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Abstract. Extending the infinitary rewriting definition of B&hm-like
trees to infinitary Combinatory Reduction Systems (iCRSs), we show
that each Bohm-like tree defined by means of infinitary rewriting can
also be defined by means of a direct approximant function. In addition,
we show that counterexamples exists to the reverse implication.

1 Introduction

In A-calculus, a Bohm tree defines a denotational semantics based on syntax.
Essentially, a Bohm tree of a term can been seen as an infinite normal form of
the term, omitting subterms that do not ‘compute’ anything.

What constitutes a term that ‘computes’ something is not universally deter-
mined. Within A-calculus three alternatives exist: the head normal forms [2, 3],
the weak head normal forms [4, 5], and the root-stable terms [6]. These define,
besides the Bohm trees, the Lévy-Longo trees and the Berarducci trees. As a
result, abstract definitions have appeared that are parameterized over the set of
terms ‘computing’ something. These are the so-called Béhm-like trees [1].

The abstract definitions can be divided into two classes, based on the concrete
definition taken as a starting point. One is based on infinitary rewriting [7, 8];
the other is based on so-called direct approximants [1,9,10].

Infinitary Rewriting. Within this class, a Bohm-like tree is a normal form,
albeit not in the original (finite) system but in an infinite system. The infinite
system extends the finite one with infinite terms and infinite reductions. Rules
are added rewriting terms not ‘computing’ anything — the meaningless terms
— to a fresh nullary symbol 1. Pivotal are a number of conditions on the set of
meaningless terms guaranteeing that each term has a unique normal form.

Direct Approximants. Within this class, terms are partially ordered by adding
a fresh nullary function symbol L. The direct approximant function — the pa-
rameterized component — replaces by | any subterm that either reduces to a
redex or does not ‘compute’ anything. This yields a normal form that approxi-
mates the Bohm-like tree. The tree is obtained by gathering the direct approxi-
mants of all the reducts of a term and taking the least upper bound. Pivotal are
a number of conditions on the direct approximant function guaranteeing that
the least upper bound exists.

* This paper extends earlier unpublished work from the author’s Ph.D. thesis [1].



‘We show that the direct approximant approach is more expressive than the in-
finitary rewriting one in the context of Combinatory Reduction Systems (CRSs):
Each Bohm-like tree defined by means of infinitary rewriting can also be defined
by means of a direct approximant function. The reverse, however, does not hold.

Overview. In Sect. 2 we give some preliminaries, mostly regarding infinitary
Combinatory Reduction Systems (iCRSs). In Sect. 3 we extend to iCRSs the
infinitary rewriting approach to Bohm-like trees. In Sect. 4 we compare, after
shortly reviewing direct approximants. Finally, in Sect. 5 we conclude.

2 Preliminaries

We outline some basic facts concerning iCRSs; see [11-13] for more detailed
accounts. Throughout, we denote the first infinite ordinal by w, and arbitrary
ordinals by «, 3, 7, etc. By N we denote the natural numbers including zero.

Terms and Substitutions. Let X' be a signature with each element of finite
arity. Moreover, assume a countably infinite set of variables and, for each finite
arity, a countably infinite set of meta-variables — countably infinite sets suffice
given ‘Hilbert hotel’-style renaming.

Infinite terms are usually defined by metric completion [11]. Here, we give
the shorter, but equivalent, definition from [12]:

Definition 2.1. The set of meta-terms is defined by interpreting the following
rules coinductively, where s and s1, ..., s, are again meta-terms:

1. each variable x is a meta-term,

2. if x is a variable, then [x]s is a meta-term,

3. if Z is an n-ary meta-variable, then Z(sy,...,s,) is a meta-term, and
4. if f € X is n-ary, then f(s1,...,Sn) is a meta-term.

The set of finite meta-terms, a subset of the set of meta-terms, is the set induc-
tively defined by the above rules. A term is a meta-term without meta-variables.
A context is a meta-term over X U{0} and a partial meta-term is a meta-term
over ¥ =X U{L}, withO and L fresh nullary function symbols.

We consider (meta-)terms modulo a-equivalence. A meta-term of the form [z]s
is called an abstraction; a variable z in s is called bound in [x]s. Meta-terms with
meta-variables only occur in rewrite rules; rewriting itself is defined over terms.
Partial meta-terms are partially ordered where | < s for each partial meta-
term s and such that term formation is monotonic modulo a-equivalence [1,7].
The set of positions [11] of a meta-term s, denoted Pos(s), is a set of finite
strings over N, with each string denoting the ‘location’ of a subterm in s. If p
is a position of s, then s|, is the subterm of s at position p. The length of p is
denoted by |p|. There exists a well-founded order < on positions: p < ¢ iff p is a
proper prefix of ¢g. The concatenation of positions p and ¢ is denoted by p - g.
A waluation [14], denoted &, substitutes terms for meta-variables in meta-
terms and is defined by coinductively interpreting the rules of valuations for



CRSs [11]. In CRSs, applying a valuation to a meta-term yields a unique term.
This is not the case for iCRSs [11]. To alleviate this problem, the set of meta-
terms satisfying the so-called ‘finite chains property’ is defined in [11]:

Definition 2.2. Let s be a meta-term. A chain in s is a sequence of (context,
position)-pairs (C;[0], pi)ica, with a < w, such that for each (C;|O],p;) there
exists a term t; with C;[t;] = s|p, and piy1 = p; - ¢ where q is the position of the
hole in C;[0]. A chain of meta-variables in s is such that for each i < a it holds
that C;[0) = Z(t1, ..., t,) with t; =0 for ezactly one 1 < j <n.

The meta-term s is said to satisfy the finite chains property if no infinite
chain of meta-variables occurs in s.

Remark that O only occurs in C;[0] if ¢ + 1 < «, otherwise C;[00] = s|,.
The meta-term [z1]Z7 ([x2] Za(. . . [£r]) Zn(. . .))) e.g. satisfies the finite chains prop-
erty, while Z(Z(...Z(...))) does not. Finite meta-terms always satisfy the finite
chains property. The following is shown in [11]:

Proposition 2.3. Let s be a meta-term satisfying the finite chains property and
let & be a valuation. There is a unique term that is the result of applying & to s.

