equations.

Eblind =







checksign(sign(x, y), pub(y)) = ok

unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)







Epref = Eenc ∪
{

pref(enc(〈x, y〉, z)) = enc(x, z)
}

The theory Eblind models primitives used in e-voting protocols [Delaune et al. 2009].
The prefix theory represents the property of many chained modes of encryption
(e.g. CBC) where an attacker can retrieve any encrypted prefix out of a ciphertext.

Lemma 6.4. The rewrite system associated to the theory of homomorphism Ehom

defined in Section 2.3 as well as the rewrite systems obtained by orienting from left
to right the equations in Eblind and Epref are layered convergent.

Proof. Let us check for instance that the prefix theory Epref is layered. Let
N = 1, R1 be the rewrite system obtained from Eenc by orienting the equations from
left to right, and R2 = R1 ∪ {pref(enc(〈x, y〉, z)) → enc(x, z)}. The rewrite rules
of R1 satisfy the assumptions since R1 forms a convergent subterm rewrite system.
The additional rule pref(enc(〈x, y〉, z)) → enc(x, z) admits three decompositions up
to permutation of parameters:

—l = pref(l1), in which case var(r) ⊆ var(l1);

—l = pref(enc(l1, z)), in which case enc(proj1(l1), z) →R1
r;

—l = pref(enc(〈x, y〉, z)), in which case r = enc(x, z).

Verifying that the convergent theories Ehom and Eblind are layered is similar.

18 · Mathieu Baudet et al.

6.2 A syntactic criterion

Definition 6.5 Maximal. We say that the function Ctx is maximal if for every φ
and t, if there exists s such that φ ⊢ s and t→∗

R s, then Ctx(φ ⊢?
R t) 6= ⊥.

Proposition 6.6. Assume that the function Ctx in use is maximal. Then,
provided that R is layered convergent, there exists no state (Φ,Ψ) from which
(Φ,Ψ) =⇒ ⊥ is the only applicable derivation.

Proof. By contradiction, let (Φ,Ψ) be a state from which (Φ,Ψ) =⇒ ⊥ is
the only applicable derivation, and let l → r be the rewrite rule involved in the
corresponding instance of A.3. We prove the property by induction on the index
i ∈ {0 . . .N} such that l → r ∈ Ri+1 −Ri. Using the notations of Figure 1 for the
instance of A.3 under consideration and the assumption on Ctx, we have that:

(a) for every rσ →∗
R s, Φ ∪ {z1 ✄ z1, . . . , zq ✄ zq} 6⊢ s, and

(b) (rσ)↓R is not ground.

In particular, (b) implies that var(r) is not included in var(l1, . . . , ln), otherwise
we would have

var((rσ)↓R) ⊆ var(rσ) ⊆ var(var(r)σ)

⊆ var(var(l1, . . . , ln)σ) ⊆ var(t1, . . . , tn) = ∅

By assumption on the decomposition l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] of
l → r ∈ Ri+1−Ri, we deduce that there exists some contexts C0, . . . , Ck and some
terms s1, . . . , sk such that:

—r = C0[s1, . . . , sk];

—for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in zero or one
step of rewrite rule in head position along Ri.

Let C = C0[C1, . . . , Ck] and t0 = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]. Note that
t0 →∗

Ri
r. If t0 = r, we obtain that rσ = C[t1, . . . , tn+p, z1, . . . , zq] is syntactically

deducible from Φ ∪ {z1 ✄ z1, . . . , zq ✄ zq}, which contradicts (a). Hence t0 →+
Ri

r,
and in particular i > 0.
Let µ be a substitution mapping the variables zj to distinct fresh public con-

stants aj . For each 1 ≤ i ≤ k, let ui = Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]σµ . The
term ui = Ci[t1, . . . , tn+p, a1, . . . , aq] is syntactically deducible from Φ, and reduces
to u′i = siσµ in zero or one step (in head position) along Ri.
By induction hypothesis on i−1, no applicable rule A.3 from (Φ,Ψ) may involve

a rule inRi. Besides, by assumption, (Φ,Ψ) is saturated for the rulesB.1, B.2,A.1
and A.2. Therefore, Lemma 5.4 applied to Φ ⊢ ui and ui →Ri

u′i implies that there
exists u′′i such that u′i →

∗
R u′′i and Φ ⊢ u′′i . The same conclusion trivially holds if

u′i = ui. Let s = C0[u
′′
1 , . . . , u

′′
k]µ

−1 be the term obtained by replacing each ai by zi
in C[u′′1 , . . . , u

′′
k]. Since the ai do not occur in R nor in Φ, we deduce that s satisfies

rσ = C0[s1σ, . . . , skσ] = C0[u
′
1, . . . , u

′
k]µ

−1 →∗
R s and Φ∪{z1✄ z1, . . . , zq✄ zq} ⊢ s,

in contradiction with the condition (a) stated at the beginning of the proof.

YAPA: A generic tool for computing intruder knowledge · 19

6.3 Practical considerations.

Unfortunately, such a maximal Ctx is too inefficient in practice as one has to con-
sider the syntactic deducibility problem φ ⊢ s for every t →∗

R s. Proposition 6.7
below shows that the simple function context is actually sufficient to ensure non-
failure when we know that another function Ctx already prevents failure on any
state (reachable or not).

Proposition 6.7. Let R be a convergent rewrite system and Ctx0 be an arbi-
trary function Ctx. If there exists no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥ is the
only applicable derivation when the function Ctx in use is Ctx0, then there exists
no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥ is the only applicable derivation for any
choice of Ctx.

