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Abstract. We study the derivational complexity induced by the dependency pair method,
enhanced with standard refinements. We obtain upper bounds on the derivational com-
plexity induced by the dependency pair method in terms of the derivational complexity
of the base techniques employed. In particular we show that the derivational complexity
induced by the dependency pair method based on some direct technique, possibly refined
by argument filtering, the usable rules criterion, or dependency graphs, is primitive recur-
sive in the derivational complexity induced by the direct method. This implies that the
derivational complexity induced by a standard application of the dependency pair method
based on traditional termination orders like KBO, LPO, and MPO is exactly the same as
if those orders were applied as the only termination technique.

1. Introduction

Several notions to assess the complexity of a terminating term rewrite system (TRS) have
been proposed in the literature, compare [7, 8, 16, 20]. The conceptually simplest one was
suggested by Hofbauer and Lautemann in [20]: the complexity of a given TRS is measured
as the maximal length of derivation sequences. More precisely, the derivational complexity
function with respect to a terminating TRS R relates the maximal derivation height to the
size of the initial term. We adopt this notion as our central definition of the complexity of
a TRS.

For termination proofs by direct methods a considerable number of results establish
essentially optimal upper bounds on the growth rate of the derivational complexity function.
See for example [18, 20, 22, 26, 29, 30, 31, 37, 38] for results in this direction. However,
for transformation techniques like semantic labelling [40] or the dependency pair method [1]
the situation changes. For semantic labelling, it is a trivial observation that the derivational
complexity of the original TRS is bounded from above by the derivational complexity of the
labelled system. However, if the domain of the used (quasi-)models is infinite, the labelled
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TRS is generally infinite, as well. Estimating the derivational complexity of such systems
is harder than for finite systems: for some termination proof methods, such as the multiset
path order (MPO for short) or the lexicographic path order (LPO for short) the complexity
results only hold for finite TRSs [18, 38]. For the Knuth-Bendix order (KBO for short) the
situation is better. If some weak conditions are in place, then the bound on the derivational
complexity with respect to finite TRSs extends to infinite TRSs [25]. With respect to the
dependency pair method, in [2, 16, 17, 23, 24, 32, 39] the bounds on derivation heights
induced by the dependency pair method or its framework are investigated. However only
variations on the original definition of the dependency pair method were analysed.

In this paper we give a derivational complexity analysis of the dependency pair method.
It should be emphasised that the notion of dependency pair method studied here amounts
to the original technique as introduced by Arts and Giesl [1] (see also Hirokawa and Mid-
deldorp [14]). As the dependency pair method is a transformation technique, we can only
give a parametrised analysis. We call those techniques that are applied on the transformed
system: base techniques. Let us exemplify this notation on the next example.

Example 1.1. Consider the TRS R1 given below:

i(x) ◦ (y ◦ z) → f(x, i(x)) ◦ (i(i(y)) ◦ z) i(x) → x

i(x) ◦ (y ◦ (z ◦ w)) → f(x, i(x)) ◦ (z ◦ (y ◦ w)) f(x, y) → x .

R1 is a variation of a TRS encoding the Ackermann function, introduced by Hofbauer [20,
Proposition 5.9] (also compare [19]). Note that R1 is not simply terminating and the deriva-
tional complexity of R1 grows as fast as the Ackermann function. However, termination can
be (automatically) shown by the dependency pair method in conjunction with argument
filtering and KBO (we give all necessary definitions in Sections 2 and 3).

In Example 1.1 we cannot apply KBO directly (the TRS R1 is not simply terminating),
but we apply KBO as base technique. In order to measure the strength of the dependency
pair method itself, we express the induced complexity relative to the (maximal) complexities
of the base techniques. With respect to Example 1.1 it is not difficult to see that the
derivational complexity of R1 belongs to Ack(Θ(n), 0), where n is the size of the start term.
Essentially this follows from [19, Proposition 5.9], due to the closeness of R1 to Hofbauer’s
original example. As this is also the complexity induced by KBO [22] it may appear that
the dependency pair method does not add any power. Our results provide a clear picture
of the true connection. With respect to upper bounds on the derivational complexity, we
establish the following (technical) results:

(1) For the basic dependency pair method (potentially using argument filterings) the induced
derivational complexity is bounded triple exponentially in the derivational complexity
of the base technique used. If we restrict to string rewrite systems, then the induced
derivational complexity is exponential in the derivational complexity of the base tech-
nique.