Rewriting. Recall that a pattern is a finite meta-term each meta-variable of
which has distinct bound variables as arguments and that a meta-term is closed
if all variables occur bound [14].

Definition 2.4. A rewrite rule is a pair of closed meta-terms (I,r), denoted
I — r, with 1 a finite pattern of the form f(s1,...,sn) and r satisfying the finite
chains property such that all meta-variables that occur in r also occur in .

An infinitary Combinatory Reduction System (iCRS) is a pair C = (X, R)
with X a signature and R a set of rewrite rules.

Left-linearity and orthogonality are defined as for CRSs [14] (left-hand sides of
rewrite rules are finite). A rewrite rule is collapsing if the root of its right-hand
side is a meta-variable. Moreover, a pattern is fully-extended, if, for each meta-
variable Z and abstraction [z]s with an occurrence of Z in its scope, z is an
argument of that occurrence of Z; a rewrite rule is fully-extended if its left-hand
side is and an iCRS is fully-extended if all its rewrite rules are.

Definition 2.5. A rewrite step is a pair of terms (s,t) denoted s — t and
adorned with a context C[O], a rewrite rule | — r, and a valuation & such that
s =C[a(l)] and t = C[a(r)]. The term &(1) is called an | — r-redex and occurs
at position p and depth |p| in s, where p is the position of the hole in C[OJ].

A position q of s occurs in the redex pattern of the redex at position p if
q > p and if there does not exist a position ¢' with ¢ > p- ¢’ such that ¢’ is the
position of a meta-variable in .

Above, 7(l) and &(r) are well-defined, as both left- and right-hand sides of
rewrite rules satisfy the finite chains property (left-hand sides as they are finite).

We say that a redex s overlaps a term t at position p, if p occurs in the redex
pattern of s and s|, =t [7]. Moreover a redex and a rewrite step are collapsing
if the employed rewrite rule is. Using rewrite steps, we define reductions:



Definition 2.6. A transfinite reduction with domain « > 0 is a sequence of
terms (sg)g<a Such that sg — sg1 for all B+ 1 < a. For each sz — sgt1, let
dg denote the depth of the contracted redex. The reduction is strongly convergent
if a is a successor ordinal and if for every limit ordinal v < « it holds that sg
converges to s, and dg tends to infinity in case B approaches v from below.

Consider the rules a — a and f(Z) — ¢g(f(Z)). The reduction

fla) = g(f(a)) = --- = g"(fa)) = --- ¢g*,
with ¢* denoting g(g(...g(...))), is strongly convergent. The reduction

fla) = fla) =+ fla) = -
is not strongly convergent, as each contracted redex occurs at depth 1.

By s =% t, resp. s »=% t, we denote a strongly convergent reduction of
length a, resp. of length at most a. By s — t, resp. s —* t, we denote a strongly
convergent reduction of arbitrary length, resp. of finite length.

Across strongly convergent reductions we assume that a position that occurs
in the redex pattern of a contracted redex does not have any descendants; likewise
for residuals [11]. We write P/(s — t) for the descendants of a set of positions
P C Pos(s) across a strongly convergent reduction s — ¢ and U/(s — t) for the
residuals of a set U of subterms of s across s — t.

Below, we appeal to a number of properties of iCRSs. The first is compression:

Theorem 2.7 (Compression [11]). For every fully-extended, left-linear iCRS,
if s »* t, then s »=¥ ¢,

A term s is hypercollapsing, resp. root-active, if for all s — ¢ there exists
a t — t’ such that ¢ is a collapsing redex, resp. a redex. We write s ~p, t if
t can be obtained from s by replacing hypercollapsing subterms in s by other
hypercollapsing subterms.

Let ~ be an equivalence relation. Confluence modulo ~ means that if s — s’
and t — t/ with s ~ ¢, then s’ — s’ and ¢/ — " with s ~ t". For ~. we have:

Theorem 2.8. Given a fully-extended, orthogonal iCRSs, the relation ~p. is
an equivalence relation and the system is confluent modulo ~p...

The above is shown in [12] under assumption that rewrite rules have finite right-
hand sides; in [13] the result is extended to allow for infinite right-hand sides.

3 Infinitary Rewriting

We extend the infinitary rewriting approach to Bohm-like trees from [7, 8] to
fully-extended, orthogonal iCRSs. Given an iCRS and a set of so-called mean-
ingless terms, this means we define a confluent and normalising rewrite system.

Following the pattern laid down in [7,8], we start in Sect. 3.1 by stating a
number of axioms for sets of meaningless terms. Assuming some of the axioms,
we consider ‘meaningful’ terms in Sect. 3.2 and we define B6hm-like trees in Sect.
3.3. In Sect. 3.4, we construct a set of partial terms given a set of terms and
show the axioms are preserved. Finally, in Sect. 3.5, we consider some examples,
some of which employ the construction from the Sect. 3.4.



3.1 Axioms

To state our axioms, assume U is a set of terms. We call the terms in this set
meaningless; intuitively they are not supposed to ‘compute’ anything.

Let s and t be terms with P C Pos(s) such that s|, € U for each p € P.
We write s —% ¢, resp. s <% ¢, if t can be obtained from s by replacing the
subterms at positions in P by arbitrary terms, resp. by terms from U. Remark
that <% is reflexive and symmetric, i.e. s <% s and s <4 tiff t <4 s. We write
s =Y t and s <Y t if the set of positions is irrelevant or clear from the context.

The considered axioms stem from [8] and are as follows:

Residuals If s — ¢ and s|, € U, then t|, € U for all ¢ € p/(s — ).
Overlap If a redex s overlaps a term in U, then s € U.
Root-activeness If s is root-active, then s € U.
Hypercollapsingness If s is hypercollapsing, then s € U.
Indiscernability If s «-Y ¢, then s € U iff t € U.

Intuitively, residuals and overlap state, resp., that no information can be ob-
tained about meaningless terms by reducing them or by placing them in a
context. All root-active terms, which includes all hypercollapsing terms, reduce
indefinitely at the root and do not become stable. Hence, it is reasonable to
consider these terms to be meaningless. This will also guarantee the existence
of normal forms later on. Indiscernability states that the identities of the mean-
ingless subterms of a meaningless term are irrelevant.