Proof. Let Ctx0 and Ctx′0 be two arbitrary functions Ctx (i.e. they satisfy
properties (a) and (b)). Assume that there exists no state (Φ,Ψ) from which
(Φ,Ψ) =⇒ ⊥ is the only applicable derivation when the function Ctx in use is Ctx0.
Assume by contradiction that there exists a state (Φ0,Ψ0) from which (Φ0,Ψ0) =⇒
⊥ is the only applicable derivation for Ctx′0. This means that there exist:

—a rewrite rule l → r ∈ R,

—a proper decomposition D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] of l,

—some deduction facts M1 ✄ t1, . . . ,Mn+p ✄ tn+p ∈ Φ0, and

—a substitution σ such that (l1, . . . , ln, y1, . . . , yp)σ = (t1, . . . , tn+p).

Moreover, since this instance corresponds to an instance of A.3, we have that
rσ↓R is not ground. When the function Ctx in use is Ctx0, this instance has to
correspond to an instance of A.1 (A.2 and A.3 are impossible). Hence, we have
that Ctx0(Φ0 ∪ {z1 ✄ z1, . . . , zq ✄ zq} ⊢?

R rσ) 6= ⊥. This means that there exists s
such that rσ →∗

R s and Φ0 ∪ {z1 ✄ z1, . . . , zq ✄ zq} ⊢ s. Since R is convergent, we
have that s→∗

R rσ↓R.
Let µ be a substitution mapping the variables zj to distinct fresh public con-

stants aj . We have that sµ→∗
R (rσ↓R)µ and also that Φ0 ⊢ sµ. Since (Φ0,Ψ0) =⇒

⊥ is the only applicable derivation for Ctx′0, the rules A.2, B.1, and B.2 cannot
be applicable, even for Ctx0. We saturate (Φ0,Ψ0) with the A.1 rule for Ctx0,
reaching a state of the form (Φ0,Ψ

′
0) since only equations can be added to the

state. Note also that the A.1 rule can only be applied a finite a number of time
and does not trigger the other rules. Thus (Φ0,Ψ

′
0) is saturated for Ctx0. Us-

ing Lemma 5.4 (with the function Ctx0), we obtain that Φ0 ✄ (rσ↓R)µ, and thus
Φ0 ∪ {z1 ✄ z1, . . . , zq ✄ zq} ⊢ rσ↓R. This contradicts the fact that A.1 does not
apply on (Φ0,Ψ0) when the function Ctx in use is Ctx′0. Hence, the result.

Corollary 6.8. Let R be a layered convergent rewrite system and consider an
arbitrary function Ctx in use. There exists no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥
is the only applicable derivation.

7. TERMINATION

In the previous section, we have described a sufficient criterion for non-failure. As
shown by the example given below, this criterion does not ensure the termination
of our saturation procedure.

20 · Mathieu Baudet et al.

Example 7.1. Consider the following layered convergent rewrite system f(g(x)) →
g(h(x)) where f is a public function symbol whereas g and h are private function
symbols. Let ϕ = {w0✄g(a)} where a is a private constant. By repeatedly applying
the A rule on the newly generated deduction fact, we generate an infinite number
of deduction facts of the form:

f(w0)✄ g(h(a)), f(f(w0))✄ g(h(h(a)), f(f(f(w0))) ✄ g(h(h(h(a))), . . .

To obtain decidability for a given layered convergent theory, there remains only to
provide a termination argument. Such an argument is generally easy to develop by
hand as we illustrate on the example of the prefix theory. For the case of existing
decidability results from [Abadi and Cortier 2006], such as the theories of blind
signature and homomorphic encryption, we also provide a semantic criterion that
allows us to directly conclude termination of the procedure. Note that this semantic
criterion does not apply only to layered convergent theories but to any convergent
theories (for which failure is guaranteed not to happen).

7.1 Termination of B rules

To begin with, we note that B rules always terminate after a polynomial number
of steps. Let us write

�

=⇒n for the relation made of exactly n strict applications of
rules (S

�

=⇒ S′ iff S =⇒ S′ and S 6= S′).

Proposition 7.2. For every states S = (Φ,Ψ) and S′ such that S
�

=⇒n S′ using
only B rules, n is polynomially bounded in the size of im(Φ).

This is due to the fact that frames are one-to-one and that the rule B.2 only adds
deduction facts M ✄ t such that t is a subterm of an existing term in Φ.

7.2 Proving termination by hand.

For proving termination, we observe that it is sufficient to provide a function s

mapping each frame Φ to a finite set of terms s(Φ) including the subterms of im(Φ)
and such that rule A.2 only adds deduction facts M ✄ t satisfying t ∈ s(Φ).

For subterm theories, we obtain polynomial termination by choosing s(Φ) to be
the subterms of im(Φ) together with the ground right-hand sides of R.

Proposition 7.3. Let E be a weakly subterm convergent theory. For every
S = (Φ,Ψ) and S′ such that S

�

=⇒n S′, n is polynomially bounded in the size
of im(Φ).

To conclude that deduction and static equivalence are decidable in polynomial
time [Abadi and Cortier 2006], we need to show that the deduction facts and the
equations are of polynomial size. This requires a DAG representation for terms and
visible equations. For our implementation, we have chosen not to use DAGs for
the sake of simplicity since DAGs require much heavier data structures. However,
similar techniques as those described in [Abadi and Cortier 2006] would apply to
implement our procedure using DAGs.

For proving termination for the prefix theory Epref , it suffices to consider s(φ) =
stext(Φ), where the notion of extended subterm is recursively defined as follows:

—stext(a) = {a} if a is a constant or a variable

YAPA: A generic tool for computing intruder knowledge · 21

—stext(f(t1, . . . , tn)) = {f(t1, . . . , tn)}∪
⋃n

i=1
stext(ti) f ∈ {dec, 〈, 〉, proj1, proj2, pref}

—stext(enc(t, u)) = {enc(t, u), enc(t1, u)} ∪ stext(t) ∪ stext(u) if t = 〈t1, t2〉

—stext(enc(t, u)) = {enc(t, u)} ∪ stext(t) ∪ stext(u) otherwise.