(2) If we consider the basic dependency pair method using the usable rules refinement, then
the induced derivational complexity is primitive recursive in the derivational complexity
of the base technique.

(3) Finally, if we consider the dependency pair method in conjunction with dependency
graphs, then the induced derivational complexity is primitive recursive in the (maximal)
derivational complexity of the base techniques employed.
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Complementing these results, we present results on lower bounds. For the basic dependency
pair method, we present an example which shows that at least two of the three exponen-
tials in its upper bound can actually be reached. If we restrict to string rewriting, this
bound reduces to a single exponential. Hence the corresponding upper bound mentioned
in result (1) is optimal. For the usable rules refinement, we show that the growth rate of
the derivational complexity function may be nonelementary. Furthermore we show that the
bound for dependency graphs given by result (3) is essentially optimal.

To exemplify these results, we momentarily focus on polynomial interpretations as base
technique. It is well-known that polynomial interpretations induce a double exponential
bound on the derivational complexity [20]. Let R be a TRS and suppose termination of
R has been established by applying the basic dependency pair method, where polynomial
interpretations are used to define the employed reduction pair. According to result (1) the
derivational complexity function with respect to R is bounded by 25(O(n)), i.e, by a tower of
2s of height 5 in n. On the other hand, if in addition the usable rules criterion or dependency
graphs are used, then results (2) and (3) yield that the derivational complexity is (at most)
primitive recursive.

Thus seemingly easy refinements of the dependency pair method like dependency graphs
may lead to noteworthy speed-ups of the growth rates of the derivational complexity func-
tion. On the other hand if strong techniques (with respect to the complexity induced) are
employed in conjunction with the dependency pair method, then the derivational complexity
of the analysed TRS may only depend on the complexity induced by the base technique.

Re-consider the TRS R1 given in Example 1.1. There are nine dependency pairs.

i(x) ◦♯ (y ◦ z) → f(x, i(x)) ◦♯ (i(i(y)) ◦ z) i(x) ◦♯ (y ◦ (z ◦ w)) → f(x, i(x)) ◦♯ (z ◦ (y ◦ w))

i(x) ◦♯ (y ◦ z) → f♯(x, i(x)) i(x) ◦♯ (y ◦ (z ◦ w)) → f♯(x, i(x))

i(x) ◦♯ (y ◦ z) → i(i(y)) ◦♯ z i(x) ◦♯ (y ◦ (z ◦ w)) → z ◦♯ (y ◦ w)

i(x) ◦♯ (y ◦ z) → i♯(i(y)) i(x) ◦♯ (y ◦ (z ◦ w)) → y ◦♯ w

i(x) ◦♯ (y ◦ z) → i♯(y) .

To show termination of R1 one may use the argument filtering π: π(f) = π(f♯) = π(i♯) = 1,
π(i) = [1], π(◦) = π(◦♯) = [1, 2] and the reduction pair (>π

KBO, >
π
KBO), where (>π

KBO, >
π
KBO)

is induced by the (admissible) weight function w with w0 = 1, w(◦) = w(◦♯) = 1, and
w(i) = 0. Furthermore the precedence ≻ fulfils: i ≻ ◦, ◦♯. Due to result (1) and [22] the
derivational complexity of R1 belongs to Ack(Θ(n), 0).

In contrast to the case for polynomial interpretations, the complexity induced by the
base technique belongs to a class of functions closed under primitive recursion. Hence it
is already so huge, that the inherent complexity of the dependency pair method becomes
negligible.

Note the challenges of our investigation: In order to estimate the derivational complexity
of a rewrite system we only consider the (maximal) derivation complexities induced by the
base techniques employed. This entails that we exploit the upper bound on the maximal
number of dependency pair steps to bound the length of derivations.

Some of the results in this paper appeared in an earlier conference paper [27]. Apart
from correcting some shortcomings of the conference paper the journal version extends [27]
by providing a full analysis of the dependency graph refinement (see Section 8). Furthermore
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the treatment of the usable rules criterion is new (see Section 7), as well as the improvement
of the lower- and upper-bound in the context of string rewriting (see Section 6).