Indiscernability coincides with transitivity, as shown in [8, Lemma 12.9.17]:

Lemma 3.1. A set U satisfies indiscernability iff <Y is transitive.

Hence, in case U satisfies indiscernability, <Y is an equivalence relation.

The next lemma introduces two derived axioms describing the simulation of
one reduction by another. These axioms are used extensively in the remainder.

Lemma 3.2. In a fully-extended, left-linear iCRS, if U satisfies residuals and
overlap, then for s — s':

Simulation if s =Y t, there exists a term t' such thatt — t' and s’ =Y t', and
Bisimulation if s <Y t, there exists a term t' such that t — t' and s’ <Y t'.

Proof (Sketch). By ordinal induction on the length of s — s’, using fully-
extendedness and left-linearity. Employ the fact that each subterm in U/ has
a residual — a redex pattern either occurs fully inside or fully outside a subterm
in U by overlap — and the fact that each residual of a subterm in ¢/ is in Y —
by residuals. O

3.2 Meaningful Terms

Meaningless subterms can occur in the reducts of a term s — even without s
having meaningless subterms itself. In such a case, s cannot be called completely
meaningful. Contrary, any term not possessing this property can be considered
meaningful. Following [7] and assuming an iCRS C and set of terms U, we define:



Definition 3.3. A term s is totally meaningful if no subterm of any reduct of
s occurs in U.

With the help of totally meaningful terms, we can express the intuition that
meaningless terms should be “computational irrelevant” [7]:

Definition 3.4. The set U is called generic, if for every s € U and context
C[O] reduction of Cls] to a totally meaningful term implies reduction of Ct] to
a totally meaningful term for every term t.

Simulation is a sufficient criterion for genericity to hold:

Theorem 3.5 (Genericity). If C is fully-extended and left-linear and U satis-
fies simulation, then U is generic.

Proof. Let Cls] — s’ with s € U and s’ totally meaningful. If ¢ is arbitrary, then
C[s] =Y C[t]. Hence, by simulation a term ¢’ exists such that s’ =¥ #'. Since s’
is totally meaningful, s’ =’ and genericity follows. O

Above, “computational irrelevancy” is expressed employing reduction. Alter-
natively, it can be expressed employing conversion; in which case we define [7]:

Definition 3.6. The iCRS C is relative consistent given U, if s (—»-<H.«)* ¢
implies s (—-«)* t for all totally meaningful terms s and t.

To show that relative consistency holds under the assumption of certain
axioms, we first state a confluence theorem:

Theorem 3.7 (Confluence). If C is fully-extended and orthogonal and U sat-
isfies bisimulation, hypercollapsingness, and indiscernability, then C is confluent
modulo U.

The proof is similar to that of [7, Lemma 23], observing Lemma 3.1 and using
bisimulation instead of [7, Lemma 21]. Lemma 14 in [7] is Theorem 2.8.

We can now show relative consistency. Remark that the assumed axioms are
much stronger than in the case of genericity.

Theorem 3.8 (Relative Consistency). If C is fully-extended and orthogonal
and U satisfies bisimulation, hypercollapsingness, and indiscernability, then C is
relatively consistent given U.

Proof. Let s (—»-«<Y.«)* t, with s and t totally meaningful. By induction on
the number of changes in the direction of the rewrite relation in s (—-«t.«-)* ¢
and Theorem 3.7 there exist terms s’ and ¢’ such that s — s' <Y ¢/ « t. Hence,
since s and t are totally meaningful, s’ = ¢’ and the result follows. O

3.3 Bohm-Like Trees

In this section, we define Béhm-like trees by means of infinitary rewriting. The
definition proceeds in two steps. In the first, we define an iCRS that extends
the iCRS whose Bohm-like trees we want to define. In the second step, we give
sufficient criteria — in the form of our axioms — implying that the defined iCRS
is confluent and normalising. Confluence and normalisation imply that each term
has a unique normal form, the Bohm-like tree of that term.



We assume that our set of meaningless terms is a set of partial terms, we
denote this set by ¢, . In the next section, we show how to obtain such a set of
partial terms from a set of (non-partial) terms.

Our iCRS and Bohm-like tree are defined as follows:

Definition 3.9. The Boéhm-like iCRS of an iCRS C = (X, R) and a set of
partial terms Uy is a pair B= (¥, RUB) withB={b—, L |bel,, b# 1}
A rewrite step in B is a pair of partial terms (s,t) denoted s — t and adorned
with a context C|O] and a rulel — r € R or a rule b —, L € B such that:
— s=C[a(l)] and t = C[5(r)] with & a valuation, or
— s=C[b] and t = C[L].

A Bohm-like tree of a partial term s is a normal form of s with respect to B.

Remark that the definition of rewrite steps deviates slightly from the usual one;
no valuation is employed in case the rule originates from B. Reduction-wise
nothing changes; we employ strongly convergent reductions.

Writing s — g t for a reduction in case all rewrite rules originate from the
set R, we have the following:

Lemma 3.10. Given a fully-extended, left-linear iCRS and a set U, :

1. if Uy satisfies root-activeness, then every term has a Bohm-like tree, and
2. if UL satisfies residuals, then s — t implies s »pg - — t.

The proof of the first part, resp. of the second part, is identical to that
of [7, Theorem 1], resp. [7, Lemma 27].

The following now suffices to ensure that each (partial) term has a unique
Bohm-like tree.

Theorem 3.11. Given a fully-extended, orthogonal iCRS, if U, satisfies resid-
uals, overlap, root-activeness, and indiscernability and if L € U, , then B is
confluent and every term has a unique Béhm-like tree.

The proof is similar to that of [7, Theorem 2], using Lemma 3.10 instead of
Theorem 1 and Lemma 27 in [7], Theorem 2.8 instead of Lemma 14 in [7], and
Lemma 3.1 instead of Lemma 15 in [7].

In case the Bohm-like tree of a term s is uniquely defined by the set U , we
denote it by BLT*(s). The following is immediate by the previous theorem:

Corollary 3.12 (Congruence). Given a fully-extended, orthogonal iCRS, if
UL satisfies residuals, overlap, root-activeness, and indiscernability and if L €
U, , then for all terms s and t and each context C[O] it holds that BLT*(s) =
BLT®(t) implies BLT*(C[s]) = BLT>(C[t]).