Proposition 7.4. Consider the prefix theory Epref . For every S = (Φ,Ψ) and S′

such that S
�

=⇒n S′, n is polynomially bounded in the size of im(Φ).

We then deduce that deduction and static equivalence are decidable for the equa-
tional theory Epref , which is a new decidability result.

Corollary 7.5. Deduction and static equivalence are decidable in polynomial
time for the equational theory Epref .

Similarly, we may retrieve decidability of deduction and static equivalence for Ehom

and Eblind. However, we provide another criterion that allows one to derive these
facts from existing results.

7.3 A semantic criterion

We now provide a semantic criterion that more generally explains why our pro-
cedure succeeds on theories previously known to be decidable [Abadi and Cortier
2006]. This criterion intuitively states that the set of deducible terms from any
initial frame ϕ should be equivalent to a set of syntactically deducible terms. Pro-
vided that failures are prevented and assuming a fair strategy for rule application,
we prove that this criterion is a necessary and sufficient condition for our procedure
to terminate.

Definition 7.6 Fair derivation. An infinite derivation

(Φ0,Ψ0) =⇒ . . . =⇒ (Φn,Ψn) =⇒ . . .

is fair iff along this derivation,

(a) B rules are applied with greatest priority, and

(b) whenever a A rule is applicable for some instance (l → r,D, t1, . . . , tn, . . .),
eventually the same instance of rule is applied during the derivation.

Fairness implies that any deducible term is eventually syntactically deducible.
This result follows from Lemma 5.3 and Lemma 5.4.

Lemma 7.7. Let S0 = (Φ0,Ψ0) =⇒ . . . =⇒ (Φn,Ψn) =⇒ . . . be an infinite fair
derivation from a state S0. For every ground term t such that Φ0 ⊢E t, either
(Φ0,Ψ0) =⇒∗ ⊥ or there exists i such that Φi ⊢ t↓R.

Proof. Let t be a ground term deducible from Φi modulo E. There exists t0
such thatM✄Φi

t0 and t0 →∗ t↓R. This means that there exist a (public) context C
and some deduction facts M1✄ t1, . . . ,Mn✄ tn ∈ Φi such thatM = C[M1, . . . ,Mn]
and t0 = C[t1, . . . , tn].
We show that either (Φi,Ψi) =⇒∗ ⊥ or there exists j ≥ i such that t↓R is

syntactically deducible from Φj , by induction on t0 equipped with the order <
induced by the rewriting relation (that is t1 < t2 if and only if t2 →+ t1).
Base case: t0 = t↓R. In such a case, since Φi ⊢ t0, we have that Φi ⊢ t↓R. This
allows us to conclude.

22 · Mathieu Baudet et al.

Induction step: t0 → t′ →∗ t↓R.
Along a fair derivation, B rules are applied in priority. Hence, we choose the

smallest i1 ≥ i such that no more B rules can be applied from (Φi1 ,Ψi1). Note
indeed that there is no infinite derivation with only B rules (Proposition 7.2). We
have still that C[M1, . . . ,Mn]✄Φi1

t0 → t′.
Applying Lemma 5.4 and observing that no B rule can be applied from (Φi1 ,Ψi1),

we are in one of the following cases:

—(Φi1 ,Ψi1) =⇒ ⊥. In such a case, we easily conclude since (Φ0,Ψ0) =⇒∗ ⊥.

—Φi1 ⊢ t′′ for some t′′ such that t′ →∗
R t′′. In such a case, we conclude by applying

our induction hypothesis since t′′ < t′ < t0. There exists j ≥ i1 such that
Φj ⊢ t↓R.

—Otherwise an instance (l → r, D, t1, . . . , tn, . . .) of a A rule is applicable. Note
that this instance is entirely determined by the rewrite rule l → r involved in the
rewriting step t0 → t′, the deduction facts Mi ✄ ti (1 ≤ i ≤ n) and the public
context that witness the fact that Φi ⊢ t0.

By fairness, we know that a A rule will be applied along the derivation for the
same instance (l → r, D, t1, . . . , tn, . . .). Let i2 be the indice on which this instance
is applied. We have that i2 ≥ i1. Note that since B rules are applied in priority,
(Φi2 ,Ψi2) is saturated for B rules. Either, we have that (Φi2 ,Ψi2) =⇒ ⊥ (and thus
(Φi,Ψi) =⇒∗ ⊥) or (Φi2 ,Ψi2) =⇒ (Φi2+1,Ψi2+1).
We have that C[M1, . . . ,Mn] ✄Φi2

t0 and t0 →R t′. By Lemma 5.4, either
(Φi2 ,Ψi2) =⇒ ⊥ or there exists (Φ′

i2
,Ψ′

i2
), M ′ and t′′ such that:

—(Φi2 ,Ψi2) =⇒ (Φ′
i2
,Ψ′

i2
);

—M ′
✄Φ′

i2
t′′ with t′ →∗

R t′′; and

—Ψ′
i2
|= C[M1, . . . ,Mn] ⊲⊳ M

′.

Actually, the instance of the A rule that is applied in this derivation is entirely
determined by the rewrite rule l → r involved in the rewriting step t0 → t′, the
public context C and the deduction facts Mi ✄ ti (1 ≤ i ≤ n) that witness the fact
that Φi ⊢ t0 (and thus Φi2 ⊢ t0). Hence, we have that (Φ′

i2
,Ψ′

i2
) = (Φi2+1,Ψi2+1).

Thus we have that M ′
✄Φ′

i2+1
t′′ with t′′ →∗ t↓R and t′′ < t′ < t. We can apply

our induction hypothesis, either (Φi2+1,Ψi2+1) =⇒∗ ⊥ (and thus (Φi,Ψi) =⇒∗ ⊥)
or there exists j ≥ i2 + 1 such that Φj ⊢ t↓R.

Our termination criteria (Property (ii) below) is a semantic criterion. It is related
to the notion locally stable introduced in [Abadi and Cortier 2006].