The technically most involved result is the proof of the triple exponential upper bound
for the basic dependency pair method. Our proof rests on the observation that it suffices
to bound the maximal depth of a term during a given derivation. We show that the depth
of any term occurring in a derivation is bounded exponentially in the maximal number of
dependency pair steps. Based on this result the triple exponential upper bound follows by
standard observations. Due to this ground work the analysis of the usable rules refinement
is relatively straightforward. On the other hand, for the analysis of the dependency graph
refinement we employ a different, but conceptually simpler technique. Essentially, it suffices
to embed the analysed TRS in a generic simulating TRS whose derivational complexity can
be analysed directly.

The rest of this paper is organised as follows. In Sections 2 and 3 we present basic no-
tions and starting points of the paper. Sections 4 and 5 establish result (1). The mentioned
improvement for string rewriting is given in Section 6. In Section 7, we extend our con-
siderations to usable rules and thus show result (2). In Section 8, we consider dependency
graphs and show result (3). Finally we conclude in Section 9. To ease the presentation some
technical results have been moved to the appendix.

2. Preliminaries

We assume familiarity with the basics of term rewriting, see [4, 34]. Below we recall central
definitions and notions of rewriting which are relevant to this paper.

Let V denote a countably infinite set of variables and F a signature of function symbols
with fixed arities. The set of terms over F and V is denoted as T (F ,V). The set of ground
terms over F is denoted as T (F). The (proper) subterm relation is denoted as E (⊳); we
write D (⊲) for the reversed (proper) subterm relation. The root symbol (denoted as rt(t))
of a term t is either t itself, if t ∈ V, or the symbol f , if t = f(t1, . . . , tn). We denote the
set of variables occurring in a term t as Var(t), and the set of function symbols occurring
in t as Fun(t). A position is a finite sequence of positive integers. The root position is
the empty sequence denoted by ǫ, and pq denotes the concatenation of positions p and q.
The set of positions of a term t is denoted as Pos(t). We write p 6 q (p < q) to denote
that p is a (proper) prefix of q, and p ‖ q if neither p 6 q nor q 6 p. The subterm of t at
position p is denoted as t|p. We write PosF (t) (PosV(t)) for the set of positions p such that
F (V) contains rt(t|p). To simplify the exposition, we often confuse terms and their tree
representations: a branch of a term t is a maximal set of positions B in t such that for all
pairs of positions q, q′ ∈ B, we have q 6 q′ or q′ 6 q. The size (denoted as |t|) of a term t is
the number of variables and function symbols occurring in t. The depth (denoted as dp(t))
of a term t is 0 if t is a variable or a constant, and defined as follows if t = f(t1, . . . , tn):
dp(t) := 1 + max{dp(ti) : 1 6 i 6 n}. A substitution is a mapping σ : V → T (F ,V).
The result of applying a substitution σ to a term t is denoted as tσ. We introduce a fresh
constant ✷ (the hole) and define a context C as a term (over F ∪ {✷} and V) containing
exactly one ✷. For a term t and a context C, C[t] denotes the replacement of ✷ by t.

A term rewrite system (TRS for short) R over T (F ,V) is a finite set of rewrite rules
l → r with l, r ∈ T (F ,V), l /∈ V, and Var(r) ⊆ Var(l). Given a TRS R and two terms s, t,
we say that s rewrites to t (denoted as s →R t) if there exist a context C, a substitution
σ and a rewrite rule l → r in R such that s = C[lσ] and t = C[rσ]. If no confusion can
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arise, we write s → t, instead. We write →+
R for the transitive closure of this relation. The

reflexive closure is →=
R. The reflexive and transitive closure is denoted as →∗

R. We write
→n

R to express n-fold composition of →R. If we wish to indicate the redex position p and
the applied rewrite rule l → r in a reduction from s to t, we write s →p,l→r t. A TRS R
is terminating if there exists no infinite chain of terms t0, t1, . . . such that ti →R ti+1 for
each i ∈ N.