Remark 3.13. Overlap can be replaced by bisimulation in the above theorem.
Doing so, we can prove uniqueness of Béhm-like trees for certain iCRSs and sets
U, where overlap does occur.

Consider for example the rule:

f9(2)) — f(2)
and the set
U ={g"(L), f(g*) | n € N}.



Residuals, root-activeness, and indiscernability follow easily. Concerning bisimu-
lation, the only interesting case is f(g" 1 (L)) — f(g™(L)) with f(g"T(L)) <Y
flg™(L)). As g™ (L) € U for all n € N, we have the following diagram:

Flg™(L) £ flgm™(L))

Fg™(L) <> flg™(L))

Thus, bisimulation holds. As 0 € N, we also have 1 € U/, . Hence, we find that
every term has a unique Bohm-like tree although U/; does not satisfy overlap.

3.4 Extending U with L

Assume we have at our disposal an iCRS C = (X, R) and a set of (non-partial)
terms U. We next define a set of partial terms U, O U [7]. The set is defined in
such a way that each of the axioms satisfied by U is also satisfied by U/, . The
construction slightly simplifies some of our examples in the next section.

Definition 3.14. A 1-instance of a partial term s is a term t obtained by replac-
ing every L in s by a term inU, i.e. s <% t, where P = {p € Pos(s) | s|, = L}.

The set U, is the union of {L} and the set of partial terms each of which
has a L-instance in U.

Note that if ¢ is a L -instance of s, then s < t; the reverse does not necessarily
hold. Explicit inclusion of 1 in I/, only makes difference in case U is empty, we
then have U, = {L}. Otherwise, L is included automatically as each term in U
is a L-instance of L. Inclusion of {1} is needed in light of Theorem 3.11.

As promised, we have the following:

Lemma 3.15. For each of residuals, overlap, root-activeness, hypercollapsing-
ness, and indiscernability, if U satisfies the property, then so does U .

Each property in the lemma follows easily; see [7, Lemma 25]. Roughly, we
are required to show that each considered partial term has a L-instance in U.

3.5 Examples

We consider three interesting sets of meaningless terms from [7] defining Bhm-
like trees. We show that in the higher-order case these sets also define Bohm-like
trees. The sets are those of the root-active, opaque, and Huet-Lévy undefined
terms.

Root-Active. As argued above, root-active terms are essentially meaningless.
Hence, it is interesting to consider the set solely consisting of these terms. This
set defines a Béhm-like tree, given a fully-extended, orthogonal iCRS.

Recall from [15] that a term is root-active iff a perpetual reduction starts
from it, i.e. a reduction with an infinite number of root-steps. We have:

Proposition 3.16. Let s and t be terms. If s is root-active and s <Y t, then t
18 root-active.



Proof (Sketch). Since a term is root-active iff it has a perpetual reduction start-
ing from it, consider a perpetual reduction S starting from s and define a per-
petual reduction starting from ¢. To do so, omit those steps from S that occur
inside subterms that are residuals of subterms replaced in s <Y t. a

Employing the above, we have the following:

Proposition 3.17. The root-active terms satisfy residuals, overlap, root-active-
ness, and indiscernability.

Proof. Residuals and overlap follow by orthogonality. Root-activeness is imme-
diate by definition. Indiscernability follows by Proposition 3.16. ad

The root-active terms also satisfy hypercollapsingness, as every hypercollaps-
ing term is root-active. Simulation and bisimulation follow by Lemma 3.2. Hence,
genericity and relative consistency also follow. By Lemma 3.15, each term has
a Bohm-like tree with respect to the set each partial terms each of which has a
L -instance that is root-active.

Opaque. Similar to root-activeness, opaqueness takes an axiom as its starting
point, in this case overlap. We again assume a fully-extended, orthogonal iCRS.

Definition 3.18. A closed term s is opaque iff no term to which s reduces is
overlapped by a redex at a non-root position. A term is opaque iff every closed
substitution instance is.

The above definition stems from [7]. The definition in [16], i.e. that a term
s is opaque iff no term reachable from s is overlapped by a redex at a non-root
position, cannot be the intended one, as it is not closed under substitution in
case of A-calculus. For example, the open term z would then be opaque, while
the substitution instance Ay.y is not, as it is a subterm of (Ay.y)z.

We have the following; the proof is identical to the one in Sect. 8.1.3 of [7]:

Proposition 3.19. The set of opaque terms satisfies residuals, overlap, root-
activeness, and indiscernability.

The opaque terms also satisfy hypercollapsingness, as every hypercollapsing
term is root-active. Simulation and bisimulation follow by Lemma 3.2. Hence,
genericity and relative consistency also follow. By Lemma 3.15, each term has
a Bohm-like tree with respect to the set each partial terms each of which has a
1 -instance that is opaque.

Huet-Lévy Undefined. As shown in [7, Sect. 8.1.4], the Huet-Lévy TRS —
a starting point for the direct approximant approach [1,10] — can be used to
define a set of meaningless terms. This approach extends to CRSs, assuming a
fully-extended, orthogonal CRS C, i.e. only allowing finite terms and reductions.

Definition 3.20. The Huet-Lévy CRS of C is defined as HL = (X', HL), with:
HL ={d — L |d a partial pattern} U{l — L |l - r € R},

where a partial pattern d is any pattern 1 # d <1 with | — r € R such that no
valuation & exists with 6(d) = a(l).



By the definition, Huet-Lévy CRSs are orthogonal, because C is orthogonal,
and without collapsing rules. We easily obtain the following:
Proposition 3.21. The Huet-Lévy CRS HL of C is confluent. Any finite partial
term s has a unique normal form wpy(s) and for all finite partial terms s and t:
1. whL(s) < s,
2. if a redex occurs at position p in s, then wyr(s) < s[L],, and
3. if s = t, then wyr(s) < whL(t),
We can now define the following two sets:
Ul = {s a finite partial term | Vs —* ¢ : wyy,(t) = L}
Ugr = {s| Vs »tand u < t:u € Uy}

Proposition 3.22. The terms in Uyy, satisfies residuals, overlap, root-active-
ness, and indiscernability.