Proposition 7.8 criterion for termination. Let ϕ be an initial frame such
that Init(ϕ) 6=⇒∗ ⊥. The following conditions are equivalent:

(i) There exists a saturated couple (Φ,Ψ) such that Init(ϕ) =⇒∗ (Φ,Ψ).

(ii) There exists a (finite) initial frame ϕs such that for every term t, t is deducible
from ϕ modulo E iff t↓R is syntactically deducible from ϕs.

(iii) There exists no fair infinite derivation starting from Init(ϕ).

YAPA: A generic tool for computing intruder knowledge · 23

Proof. (iii) ⇒ (i): trivial. Indeed by using a fair derivation we will eventually
reach a weakly saturated state. (i) ⇒ (ii): Let Φ = {M1 ✄ s1, . . . ,Mℓ ✄ sℓ} and
ϕs = {w1 ✄ s1, . . . ,wℓ ✄ sℓ}. Let t be a ground term. By Theorem 4.6, we have
that ∃M .M ✄

E
ϕ t iff ∃M .M ✄Φ t↓R, i.e. ∃M .M ✄ϕs

t↓R. (ii) ⇒ (iii): we need to
prove that there exists no fair infinite derivation starting from Init(ϕ).
Let ϕs = {w1✄s1, . . . ,wℓ✄sℓ} an initial frame such that for every t, ∃M .M✄

E
ϕ t

is equivalent to ∃M .M ✄ϕs
t↓R. Assume by contradiction that there is an infinite

fair derivation (Φ0,Ψ0) =⇒ . . . =⇒ (Φn,Ψn) =⇒ . . . with (Φ0,Ψ0) = Init(ϕ).
By Lemma 7.7 and since Init(ϕ) 6=⇒∗ ⊥, we deduce that there exists i0 such

that each si, 1 ≤ i ≤ ℓ is syntactically deducible from Φi0 . Since there is no
infinite derivation with only B rules (Proposition 7.2), we can also assume that no
B rule can be applied from Φi0 . We have that ∃M .M ✄

E
ϕ t is now equivalent to

∃M .M ✄Φi0
t↓R thus the A.2 rule cannot be applied either. We deduce that no

deduction facts are added to Φi0 along the derivation, that is Φj = Φi0 for every
j ≥ i0. Since no deduction fact are added, only a finite number of A.1 rules can
be applied, which contradicts the existence of an infinite chain.

Together with the syntactic criterion described in Section 6 to prevent non-failure,
this criterion (Property (ii)) allows us to prove decidability of deduction and static
equivalence for layered convergent theories that belong to the class of locally stable
theories defined in [Abadi and Cortier 2006]. As a consequence, our procedure
always saturates for the theories of blind signatures and homomorphic encryption
since those theories are layered and have been proved locally stable [Abadi and
Cortier 2006]. Other examples of layered convergent theories enjoying this criterion
can be found in [Abadi and Cortier 2006] (e.g. a theory of addition). While
in [Abadi and Cortier 2006] the decision algorithm needs to be adapted for each
theory, we propose a single (and efficient) algorithm that ensures a unified treatment
of all these theories.

8. IMPLEMENTATION: THE TOOL YAPA

YAPA (Yet Another Protocol Analyzer) is an Ocaml implementation of the satu-
ration procedure presented in Section 4 with several optional optimizations. It can
be freely downloaded2 together with a brief manual and examples.
The tool takes as input an equational theory described by a finite convergent

rewrite system, as well as frame definitions and queries. The procedure starts by
computing the decompositions of the rewrite system. By default, the following op-
timization is done: provided that the rewrite rules are given in an order compatible
with the sets R0 ⊆ . . . ⊆ RN+1 of Definition 6.2, the tool is able to recognize lay-
ered theories and to pre-compute the associated contexts C related to condition (ii)
of this definition. This allows resolving the failure cases as soon as they appear,
rather than later on, when the saturation procedure has made enough progress.
This optimization was studied in a first version of this article [Baudet et al. 2009]
but as the practical benefits appear to be minor (see below), we chose not to keep
these technical developments in this version for the sake of notational simplicity.

2http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html

24 · Mathieu Baudet et al.

Another optimization concerns a specific treatment of subterm convergent the-
ories but does not induce any difference with the theoretical procedure presented
here. Except for the first (optional) optimization mentioned above, the algorithm
follows the procedure described in Section 4, using a minimal function Ctx in the
sense in Section 6.3, and a fair strategy of rule application (see Definition 7.6).

We have conducted several experiments on a PC Intel Core 2 Duo at 2.4 GHz
with 2 Go RAM for various equational theories (see below) and found that YAPA
provides an efficient way to check static equivalence and deducibility. Those ex-
amples are available at http://www.lsv.ens-cachan.fr/~baudet/yapa/index.

html. The figures given below are valid for the versions with and without optimiza-
tions.
For the case of Eenc, we have run YAPA on the frames:

—ϕn = {w1 ✄ t0n,w2 ✄ c0,w3 ✄ c1}, and

—ϕ′
n = {w1 ✄ t1n,w2 ✄ c0,w3 ✄ c1},

where ti0 = ci and t
i
n+1 = 〈enc(tin, k

i
n), k

i
n〉, i ∈ {0, 1}. These examples allow us to

increase the (tree, non-DAG) size of the distinguishing tests exponentially, while the
sizes of the frames grow linearly. Despite the size of the output, we have observed
satisfactory performances for the tool.

Equational
theory

Eenc

n = 10
Eenc

n = 14
Eenc

n = 16
Eenc

n = 18
Eenc

n = 20
Execution time < 1s 1,7s 8s 30s < 3min

We have also experimented YAPA on several convergent theories, e.g. Eblind,
Ehom, Epref and the theory of addition Eadd defined in [Abadi and Cortier 2006].