A function symbol f is defined if f = rt(l) for some rewrite rule l → r in the considered
TRS R, otherwise it is called a constructor. The set of defined function symbols of R is
denoted as DR, while the constructor symbols are collected in CR (we only write D and C,
respectively, if no confusion can arise). We write PosD(t) (PosC(t)) for the set of positions
p such that D (C) contains rt(t|p). We recall the notion of relative rewriting, c.f. [11, 34].
Let R and S be TRSs. We write →R/S for →∗

S · →R · →∗
S and we call →R/S the relative

rewrite relation of R modulo S. Clearly, we have that →R/S = →R, if S = ∅. We write
NF(R), NF(R/S) to denote the set of normal forms of →R, →R/S respectively.

The derivation height of a term s with respect to a finitely branching, well-founded
binary relation → on terms is defined as dh(s,→) := max{n | ∃t s →n t}. The derivational
complexity function of R is defined as:

dcR(n) := max{dh(t,→R) | |t| 6 n} .

In analogy to the mapping dh we define functions tracing the depth or size of reducts.
The potential depth of a term s with respect to → is defined as follows: pdp(s,→) :=
max{dp(t) | s →∗ t}; the potential size is defined by psz(s,→) := max{|t| | s →∗ t}. If
termination of R by some termination proof technique implies an upper bound on dcR,
we call that bound the derivational complexity induced by that technique, or simply the
derivational complexity of that technique.

An F-algebra A for a signature F consists of a carrier A and, for every function symbol
f ∈ F , an interpretation function fA : An → A, where n is the arity of f . Given an
assignment α : V → A, we denote the evaluation of a term t in A by [α]A(t). A monotone
F-algebra is a pair (A,≻) where A is an F-algebra and ≻ is a proper order such that for
every function symbol f ∈ F , fA is strictly monotone in all coordinates with respect to
≻. A weakly monotone F-algebra (A,<) is defined similarly, but for every function symbol
f ∈ F , it suffices that fA is monotone in all coordinates (with respect to the preorder
<). A monotone F-algebra (A,≻) is called well-founded if ≻ is well-founded. Similarly,
a weakly monotone F-algebra (A,<) is well-founded, if the proper order ≻ induced by <

is well-founded. Any well-founded monotone F-algebra (A,≻) induces a reduction order
≻A on terms: define s ≻A t if and only if [α]A(s) ≻ [α]A(t) for all assignments α. We
say (A,≻) is compatible with a TRS R if R ⊆ ≻A. Similarly, given a weakly monotone
algebra (A,<), we define s <A t if and only if [α]A(s) < [α]A(t), and s ≻A t if and only
if [α]A(s) ≻ [α]A(t) for all assignments α. A polynomial interpretation is an interpretation
into a well-founded monotone (weakly monotone) algebra (A, >) ((A,>)) such that A ⊆ N,
> (>) is the standard strict order (preorder) on the natural numbers, and fA is a polynomial
for every function symbol f [21].

We briefly recall the definition of the class of primitive recursive functions. The fol-
lowing number-theoretic functions are initial : (i) the constant zero functions of all arities:
zn(x1, . . . , xn) = 0, (ii) the successor function s(x) = x+1, and (iii) the projection functions
πn
i (x1, . . . , xn) = xi. A class C of number-theoretic functions is closed under composition if
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for all m-ary g ∈ C and n-ary h1, . . . , hm ∈ C, the function

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) ,

is contained in C, as well. It is closed under primitive recursion if for all n-ary g ∈ C and
n+ 2-ary h ∈ C the following function f is contained in C, as well:

f(0, x1, . . . , xn) = g(x1, . . . , xn)

f(y + 1, x1, . . . , xn) = h(f(y, x1, . . . , xn), y, x1, . . . , xn) .

The class of primitive recursive functions is the smallest set of number-theoretic func-
tions which contains all initial functions and is closed under composition and primitive
recursion. The definition schemata for primitive recursive functions can be translated to
rewrite rules in the obvious way, see for example [9, Definition 2.6].

The ith iterate of a unary function f is denoted as f i, a similar notation is used for the
ith iterate of a function symbol. Finally, we define the function 2n as follows:

20(m) := m 2n+1(m) := 22n(m) .

3. Dependency Pair Method

We recall the central notions of the dependency pair method [1, 14]. Let t be a term. We set
t♯ := t if t ∈ V, and t♯ := f ♯(t1, . . . , tn) if t = f(t1, . . . , tn). Here f ♯ is a new n-ary function
symbol called dependency pair symbol. For a signature F , we define F ♯ := F ∪{f ♯ | f ∈ F}.
The set DP(R) of dependency pairs of a TRS R is defined as {l♯ → u♯ | l → r ∈ R, u E

r, rt(u) ∈ D, u ⋪ l}. We recall the following characterisation of termination of a TRS.