Proof. Overlap, resp. residuals, follows by orthogonality of the CRS, resp. of the
Huet-Lévy CRS. Root-activeness follows by Proposition 3.21(2).

In the case of indiscernability, consider s UL ¢ with s € Uy, and let ¢ — .
By bisimulation, which follows from Lemma 3.2, there exists a reduction s —» s’
such that s <"t ¢/ Consider any finite partial term u; < /. As s <UAL ¢/ we
have a finite partial term u, < s’ such that u, Ui ug. Since ug and u; are finite
and wug Ui uy, there exists a finite partial term w such that us —* u *«— uy,
employing the reduction rules of the Huet-Lévy CRS. Hence, as s € Uy, implies
us —* 1, we have uy —* L and indiscernability follows. O

The set Uy, also satisfies hypercollapsingness, as every hypercollapsing term
is root-active. Simulation and bisimulation follow by Lemma 3.2. Hence, gener-
icity and relative consistency also follow. Moreover, as 1 € Uyy,, each term has
a Bohm-like tree with respect to Uyr,.

Remark 3.23. The definition of the set Uy, differs from the one in [7], which
requires an additional nullary function symbol. It is easily shown that Uyy, and
the set defined in [7] yield exactly the same Bohm-like tree for each term.

Remark 3.24. Consider the CRS encoding of the §-rule from A-calculus:
app(lan([z]Z(z)), Z") — Z(Z')
This rule yields the following Huet-Lévy CRS:
app(lan([z]Z(2)), Z') — L
app(lam(L),Z") — L
app(L,Z') — L
Any term that is the encoding of a term from A-calculus is in Uyy, iff the term
does not have a weak head normal form, i.e. the A-term does not reduce to a term
of the form Az.s or xs183 ... s,. Hence, Upr, defines the Lévy-Longo tree [4,5,17].

This means that not only the opaque terms define an iTRS analogue of Lévy-
Longo trees, as stated in [16], but so does Upr,. The set of opaque terms and
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Uyr, do not need to coincide: Consider a ruleless CRS. All terms are opaque,
while Uy, = {L}. Thus, the question whether an analogue of the Lévy-Longo
tree exists for TRSs [10] does not have a unique answer.

4 Comparison

Having defined Bohm-like trees by means of infinitary rewriting, we can now
compare this approach with the direct approximant approach. To do so, we first
recall the direct approximant definition for CRSs from [9].

Definition 4.1. Let C = (X, R) be an orthogonal CRS. A direct approximant
function is @ map w on finite partial terms, such that for all terms s and t:

1. w(s) X s,

2. if a redex occurs at position p in s, then w(s) < s[L],, and

3. if s = t, then w(s) < w(t),

where w(s) is called the direct approximant of s.

Hence, wyy,, as defined in Sect. 3.5, is a direct approximant function.

The definition only concerns CRSs and not iCRSs. As such, our comparison
only concerns the Bohm-like trees of finite terms. Since each pair that defines a
CRS also defines an iCRS, with the reductions of the CRS forming a subset of
the reductions of the iCRS, this does not pose any obstacle in our comparison.

In the current context, Bohm-like trees are defined as follows:

Definition 4.2. Let s be a finite partial term. The Bohm-like tree of s with
respect to w, denoted BLT(s), is defined as:

BLT(s) = | [{w(t) | s —*t}.

The set {w(t) | s —* t} is directed by confluence and the third clause of the
direct approximant definition. Hence, the least upper bound exists.

Usually, BLT(s) is defined by means of downward closure instead of the least
upper bound [1,9,10], with the (infinite) terms being defined by means of ideal
completion. However, downward closure and the least upper bound coincide in
case of ideals. Replacing downward closure by the least upper bound allows us
to avoid the introduction of (infinite) terms by means of ideal completion, using
the isomorphic definition of terms given in Sect. 2 [1].

Obviously, each finite partial term has a unique Béhm-like tree. Moreover,
Bohm-like trees are preserved under rewriting:

Theorem 4.3. If s —* t, with s and t finite, then BLT(s) = BLT(¢).

Proof. Let s —* t. By confluence of C there exists for every s —* ¢’ and ¢t —* t/
a partial term u such that s/ —* u *« t’. Hence, by the third clause of Definition
4.1 and the definition of Bohm-like trees we have BLT(s) = BLT(¢). O

4.1 From Infinitary Rewriting to Direct Approximants
Assume C = (X, R) is a fully-extended, orthogonal CRS and U is a set of mean-

ingless terms satisfying residuals, overlap, root-activeness, and indiscernability
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such that L € U. We show that we can define a direct approximant function such
that for each finite term we have that the Bohm-like tree it defines is identical
to the Bohm-like tree we would obtain by means of infinitary rewriting.

We first define a map:

Definition 4.4. The map wy on finite partial terms is defined for each term s
as the largest term t, with respect to the prefix order, such that t < s[L], for all
p € Pos(s) with s|, either transfinitely reducible to a redex or to term in U.

We now show:
Lemma 4.5. The map wy defines a direct approximant function.
Proof. We consider each of the clauses of Definition 4.1 in turn:

1. That wy(s) < s is immediate by the definition of wy,.

2. That wy(s) < s[L], for all p € Pos(s) if redex occurs at p in s, follows by
the fact that wy(s) < s[L], if s|, transfinitely reduces to a redex.

3. That s — ¢ implies wy(s) < wy(¢), follows, as for each position p parallel or
above the contracted redex (in both s and t), we have that s|, transfinitely
reduces to a redex or to term in U if ¢|, does. O

Write BLT7; for the Bohm-like tree defined by the Bohm-like iCRS B of C
and U and write BLTy, for the tree defined by wy,. We show our main result, i.e.
coincidence of BLT;; and BLTy,. The proof effectively defines a bisimulation.

Theorem 4.6. If s is a finite partial term, then BLTy(s) = BLT; (s).