Comparison with ProVerif. In comparison with the tool ProVerif [Blanchet 2001;
Blanchet et al. 2008], here instrumented to check static equivalences, our test sam-
ples suggest a running time between one and two orders of magnitude faster for
YAPA. Also we did not succeed in making ProVerif terminate on the two the-
ories Ehom and Eadd. Of course, these results are not entirely surprising given
that ProVerif is tailored for the more general (and difficult) problem of protocol
(in)security under active adversaries. In particular ProVerif’s initial preprocessing
of the rewrite system appears more substantial than ours and does not terminate
on the theories Ehom and Eadd (although termination is guaranteed for linear or
subterm-convergent theories [Blanchet et al. 2008]).

Comparison with KiSs.. The tool KiSs (Knowledge in Security protocolS) is a
C++ implementation of the procedure described in [Ciobâcă et al. 2009]. This pro-
cedure reused the same concepts than the one presented in a preliminary version
of this work [Baudet et al. 2009]. The performances of the tool YAPA are compa-
rable to the performances of KiSs. However, since the tool KiSs implements DAG
representations for terms, it does better on the example developed above. From
the point of view of the equational theories the tools are able to deal with, they are
incomparable. KiSs allows one to consider some equational theories for which our
procedure fails (e.g. the theory of trapdoor bit commitment).
Conversely our procedure is guaranteed to terminate (without failure) for theories

that are not considered by the procedure implemented in KiSS. The only general

YAPA: A generic tool for computing intruder knowledge · 25

class of theory for which KiSs has been proved to terminate is the class of subterm
convergent equational theory.

9. CONCLUSION AND FUTURE WORK

We have proposed a procedure for checking deducibility and static equivalence.
Our procedure is correct and complete for any convergent theory and is efficient, as
shown by its implementation within the tool YAPA. Since deducibility and static
equivalence are undecidable in general, our algorithmmay fail or may not terminate.
We have identified a large class of equational theories (called layered convergent)
for which non-failure of the procedure is ensured. Since termination can then often
be easily proved by hand, we have obtained a new decidability result for the prefix
theory. We have also proposed a semantic (and exact) characterization for the
procedure to terminate. This again yields a new decidability result for locally
stable, layered convergent theories.
As further work, we would like to extend our procedure to theories with asso-

ciative and commutative operators. A first possibility would be to implement the
decidability result of [Cortier and Delaune 2007] for monoidal theories (that in-
clude many theories with associative and commutative operators) and to combine
the two procedures using the combination theorem of [Arnaud et al. 2007]. However,
it seems much more efficient to integrated associativity and commutativity directly
and this could even open the way to a more powerful combination technique.
The tool KiSS, developed recently [Ciobâcă et al. 2009], supports several equa-

tional theories for which our procedure fails. Conversely our procedure is guaran-
teed to terminate (without failure) for classes of theories that are not considered
by the procedure implemented in KiSS. It would be interesting to compare the
techniques and possibly to combine them in order to capture more theories.

REFERENCES

Abadi, M., Baudet, M., and Warinschi, B. 2006. Guessing attacks and the computational
soundness of static equivalence. In Foundations of Software Science and Computation Struc-
tures (FOSSACS’06). 398–412.

Abadi, M. and Cortier, V. 2006. Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 387, 1-2, 2–32.

Abadi, M. and Fournet, C. 2001. Mobile values, new names, and secure communication. In
28th ACM Symposium on Principles of Programming Languages (POPL’01). ACM, 104–115.

Anantharaman, S., Narendran, P., and Rusinowitch, M. 2007. Intruders with caps. In 18th

International Conference on Term Rewriting and Applications (RTA’07). LNCS, vol. 4533.
Springer.

Arapinis, M., Chothia, T., Ritter, E., and Ryan, M. 2009. Untraceability in the applied pi
calculus. In Proceeding of the 1st International Workshop on RFID Security and Cryptography.

Arnaud, M., Cortier, V., and Delaune, S. 2007. Combining algorithms for deciding knowledge
in security protocols. In Proc. 6th International Symposium on Frontiers of Combining Systems
(FroCoS’07). Lecture Notes in Artificial Intelligence, vol. 4720. Springer, 103–117.

Baudet, M. 2005. Deciding security of protocols against off-line guessing attacks. In 12th ACM
Conference on Computer and Communications Security (CCS’05). ACM Press, 16–25.

Baudet, M. 2007. Thèse de doctorat. Ph.D. thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France.

Baudet, M., Cortier, V., and Delaune, S. 2009. YAPA: A generic tool for computing in-
truder knowledge. In 20th International Conference on Rewriting Techniques and Applications
(RTA’09). Lecture Notes in Computer Science, vol. 5595. Springer, Braśılia, Brazil, 148–163.

26 · Mathieu Baudet et al.

Baudet, M., Cortier, V., and Kremer, S. 2005. Computationally sound implementations of

equational theories against passive adversaries. In 32nd International Colloquium on Automata,
Languages and Programming (ICALP’05). LNCS, vol. 3580. Springer, 652–663.

Blanchet, B. 2001. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In 14th
Computer Security Foundations Workshop (CSFW’01). IEEE Comp. Soc. Press, 82–96.

Blanchet, B., Abadi, M., and Fournet, C. 2008. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75, 1, 3–51.

Chevalier, Y., Küsters, R., Rusinowitch, M., and Turuani, M. 2003. An NP decision pro-
cedure for protocol insecurity with XOR. In 18th IEEE Symposium on Logic in Computer
Science (LICS’03). IEEE Comp. Soc. Press.

Ciobâcă, Ş., Delaune, S., and Kremer, S. 2009. Computing knowledge in security protocols
under convergent equational theories. In Proceedings of the 22nd International Conference
on Automated Deduction (CADE’09), R. Schmidt, Ed. Lecture Notes in Artificial Intelligence.
Springer, Montreal, Canada, 355–370.