Proposition 3.1. A TRS R is terminating if and only if there exists no infinite derivation

of the form t♯1 →
∗
R t♯2 →DP(R) t

♯
3 →

∗
R . . . such that for all i > 0, t♯i is terminating with respect

to R.

An argument filtering (for a signature F) is a mapping π that assigns to every n-ary
function symbol f ∈ F an argument position i ∈ {1, . . . , n} or a (possibly empty) list
[i1, . . . , im] of argument positions with 1 6 i1 < · · · < im 6 n. The signature Fπ consists of
all function symbols f such that π(f) is some list [i1, . . . , im], where in Fπ the arity of f is
m. Every argument filtering π induces a mapping from T (F ,V) to T (Fπ,V), also denoted
by π:

π(t) :=







t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im] .

An argument filtering π is extended in the usual way to a TRS R. Let R be a binary
relation, then we write π(R) ⊆ R to indicate that for all l → r ∈ R, π(l) R π(r) holds.

A reduction pair (<,≻) consists of a preorder < which is closed under contexts and
substitutions, and a compatible well-founded order ≻ which is closed under substitutions.
Here compatibility means the inclusion < · ≻ · < ⊆ ≻. Recall that any well-founded weakly
monotone algebra (A,<) gives rise to a pair (<A,≻A) of relations over terms. It is well
known that the pair (<A,≻A) forms a reduction pair.

Proposition 3.2. A TRS R is terminating if and only if there exist an argument filtering
π and a reduction pair (<,≻) such that π(DP(R)) ⊆ ≻ and π(R) ⊆ <.
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We write f ◮R g if there exists a rewrite rule l → r ∈ R such that rt(l) = f and g is
a defined function symbol in Fun(r). For a set G of defined function symbols we denote by
R ↾ G the set of rewrite rules l → r ∈ R with rt(l) ∈ G. The set UR(t) of usable rules of a
term t is defined as R ↾ {g | f ◮∗

R g for some defined function symbol f in Fun(t)}. Finally,
if P is a set of dependency pairs then UR(P) :=

⋃

l→r∈P UR(r). We write U(P) instead of
UR(P) if R is clear from the context. We use Cǫ to denote the two rules cons(x, y) → x and
cons(x, y) → y for some fresh binary function symbol cons.

Proposition 3.3 ([12, 15]). Let R be a TRS. If there exist an argument filtering π and
a reduction pair (<,≻) such that π(DP(R)) ⊆ ≻ and π(U(DP(R))) ∪ Cǫ ⊆ <, then R is
terminating.

The dependency graph of a TRS R (denoted by DG(R)) is a graph whose nodes are
the dependency pairs of R. It contains an edge from s → t to u → v whenever there exist
substitutions σ and τ such that tσ →∗

R uτ . A strongly connected component (SCC for short)
of DG(R) is a maximal subset of nodes such that for each pair of nodes s → t, u → v, there
exists a path from s → t to u → v. We call an SCC trivial if it consists of a single node
s → t such that the only path from that node to itself is the empty path. All other SCCs
are called nontrivial.

Proposition 3.4. A TRS R is terminating if and only if for every nontrivial SCC P in
DG(R) there exist an argument filtering π and a reduction pair (<,≻) such that π(P) ⊆ ≻
and π(R) ⊆ <.

4. Progenitor and Progeny

In this and the next section we show that for the basic dependency pair method (poten-
tially using argument filterings) the induced derivational complexity is triple exponentially
bounded in the derivational complexity induced by the base technique employed.

Before proceeding into the technical construction, we outline the proof plan. We aim
to bound the length of derivations in a given TRS. Since any derivation in a terminating
TRS is non-cycling, the length of any derivation is bounded exponentially in the size of
the occurring terms. On the other hand, the size of any term is bounded exponentially in
its depth. Thus it suffices to show that the depth of any term occurring in a derivation is
exponentially bounded in the number of admitted dependency pair steps, which in turn is
bounded by the derivational complexity induced by the base technique employed.