Proof. Given a finite partial term s, we show by induction on positions p that p €
Pos(BLTy(s)) iff p € Pos(BLT (s)) and root(BLTy(s)|,) = root(BLT (s)|p)-

Obviously, if p is the root position, it is a position of both Bohm-like trees.
Moreover, if p = ¢ - 7, then p is a position of both Bohm-like trees given that
g is such a position, with root(BLTy(s)|q) = root(BLT; (s)|,) of arity n and
0 < i < n, considering [z] to be a unary function symbol for every variable z.
This leaves to show for each position p that root(BLTy(s)|,) = root(BLT; (s)]p)-

Suppose root(BLTy(s)|,) = f. Either f = L or f # L. If f = L, we have
by definition of wy, for every s —* ¢t with p € Pos(wy(t)) that t|, transfinitely
reduces to a redex or term in U. The first implies ¢|, is root-active and, whence,
in U. Thus, root(BLT;; (s)|,) = L, as t|, transfinitely reduces to a term in ¢/ and
p € Pos(wy(t)). In case f # L, s —* t with p € Pos(wy/(t)) and root(wy(t)|,) =
f by definition of wy, . Hence, again by definition of wy, |, neither transfinitely
reduces to a redex nor to term in U, implying root(BLTy (s)|,) = f.

Now suppose root(BLT;; (s)|,) = f. As before, either f = L or f # L. In
case f = L, there exists by Lemma 3.10(2) and compression a reduction s —* ¢
such that p € Pos(t), all t|, with ¢ < p not reducible to a redex of B, and
t|, transfinitely reducible to a term in U. Hence, by definition of wy, we have
p € Pos(wy(t)) and wy(t)|, = L, which implies root(BLTy(s)|,) = L. In case
f # L, there exists by Lemma 3.10(2) and compression a finite partial term ¢
such that t|, with ¢ < p not reducible to a redex of B. Hence, root(wy(t)) = f,
which implies root(BLTy(s)|,) = f.

Hence, root(BLTy(s)|,) = f iff root(BLT (s)|p) = f, as required. O
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4.2 From Direct Approximants to Infinitary Rewriting

Although a Boéhm-like tree defined by a direct approximant function exists for
every Bohm-like tree defined by a set of meaningless terms, the reverse does not
hold. To see this, recall congruence holds for every Bohm-like tree defined by a
set of meaningless terms (see Corollary 3.12). Congruence does not necessarily
hold for Bohm-like trees defined by direct approximant functions. Consider e.g.
the fully-extended, orthogonal CRS consisting of the following two rewrite rules:

IsEmpty(nil) — true
IsEmpty(x : xs) — false
Moreover, consider the following rules, forming a confluent and terminating CRS:
IsEmpty(zs) — L
nil — 1
The map w assigning to each term its normal form with respect to the last two

rules defines a direct approximant function for the CRS consisting of the first
two rules. However, the Bohm-like tree defined by w is not congruent:

BLT(L) = 1L =BLT(nil),
but placed in the context IsEmpty(O):
BLT(IsEmpty(Ll)) = IsEmpty(Ll) # true = BLT(IsEmpty(nil)).

Hence, a class of Béhm-like trees exists that can be defined by means of direct
approximant functions, but not by means of a set of meaningless terms.

In the remainder we consider two Bohme-like trees defined by direct approxi-
mant functions which we have sets of meaningless terms that do define the same
Bohm-like trees: the Berarducci-like trees and the Huet-Lévy trees.

Berarducci-Like Trees. Define wper,(s) as the largest term ¢ with respect to
< such that ¢ < s[1], iff the subterm at position p in s reduces to a redex. Given
a fully-extended, orthogonal CRS, it is easily shown that wpe;, defines a direct
approximant function; the one associated with Berarducci-like trees.

We show for every fully-extended, orthogonal CRS C = (X, R) that its Be-
rarducci-like tree and the Bohm-like tree defined by the set of root-active terms
(see Sect. 3.5) coincide for every finite partial term.

Denote the set of terms each of which has a |-instance that is a root-active
term by Uper,. Moreover, denote by BLTS,,;, the Bohm-like tree defined by Uger,
and denote by BLTp., the Berarducci-like tree. We show that BLTR,; and
BLT gL, are identical as maps on the finite partial terms. We start with a lemma:

Lemma 4.7. Let U be defined as:
U = {s is a partial term | s either root-active or s — 1} .
It holds that U = Uper, .

Proof. We show Uper, C U and U C Upey,- Thus, suppose s € Uper,. By definition
of Uger,, there exists for s a L-instance t that is root-active. The subterms re-
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placed by L either contribute or do not contribute to ¢ being root-active. In case
the subterms contribute, we have by orthogonality that s — L. In case they do
not contribute, we have by orthogonality that s is root-active. Hence, s € U.
That U C Up.r, follows by orthogonality when we replace each L in every term
of U by a closed root-active term. In case no root-active term exists, Y = {L}
and we are done immediately. O

We can now prove:
Theorem 4.8. If s is a finite partial term, then BLTR.; (s) = BLTgeL(S).

Proof. Let wyy,, be defined according to Definition 4.4, with Uper, assuming
the réle of Y. By Lemma 4.7, compression, the observation that Up.y, is closed
under transfinite expansion, and Definition 4.4, we have that wy,,, replaces by
L precisely every maximal subterm that reduces to a redex — note that s — L
either has a redex at the root or s = L. Hence, wiy,;, = wier, and, by Theorem
4.6, we have for each finite partial term s that BLTR,;,(s) = BLTgeL(s). O

Huet-Lévy Trees. By Proposition 3.21, the Huet-Lévy CRS of a fully-ex-
tended, orthogonal CRS C defines a direct approximant function and, hence, a
Bohm-like tree, the Huet-Lévy tree.

Denote by BLTy, the Bohm-like tree defined by Upr, and by BLTyy, the
Huet-Lévy tree. We show that BLTR;, and BLTyj, are identical as maps on the
finite partial terms.

Theorem 4.9. If s is a finite partial term, then BLTR (s) = BLTuL(s).

Proof. Suppose s is a finite partial term and let wyy,, be defined according to
Definition 4.4, with Uy, assuming the role of U. By definition of wpy,, , the
subterms of s that either transfinitely reduce to a redex or term in Uyy, are
replaced by L. Hence, by definition of Uyy,, all replaced subterms of s have 1 as
their Huet-Lévy direct approximant.