Comon-Lundh, H. and Shmatikov, V. 2003. Intruder deductions, constraint solving and inse-
curity decision in presence of exclusive or. In 18th IEEE Symposium on Logic in Computer
Science (LICS’03). IEEE Comp. Soc. Press.

Corin, R., Doumen, J., and Etalle, S. 2004. Analysing password protocol security against
off-line dictionary attacks. In 2nd International Workshop on Security Issues with Petri Nets
and other Computational Models (WISP’04). ENTCS.

Cortier, V. and Delaune, S. 2007. Deciding knowledge in security protocols for monoidal
equational theories. In 14th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’07). LNAI. Springer.

Cortier, V., Delaune, S., and Lafourcade, P. 2006. A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14, 1, 1–43.

Delaune, S. and Jacquemard, F. 2004. A decision procedure for the verification of security pro-
tocols with explicit destructors. In 11th ACM Conference on Computer and Communications
Security (CCS’04). 278–287.

Delaune, S., Kremer, S., and Ryan, M. D. 2009. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17, 4 (July), 435–487.

Lowe, G. 1996. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96). LNCS, vol.

1055. Springer-Verlag, 147–166.

Millen, J. and Shmatikov, V. 2001. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In 8th ACM Conference on Computer and Communications Security (CCS’01).

YAPA: A generic tool for computing intruder knowledge · 27

A. APPENDIX

Lemma 5.2 completeness, syntactic deduction. Let (Φ,Ψ) be a state,M0✄

t0 ∈ Φ. Let N , t be two terms such that t ∈ st(t0) and N ✄Φ t. Then there exists
(Φ′,Ψ′) and N ′ such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—N ′
✄ t ∈ Φ′ and Ψ′ |= N ⊲⊳ N ′.

Proof. By hypothesis, we have that N ✄Φ t. This means that there exists
a public context C and some facts M1 ✄ t1, . . . ,Mn ✄ tn ∈ Φ such that N =
C[M1, . . . ,Mn] and t = C[t1, . . . , tn]. Let C be such a context whose size is minimal.
We show the result by structural induction on C.

Base case: C is reduced to an hole. Let (Φ′,Ψ′) = (Φ,Ψ) and N ′ = N . The result
trivially holds.

Induction step: C = f(C1, . . . , Cr) with f ∈ Fpub of arity r. In such a case, we have
t = f(u1, . . . , ur) and Ci[M1, . . . ,Mn] ✄Φ ui with ui ∈ st(t0) for each 1 ≤ i ≤ r.
Thus, we can apply our induction hypothesis. We deduce that there exists (Φ1,Ψ1)
and terms N ′

1, . . .N
′
r such that:

—(Φ,Ψ) =⇒∗ (Φ1,Ψ1) using B rules,

—N ′
i ✄ ui ∈ Φ1 and Ψ1 |= Ci[M1, . . . ,Mn] ⊲⊳ N

′
i for each 1 ≤ i ≤ r.

From this we easily deduce that Ψ1 |= N ⊲⊳ f(N ′
1, . . . , N

′
r). We apply one B rule.

We have that M0 ✄ t0, N
′
1 ✄ u1, . . . , N

′
r ✄ ur ∈ Φ1, t = f(u1, . . . , ur) ∈ st(t0) and

f ∈ Fpub. We distinguish two cases:

Rule B.1 : Assume that for all Mt we have that (Mt ✄ t) 6∈ Φ1.
Let Φ′ = Φ1 ∪ {f(N ′

1, . . . , N
′
r) ✄ t}, Ψ′ = Ψ1 and N ′ = f(N ′

1, . . . , N
′
r). In order

to conclude it remains to show that Ψ′ |= N ⊲⊳ N ′. This is an easy consequence of
the fact that Ψ1 |= N ⊲⊳ f(N ′

1, . . . , N
′
r).

Rule B.2. Assume that there exists Mt such that Mt ✄ t ∈ Φ1.
Let Φ′ = Φ1, Ψ′ = Ψ1 ∪ {f(N ′

1, . . . , N
′
r) ⊲⊳ Mt} and N ′ = Mt. In order to

conclude it remains to show that Ψ′ |= N ⊲⊳ N ′. We have Ψ′ |= f(N ′
1, . . . , N

′
r) ⊲⊳ N

′

and Ψ′ |= N ⊲⊳ f(N ′
1, . . . , N

′
r). This allows us to conclude.

Lemma 5.3 completeness, syntactic equations. Let (Φ,Ψ) be a state, and
M , N be two terms such that M ✄Φ t and N ✄Φ t for some term t. Then there
exists (Φ′,Ψ′) such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—Ψ′ |=M ⊲⊳ N .

Proof. By hypothesis, we have that M ✄Φ t and N ✄Φ t for some term t. By
definition of ✄Φ, we have that

—M = C[M1, . . . ,Mk], N = C′[N1, . . . , Nℓ] for some contexts C,C′,

—the facts M1 ✄ t1, . . . ,Mk ✄ tk and N1 ✄ u1, . . . , Nℓ ✄ uℓ are in Φ,

—C[t1, . . . , tk] = C′[u1, . . . , uℓ].

28 · Mathieu Baudet et al.

We prove the result by structural induction on C and C′. We assume w.l.o.g. that
C is smaller than C′ (in terms of number of symbols).

Base case: C is reduced to an hole. We have that C[M1, . . . ,Mk] =M1. By hy-
pothesis, we have that N✄Φ t = t1 and thus t ∈ st(t1). Thanks to Lemma 5.2, there
exists (Φ′,Ψ′) and N ′ such that (Φ,Ψ) =⇒∗ (Φ′,Ψ′) using a B rule, N ′

✄ t1 ∈ Φ′

and Ψ′ |= N ⊲⊳ N ′. Since M1 ✄ t1 and N ′
✄ t1 are both in Φ′, we deduce that

N ′ =M1. Hence we have that N ′ =M and thus we easily conclude.