In the proof, we introduce the progeny relation (see Definition 4.1), which is an extension
of the descendant relation [34, Chapter 4]. We use the progeny relation in order to extract
derivations over DP(R) ∪ R from a given derivation over a TRS R (see Definition 4.8).
In Definition 5.1 we exploit this notion to define the progenitor graph, which constitutes a
suitable restriction of the progeny relation for a given derivation A. The intuition behind
progenitor graphs is to define a graph that captures the dependency pair steps of the DP(R)∪
R-derivations extracted from A. Moreover the graph is constructed such that its size linearly
bounds the height of the last term in A and the height of its components is bounded by the
number of admitted dependency pair steps.

For the remainder of this paper, let R be a TRS. We recall the definition of descendants.
Let A : s →p′,l→r t be a rewriting step, and let p ∈ Pos(s). Then the descendants of p in t
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m

a

m

t1

p

a a

m

t2

q

a a

m
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q

a b

m

t4

Figure 1: A Derivation, its Progeny Relation and Redex Positions

(denoted by p\A) are defined as follows:

p\A :=







{p} if p < p′ or p ‖ p′,

{p′q3q2 | r|q3 = l|q1} if p = p′q1q2 with q1 ∈ PosV(l),

∅ otherwise .

We also want to keep track of redex positions, not just of positions in the context or the
substitution of the rewrite rule. This intuition is cast into the following definition.

Definition 4.1. Let A : s →p′,l→r t be a rewriting step, and let p ∈ Pos(s). Then the
progenies of p in t (denoted by p  A) are:

p  A :=







{p} if p < p′ or p ‖ p′,

{p′q3q2 | r|q3 = l|q1} if p = p′q1q2 with q1 ∈ PosV(l),

{p′q2 | r|q2 = l|q1} if p = p′q1 with q1 ∈ PosF (l)− {ǫ},

{pq1 | r|q1 ⋪ l ∧ q1 ∈ PosF (r)} if p = p′ .

If q ∈ pA, then we also say that p is a progenitor of q in s. We denote the set of progenitors
of q in s by A q, i.e., we have q ∈ p A if and only if p ∈ A q. For a set P ⊆ Pos(s), we
define P  A :=

⋃

p∈P p  A.

Remark 4.2. Note that the distinction between the last two cases corresponds to the
exclusion of rules l♯ → u♯ from DP(R) where u ⊳ l, see Section 3. If we were not considering
the exclusion of those rules, we could omit the third case in Definition 4.1, and drop the
condition r|q1 ⋪ l from the last case.

Example 4.3. Consider the TRS R2 consisting of the following three rewrite rules:

m(x) → p(a, x) p(x, x) → q(x, x) a → b .

Let A be the derivation

m(m(a))
︸ ︷︷ ︸

t1

→ m(p(a, a))
︸ ︷︷ ︸

t2

→ m(q(a, a))
︸ ︷︷ ︸

t3

→ m(q(a, b))
︸ ︷︷ ︸

t4

,

which is represented in Figure 1. Redex positions are marked by circles, the progeny rela-
tion is marked by dotted and dashed lines (the two kinds of lines will be distinguished in
Example 4.14 below). Note that each position in a term may have several progenitors. For
instance, (t2 → t3)  11 = {11, 12}.
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Lemma 4.4. Let A : s → t, let p ∈ Pos(s), and let q ∈ Pos(t). If q ∈ pA and rt(t|q) ∈ D,

then rt(s|p) ∈ D and (s|p)
♯ →=

DP(R)∪R (t|q)
♯.

Proof. Suppose that A is s →p′,l→r t. If p < p′ or p ‖ p′, then by definition, we have p = q

and thus (s|p)
♯ →=

R (t|q)
♯. On the other hand, if p = p′, then there exists q1 ∈ PosF (r)

such that q = p′q1. Moreover, t|q ⋪ s|p. By assumption rt(t|q) ∈ D and thus we obtain

(s|p)
♯ →DP(R) (t|q)

♯. Finally, if p > p′, then by definition of the progeny relation, we have

s|p = t|q. Then again, (s|p)
♯ →=

R (t|q)
♯ follows trivially.

Lemma 4.5. Let A : s → t. Then for every q ∈ Pos(t), we have A  q 6= ∅.