If Wiy, (s) does not replace a certain subterm by L, then the subterm does
not reduce to a redex. Moreover, by definition of Uy, the subterm reduces in a
finite number of steps to a term with a Huet-Lévy direct approximant unequal
to L. Hence, by orthogonality there exists a term ¢ and a reduction s —* ¢ such
that wyy, () < wiL(t).

By the facts from the first paragraph and by orthogonality of the Huet-Lévy
CRS, we also have wpr,(s) < wiyy, (s). Hence, BLTyy,, (s) = BLTur(s) and by
Theorem 4.6 we obtain BLTp; (s) = BLThr(s). O

5 Conclusion

Somewhat remarkably, there is a difference between the infinitary rewriting ap-
proach to Béhm-like trees and the direct approximant approach: Each Bohm-like
tree defined by infinitary rewriting coincides with a Béhm-like tree defined by a
direct approximant function but the reverse is not the case. The difference seems
to be due to the infinitary rewriting approach yielding congruent Béhm-like trees
(see Corollary 3.12).
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To enable our comparison, we extended to iCRSs the infinitary rewriting ap-
proach to Bohm-like trees. Contrary to most of the previous theory developed
for iCRSs, no serious complications arise due to iCRSs being higher-order. How-
ever, as noted by Van Oostrom (private communication), a number of reasonable
Bohm-like trees cannot be defined due to the overlap axiom (see Remark 3.13).

At least two questions remain: First, can either the infinitary rewriting ap-
proach be extended or the direct approximant approach be restricted as to ob-
tain coincidence between the two approaches? Second, can the overlap axiom be
replaced by some new axiom as to allow certain forms of overlap?

Acknowledgments. The author wishes to thank Jan-Willem Klop, Vincent van
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A Omitted Proofs

Proof (Lemma 3.1). Let U satisfy indiscernability and let s; <—>%1 S <—>%2 s3.
Define @) as the set of minimal positions in P; U P, with respect to the prefix
order on positions. The set @ is a set of positions of each of sy, s5 and s3. Since
U satisfies indiscernability, we have for all positions in @ that the subterms of
s1, 52, and s3 are in Y. Hence, s; <Y s3 follows, as required.

To see that transitivity implies indiscernability, assume there exist terms
s € U and t € U such that s <% ¢. Let p be a position of minimal depth in P and
observe that s and ¢ are identical up to depth [p|. Trivially, s|, <% s <Y t|,, since
all these terms are in U, and by transitivity of <+ we have s/, <—>Z@{1 t <—>%2 t]p-
Since t € U, neither @1 nor Q2 can be empty or be equal to {e}. Thus, there
exists a non-empty context C[0, ..., O] with n holes such that s|, = Cls1, ... s
and t|, = Clty, ..., t,] with s; <—>ZI’$1 t; for all 1 <7 <n and we can define:

P' =(P—{p})U{p-qi-r|1<i<n,q the position ith hole, and r € R;}.

By definition, s <%, t. Moreover, |p| < |p- ¢; - 7| for any ¢, as C[0,...,O] is
non-empty, and p is of minimal depth in P. Hence, repeating the argument yields
that s and t are identical up to any arbitrary depth. Thus, s = ¢t and t € U,
contradiction. a

Proof (Lemma 3.2). Let s =% s' and s —" t (resp. s <Y t). We prove the result
by ordinal induction on «. If & = 0, then the result is immediate.

If = B+ 1, assume s - s’ = s =P s5 — s'. By the induction hypothesis
there exists a term tg such that ¢ — tg and sg —% tg (resp. sg <% tz). There
are two possibilities for sg — s’ since U satisfies overlap: the redex pattern of
the contracted redex occurs either fully outside all subterms at positions in P
or not.

— If the redex pattern of the contracted redex occurs outside all subterms
at positions in P, then sg —Y tg (resp. sg <" tg) together with left-
linearity and fully-extendedness implies that a redex employing the same
rewrite rule as the redex contracted in s3 — s’ occurs at the same position
in t5. Contracting the redex in ts yields a step tg — t'. That s’ —" ¢’ (resp.
s' U 1) follows by sz —Y tg (resp. sz <Y tz) and the fact that the same
rewrite rule is employed in both sz — s’ and ¢tg — t: Clearly, s’ and ¢’ are
identical at all positions p that descend from positions whose subterms are
not replaced in sz =Y tg (or sg <" tz). Moreover, all residuals of subterms
replaced in sg —U tg (resp. sp - tg) are in U by the residuals axiom.

— If the redex occurs inside a subterm at a position in P, it follows by residuals
that s’ =Y t5 (resp. s’ <Y t5). Hence, we can define t' = t4.

If o is a limit ordinal, the result is immediate by strong convergence, the
induction hypothesis, and the residuals axiom; note in the successor ordinal case
that any reduction step of s — s’ ‘simulated’ by ¢ — t’ occurs at the same
depth. a
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Proof (Theorem 38.7). Let s <" t and assume s —» s’ and t —» t'. Consider the

following diagram:
u
S<——>1¢
/ (1)/ \
u

Sl - t* t/
i (2) i (3 i
SN < u > t* ~he tl/

In the diagram, (1) and (2) exist by bisimulation and (3) exists by Theorem
2.8. The result now follows by the diagram, the fact that all hypercollapsing
subterms are included in I/, and transitivity of <. a

Proof (Lemma 3.10).

1. Let s be a term. If s is not root-active, then s reduces to a head normal
form. Recursively apply this argument to all non-root-active subterms of
the obtained head normal form. This yields a strongly convergent reduction
to a term t all whose redexes employing rules from R occur in root-active
subterms. Iteratively, reduce all maximal subterms of ¢ in ¢, to L. This is
possible by a strongly convergent reduction, as only finitely many subterms
occur at each depth and as every depth is finite. Hence, as replacement of
subterms by L cannot create any redexes employing rules from R, by fully-
extendedness and left-linearity, and as all root-active terms are in U/, the
result follows.

2. Let s — t. By fully-extendedness and left-linearity a strongly convergent
reduction s —»g t' — omitting from s — ¢t all steps employing rules from B
— is readily defined by ordinal induction.