Induction step: C = f(C1, . . . , Cr) and C′ = f(C′
1, . . . , C

′
r) where f ∈ Fpub is

a symbol of arity r and C1, . . . , Cr, C
′
1, . . . , C

′
r are contexts. Moreover, we have

that Ci[t1, . . . , tk] = C′
i[u1, . . . , uℓ] for every 1 ≤ i ≤ r, By applying the induction

hypothesis, we deduce that there exists (Φ′,Ψ′) such that

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′), and

—Ψ′ |= Ci[M1, . . . ,Mk] ⊲⊳ C
′
i[N1, . . . , Nℓ] for every 1 ≤ i ≤ r.

Hence, we have that Ψ′ |=M ⊲⊳ N . This allows us to conclude.

The following lemma justifies the notion of decomposition (Definition 4.1) as far
as completeness is concerned.

Lemma A.1 decomposition of a context reduction. Let Φ be a frame,
l a (plain) term, σ a substitution, and M a term such that M ✄Φ lσ. Then there
exist

—a (n, p, q)-decomposition D of l, written l = D[l1, . . . , ln, y1, . . . yp+q],

—n deduction facts M1 ✄ t1, . . . , Mn ✄ tn in Φ,

—p+ q recipes N1, . . . , Np+q

such that

—for every 1 ≤ i ≤ n, ti = liσ and

—for every 1 ≤ j ≤ p+ q, Nj ✄Φ yjσ.

In particular, D[M1, . . . ,Mn, N1, . . .Np+q]✄Φ lσ.
Besides, if l is a left-hand side of rule in R and Φ is R-reduced, D is a proper

decomposition (i.e. D 6= w1).

Proof. Since M ✄Φ lσ, by definition there exists C and M0
1 ✄ t01, . . . , M

0
m ✄ t0m

in Φ such that M = C[M0
1 , . . . ,M

0
m] and lσ = C[t01, . . . , t

0
m].

Let x1, . . . , xm be fresh variables. Given that C[x1, . . . , xm] and l unify and
have distinct variables, there exists a largest common context D0 such that l =
D0[l

0
1, . . . , l

0
a, y

0
1 , . . . , y

0
b] and C = D0[wj1 , . . . ,wja , D1, . . . , Db] where the terms l0i

are not variables and D0 uses all his parameters: in particular lσ = C[t01, . . . , t
0
m]

means that

—for every 1 ≤ k ≤ a, l0kσ = t0jk , and

—for every 1 ≤ k ≤ b, y0kσ = Dk[t
0
1, . . . , t

0
m]

Let n be the cardinal of {l01, . . . , l
0
a}. For each distinct li in {l01, . . . , l

0
a} (1 ≤ i ≤ n),

we choose k in {1, . . . , a} such that li = l0k and define Mi =M0
k and ti = l0kσ = liσ.

Besides, for every k′ such that l0k′ = l0k, we define wk′ = wi.

YAPA: A generic tool for computing intruder knowledge · 29

Let p be the cardinal of {y01 , . . . , y
0
b} ∩ var(l1, . . . , ln). For each distinct yj in

{y01, . . . , y
0
b} (1 ≤ j ≤ p), we choose k in {1, . . . , b} such that yj = y0k and define

Nj = Dk[M
0
1 , . . . ,M

0
m]. Besides, for every k′ such that y0k′ = y0k, we define wa+k′ =

wp+j .
Let q = b−p. We repeat the same operation for each distinct yj in {y01, . . . , y

0
b}−

var(l1, . . . , ln) (p+ 1 ≤ j ≤ p+ q).
Finally, we let D = D0[w1, . . . , wa+b]. By construction, we have that

—l = D[l1, . . . , ln, y1, . . . yp+q],

—the li are mutually distinct non-variable terms and the yi are mutually distinct
variables.

—yi ∈ var(l1, . . . , ln) iff i ≤ p.

—Mi ✄ ti is in Φ,

—for every 1 ≤ i ≤ n, ti = liσ, and

—for every 1 ≤ j ≤ p+ q, Nj ✄Φ yjσ.

As for the last sentence, if D is a parameter, so is D0. As l = y0k is impossible
for a convergent system R, we have D0 = wk with k ≤ a. Hence C = wjk and
t0k = C[t01, . . . , t

0
k] = lσ is not R-reduced.

Lemma 5.4 completeness, context reduction. Let (Φ,Ψ) be a state and
M , t, t′ be three terms such that M ✄Φ t and t →R t′. Then, either (Φ,Ψ) =⇒∗ ⊥
or there exist (Φ′,Ψ′), M ′ and t′′ such that

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′),

—M ′
✄Φ′ t′′ with t′ →∗

R t′′, and

—Ψ′ |=M ⊲⊳ M ′.

Besides, in both cases, the corresponding derivation from (Φ,Ψ) can be chosen to
consist of a number of B rules, possibly followed by one instance of A rule involving
the same rewrite rule l → r as the rewrite step t→R t′.

Proof. By hypothesis, there exist a (public) context C and some deduction facts
M0

1✄t
0
1, . . . ,M

0
m0

✄t0m0
∈ Φ such thatM = C[M0

1 , . . . ,M
0
m0

] and t = C[t01, . . . , t
0
m0

].
Moreover, there exist a position α, a substitution σ and a rewrite rule l → r ∈ R

such that t|α = lσ and t′ = t[rσ]α.
We note that α must be a (symbol) position of C since the t0i are R-reduced.

Hence we may write C|α[t01, . . . , t
0
m0

] = lσ.
By Lemma A.1, we deduce that there exist

—a proper (n, p, q)-decomposition D of l : l = D[l1, . . . , ln, y1, . . . yp, z1, . . . zq],

—M1 ✄ t1, . . . , Mn ✄ tn in Φ,

—N1, . . . , Np+q

such that

—for every 1 ≤ i ≤ n, ti = liσ,

—for every 1 ≤ j ≤ p, Nj ✄Φ yjσ, and

30 · Mathieu Baudet et al.