Proof. Suppose A denotes the step s →p′,l→r t. If q < p′ or q ‖ p′, then A  q = {q}. If
q = p′q1, q1 ∈ PosF (r), and r|q1 ⋪ l, then A  q = {p′}. If q = p′q1, q1 ∈ PosF (r), and
r|q1 ⊳ l, then there is some p1 such that l|p1 = r|q1 , so p′p1 ∈ A  q. Last, if q = p′q1q2 and
q1 ∈ PosV(r), then there is some p1 such that l|p1 = r|q1 because Var(r) ⊆ Var(l). Therefore,
p′p1q2 ∈ A  q.

Definition 4.6. Let A : s →∗ t be a derivation, and let p ∈ Pos(s). Then the progenies of
p in t (also denoted by p  A) are defined as follows:

(1) If A is the empty derivation, then p  A = {p}.
(2) Otherwise, we can split A into A1 : s → s′ and A2 : s

′ →∗ t. Then pA = (p  A1)A2.

We say p is a progenitor of q if p ∈ A  q, which holds if q ∈ p  A. Moreover, we have
q ∈ P  A if and only if q ∈ p  A for some p ∈ P .

Lemma 4.7. Let A : s →∗ t be a derivation and let p ∈ Pos(s), q ∈ Pos(t). Then the
set A  q of progenitors of q is not empty. Moreover if q ∈ p  A with rt(t|q) ∈ D, then

rt(s|p) ∈ D and (s|p)
♯ →∗

DP(R)∪R (t|q)
♯.

Proof. Straightforward induction using Lemmata 4.5 and 4.4.

Using Lemma 4.7, we can extract derivations over DP(R) ∪ R from a given derivation
in a TRS R using positions connected by the progeny relation.

Definition 4.8. Let t1, . . . , tn be terms, and let p1, . . . , pn be positions in t1, . . . , tn, re-
spectively, such that rt(tn|pn) ∈ D, and for all 1 6 i 6 n − 1, we have Ai : ti →R ti+1 and

pi+1 ∈ pi  Ai. Then we call A : (t1|p1)
♯ →∗

DP(R)∪R (tn|pn)
♯ the implicit dependency pair

derivation with respect to t1, . . . , tn and p1, . . . , pn. We denote the number of DP(R)-steps
in A as DPl(A).

Example 4.9 (continued from Example 4.3). The implicit dependency pair derivation with
respect to the terms t1, t2, t3 and the positions 1, 11, 12 is given as follows:

m♯(a) →DP(R2) a♯ →=
R2

a♯ .

Note that the length of this implicit dependency pair derivation is smaller than the length
of the original derivation A. Moreover, all terms occurring in this implicit dependency pair
derivation are proper subterms of the respective terms of A (modulo marking top symbols
by a ♯). In contrast, the implicit dependency pair derivation with respect to the terms t1,

t2, t3, t4, and the positions ǫ, ǫ, ǫ, ǫ is given by t♯1 →R2 t♯2 →R2 t♯3 →R2 t♯4.

The following lemma shows that given two positions q 6 q′ in the same branch of a
term, and a progenitor p0 of q, we can always find a progenitor p′0 of q′ such that p0 6 p′0.
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s t

q

q′

p0

p′0

p1

p′1

Figure 2: Intuition for Lemma 4.10

This is graphically depicted in Figure 2, where the drawn lines indicate the assumption of
the lemma and the dotted lines the conclusion. The lemma entails that for any branch B
of a term, we can find progenitors of all positions in B in a single branch again.

Lemma 4.10. Let A : s → t and let q, q′ ∈ Pos(t). If q 6 q′, then for any p0 ∈ A q, there
exists p′0 ∈ A  q′ such that p0 6 p′0.

Proof. Suppose A has the form s →p′,l→r t. According to Definition 4.1, there are four cases
for q′.

(1) If q′ < p′ or q′ ‖ p′, then also q < p′ or q ‖ p′. Therefore, A  q = {q} and A  q′ = {q′}.
(2) If q′ = p′q′1, q

′
1 ∈ PosF (r), and r|q′1 ⋪ l, then either q < p′, or q = p′q1, q1 ∈ PosF (r),

and r|q1 ⋪ l. We have A  q = {p0} and A  q′ = {p′} with p0 = q or p0 = p′. In both
cases, p0 6 p′, so the lemma follows.