Define t,, as ' with each subterm a position in ¢’ replaced L if that position
descents from one of the positions of the first « redexes in s — ¢ omitted
from s — t'. By the residuals axiom a redex occurs in ¢, at every position
descending from the « + 1th step in s — ¢ omitted from s — ¢'. Contracting
the occurring redexes in a depth-wise fashion yields a strongly convergent
reduction t, — ) ta41, as only a finite number of subterms occur at each
depth. Since s — t is strongly convergent, concatenating all these reductions
yields a strongly convergent reduction ¢’ —» | t, as required. a

Proof (Theorem 3.11). Let s be a term. Obviously, s has a Bohm-like tree by
Lemma 3.10(1).

Suppose that tg « s — ¢1. Again by Theorem 3.10(1), the terms ¢y and ¢
each have a Bohm-like tree, write these resp. ¢ and ¢}. By Lemma 3.10(2) there
exist terms s; and s} such that s g s -1 ¢} and s »g s} — t. Moreover,
by Lemma 2.8 we have s, »g s and s] - g s7 with s§ ~p. s7 (see Fig. 1).

By the indiscernability axiom and the fact that L € U, we may consider
the reductions s, - t§ and s§ = t] to be replacements by L of the maximal
subterms of s, and s that are in I, . Thus, s, <%+ ¢ and s} <"+ t. Moreover,
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by Lemma 3.2 and the fact that ¢ and ¢] are normal forms, we have that
sy Ue ¢y and st U+ t7. As all hypercollapsing terms are root-active, it
follows by transitivity of <>+ that ¢} <"+ ¢;. Hence, since t{; and ¢} are normal
forms of B, we have t; = t], as required. ad

L "l N

ts <> 88 ~he ST < tT
U, Uy

Fig. 1. The proof of Theorem 3.11

Proof (Lemma 3.15). We give a proof for each of the axioms in turn:

Residuals Let s be a partial term and s — ¢. By definition of &/, we can obtain
a partial term s* by replacing every maximal subterm of s that is in i/, by a
term in U such that the subterm becomes a | -instance — s* may be partial,
as U, may be {L}. Replace each L in s* by a fresh variable to obtain a
term s’. By fully-extendedness and orthogonality s’ — t', where the redex
pattern and position of the redex contracted in the ath step of s — ¢ and
s" — t’ are identical. By construction, we have for every position p € Pos(s)
that p € Pos(s’) and p/(s — t) C p/(s" - t’). Hence, the result follows as U
satisfies residuals.

Overlap Suppose s is a redex overlapping a term ¢ in U at position p € Pos(s).
By definition of U/, there exists a term ¢’ € U that is a L-instance of ¢. Note
that U, # {1}, as ¢’ € U. Hence, there exists a term s, a L-instance of s,
with §’|, = t’. The term s’ is a redex by fully-extendedness and orthogonality.
Thus, as U satisfies overlap, we have s’ € U and, as s’ is a L-instance of s,
it follows that s € U, , as required.

Hypercollapsingness (resp. root-activeness) Let s be a partial term that
is hypercollapsing (resp. root-active). Recursively replace each L in s by s to
obtain a term ¢, avoiding the capture of free variables. By fully-extendedness
and orthogonality ¢ is hypercollapsing (resp. root-active). Moreover, as U
contains all hypercollapsing (resp. root-active) terms, ¢ € U and, by con-
struction, s has ¢t as a L-instance. Hence, s € U, as required.

Indiscernability Let s <—>%L t and s € U, . By definition of U, there exists a
term s’ € U that is a L-instance of s. Moreover, for each p € P there exist
terms s, ;, € U such that s, is a L-instance of s|, and t}, is a L-instance of
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t|p- By indiscernability of ¢ and the fact that s, € U, we have 5|, € U for
each p € P. Define t’ as

Vi, = tyl- ifp=q-rforqeP
v s'|, otherwise

By definition ¢’ is a L-instance of ¢ and s’ <% t', as §'|,,t'|, € U for all
p € P. Hence, by indiscernability of U, it follows that ¢’ € U and, thus,
t € U, as required. a

Proof (Proposition 3.16). Let P be the set of positions of root-active subterms
in s that are replaced to obtain t. By definition of s there exists a perpetual
reduction S starting from it. The redex patterns employed in the steps of S
either occur completely outside or completely inside the subterms at positions
that descent form those in P, by root-activeness and orthogonality. It is irrelevant
that any terms are substituted along S into the subterms at positions that
descent from those in P by orthogonality and the fact that free variables cannot
get bound when substituted in the subterms.

Omit from S all steps that occur inside the subterms that occur at positions
that descent from those in P to obtain a reduction S’ of length «.. By definition of
S’ together with orthogonality and fully-extendedness, there exists a reduction
T of length « starting in t such that for all § < a we have that the redex
pattern and position of the redex contracted in the Sth step of both S’ and T
are identical. Hence, if S is perpetual then so is T and the result follows since
perpetuality implies root-activeness. If S’ is not perpetual, then s reduces to a
subterm at a position p € P and the same holds for T'. As the subterm at position
p in t is root-active, there exist a perpetual reduction starting from it. As earlier,
it is irrelevant that any terms are substituted in the subterm by orthogonality
and the fact that free variables cannot get bound when substituted. Hence, T’
can be prolonged to obtain a perpetual reduction and the result follows again as
perpetuality implies root-activeness. a

Proof (Proposition 3.19). Observe that each term has a closed substitution in-
stance: replace each free variable by [z]z. Residuals and overlap follow immedi-
ately by definition of opaqueness. As each root-active term reduces to a redex,
it follows by orthogonality that no redex can overlap a root-active term at a
non-root position. Hence, opaqueness follows for the root-active terms.

In case of indiscernability, assume that s is not opaque and that s «
By definition of opaqueness there is a closed substitution instance s’ of s that
reduces to a term s” overlapped by a redex at a non-root position. For s’ there
exists a term ¢’ such that s’ <Y ' and ¢’ a closed substitution instance of t. By
bisimulation, which follows from residuals and overlap, there exists a reduction
t' — t such that s” <Y t". By opaqueness, the subterms replaced in s” <4 ¢

U g,

are irrelevant — they cannot overlap any redex — and it follows that ¢ is
overlapped by a redex at a non-root position. Hence, ¢ is not opaque and we
obtain indiscernability. a
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