—for every 1 ≤ k ≤ q, Np+k ✄Φ zkσ.

In particular, we obtain that

M |α = C|α[M
0
1 , . . . ,M

0
m0

] ✄Φ C|α[t
0
1, . . . , t

0
m0

] = lσ

D[M1, . . . ,Mn, N1, . . . , Np+q] ✄Φ D[t1, . . . , tn, y1σ, . . . , ypσ, z1σ, . . . , zqσ] = lσ

Thus, by Lemma 5.3, there exists a derivation (Φ,Ψ) =⇒∗ (Φ1,Ψ1) using B rules
such that Ψ1 |=M |α ⊲⊳ D[M1, . . . ,Mn, N1, . . . , Np+q].
Besides, since yj belongs to var(l1, . . . , ln) by definition of decompositions, yjσ is

a subterm of some liσ = ti. Since Nj✄Φyjσ, by applying Lemma 5.2 repeatedly, we
deduce that there exist some termMn+1, . . . , Mn+p and a derivation (Φ1,Ψ1) =⇒∗

(Φ2,Ψ2) using B rules such that for all j,

—Mn+j ✄ yjσ is in Φ2, and

—Ψ2 |=Mn+j ⊲⊳ Nj.

Let N = D[M1, . . . ,Mn+p, Np+1, . . . , Np+q]. We deduce that N ✄Φ2
lσ, and

Ψ2 |=M |α ⊲⊳ D[M1, . . . ,Mn, N1, . . . , Np+q] ⊲⊳ N

We now consider the application to (Φ2,Ψ2) of aA rule that involves the rewrite rule
l → r, the decompositionD, the plain terms (t1, . . . , tn+p) = (l1, . . . , ln, y1, . . . , yp)σ
and the substitution σ′ = σ|V obtained by restricted the σ to the domain V =
var(l1, . . . , ln) = var(l1, . . . , ln, y1, . . . , yp).

Case A.3. If (rσ′)↓R is not ground and Ctx(Φ+
2 ⊢?

R rσ′) = ⊥ where Φ+
2 =

Φ2 ∪ {z1 ✄ z1, . . . , zq ✄ zq}, then we may conclude that (Φ2,Ψ2) =⇒ ⊥ by an
instance of rule A.3 involving l → r, the decomposition D and the facts M1 ✄

t1,. . . ,Mn+p ✄ tn+p.

Case A.1. If there exists N0 = Ctx(Φ+
2 ⊢?

R rσ′) where Φ+
2 = Φ2∪{z1✄z1, . . . , zq✄

zq}. By Property (b) of Ctx, let s0 be such that N0✄Φ2∪{z1,...,zq} s0 and rσ
′ →∗

R s0,
and define

—Φ′ = Φ2,

—Ψ′ = Ψ2 ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1, . . . , zq] ⊲⊳ N0},

—M ′ =M [M0]α where M0 = N0 {zi 7→ Np+i}1≤i≤q,

—t′′ = t[t0]α = t′[t0]α where t0 = s0 {zi 7→ ziσ}1≤i≤q.

By construction, we have (Φ2,Ψ2) =⇒ (Φ′,Ψ′) by an instance of rule A.1.
Besides, rσ′ →∗

R s0 implies t′|α = rσ →∗
R t0 and t′ →∗

R t′′.
Given that α ∈ pos(C) (where C is the previously context related to M ✄Φ t)

and M0 ✄Φ′ t0, we have that M ′ =M [M0]α ✄Φ′ t[t0]α = t′′.
It remains to show that Ψ′ |=M ⊲⊳ M ′. Indeed, we have seen that Ψ2 |=M |α ⊲⊳

N whereN = D[M1, . . . ,Mn+p, z1, . . . , zq]{zi 7→ Np+i}1≤i≤q. Besides, by definition
of Ψ′, it holds that Ψ′ ⊇ Ψ2 ⊇ Ψ1 and we have that Ψ′ |= D[M1, . . . ,Mn+p, z1, . . . , zq] ⊲⊳
N0. Therefore, Ψ

′ |=M |α ⊲⊳ M0 and Ψ′ |=M ⊲⊳ M [M0]α =M ′.

Case A.2: if (rσ′)↓R is ground and Ctx(Φ+
2 ⊢?

R rσ′) = ⊥ where Φ+
2 = Φ2 ∪ {z1 ✄

z1, . . . , zq ✄ zq}, define

—M0 = D[M1, . . . ,Mn+p, a, . . . , a] and t0 = (rσ′)↓R,

YAPA: A generic tool for computing intruder knowledge · 31

—Φ′ = Φ2 ∪ {M0 ✄ t0},

—Ψ′ = Ψ2 ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1, . . . , zq] ⊲⊳ M0},

—M ′ =M [M0]α, and

—t′′ = t[t0]α.

where a is the fixed public constant of rule A.2.
By construction, (Φ,Ψ) =⇒ (Φ′,Ψ′) by an instance of the A.2 rule.
Since t0 is ground and σ = σ′σ, we have t0 = (rσ)↓R. Therefore t′ = t[rσ]α →∗

R

t[(rσ)↓R]α = t′′.
Given that α ∈ pos(C) and by construction M0 ✄Φ′ t0, we have M ′

✄Φ′ t′′.
It remains to show that Ψ′ |=M ⊲⊳ M ′. Indeed, we have seen that Ψ2 |=M |α ⊲⊳

N where N = D[M1, . . . ,Mn+p, z1, . . . , zq]{zi 7→ Np+i}1≤i≤q. By definition of Ψ′,
it holds that Ψ′ |= N ⊲⊳ M0 hence Ψ′ |=M ⊲⊳ M [N]α ⊲⊳ M [M0]α =M ′.

The additional properties claimed on the derivation are clear from the construction
above.