(3) If q′ = p′q′1, q
′
1 ∈ PosF (r), and r|q′1 ⊳ l, then A q′ = {p′q′2 | q

′
2 ∈ PosF (l)∧ r|q′1 = l|q′2}.

From the three cases in Definition 4.1 applicable for q, we only consider the last one,
where q = p′q1, q1 ∈ PosF (r) and r|q1 ⊳ l, then Aq = {p′q2 | q2 ∈ PosF (l)∧r|q1 = l|q2}.
Since q 6 q′, there exists some q′3 such that q′ = qq′3. Hence, for any p′q2 ∈ A  q, we
also have p′q2q

′
3 ∈ A  q′, entailing the lemma.

(4) If q′ = p′q′1q
′
2 with q′1 ∈ PosV(r), then A  q′ = {p′q′3q

′
2 | r|q′1 = l|q′3}. Except for q ‖ p′,

all cases are possible for q. Again, we restrict to one of these cases and assume that
q = p′q′1q2. Then A  q = {p′q3q2 | r|q′1 = l|q3}. Since q 6 q′, there exists q′4 such that

q′2 = q2q
′
4. Hence, for any p′q3q2 ∈ A  q, we also have p′q3q

′
2 ∈ A  q′, thus the lemma

follows.

In order to simplify the structure of the progeny relation we restrict the progenies and
progenitors to a single branch in each term. The definition rests on the idea that for a
derivation A : s →∗ t and a main branch B′ in t it is possible to find a main branch B
in s such that each position q ∈ B′ has a (unique) progenitor in B. See Figure 3 for an
illustration. The bold lines denote the main branches of s and t, and the thin lines denote
other branches of s containing progenitors of all positions in the main branch of t.

Definition 4.11. Let A : t1 →∗ tn denote a derivation built up from the rewrite steps
Ai : ti → ti+1 for i = 1, . . . , n − 1. Then the main branch of each term in A is inductively
defined:

(1) The main branch of tn is the leftmost branch among all branches of maximal length in
tn.

(2) Suppose the main branch of ti+1 is denoted as Bi+1, 1 6 i 6 n − 1. Then consider
all branches b in ti such that for every q ∈ Bi+1, the set of progenitors Ai  q of q has
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s t

∗

Figure 3: Depiction of the Main Branch in a Derivation

nonempty intersection with b. The leftmost of these branches is the main branch of ti,
denoted as Bi.

In the above definition, the restriction to the leftmost of all candidate branches is arbitrary
and can be suitably replaced. The second clause is well-defined by Lemmata 4.7 and 4.10.
Note that a branch of maximal size is chosen for the final term of the given derivation since
it reflects the depth of this term, c.f. Section 5. The next definition specialises progenies
and progenitors to the main branch.

Definition 4.12. Let A′ : s → t be a rewriting step, let p ∈ Pos(s), and let B and B′ be
branches in s and t, respectively. Then the set of main progenies of p in t (with respect to
A′) (denoted as p aB

B′ A′) is defined as follows:

p aB
B′ A′ :=

{

∅ if p /∈ B

B′ ∩ (p  A′) if p ∈ B .

If the (main) branches B and B′ are clear from context, we write p a A′ instead of
p aB

B′ A′. If q ∈ p a A′, then we also say that p is a main progenitor of q in s (with respect
to A′). We denote the set of main progenitors of q in s by A′ a q. For a set P ⊆ Pos(s′), we
define P a A′ :=

⋃

p∈P p a A′. We naturally extend the definition to derivations A : s →∗ t,

analogous to Definition 4.6: if A is the empty derivation, then p aB
B′ A = {p}. Otherwise,

we can split A into A1 : s → s′ and A2 : s′ →∗ t. Let B′′ be the main branch in s′. Then
p aB

B′ A = (p aB
B′′ A1) a

B′′

B′ A2.

Lemma 4.13. Let A : u →∗ s →n t →∗ w and denote A′ : s →n t. Let B(s) and B(t) denote
the main branches of s and t in A, respectively. Then for any q ∈ B(t), the main progenitor
of q in the branch B(s) is unique, i.e., |A′ a q| = 1.

Proof. By Definition 4.11, q has at least one main progenitor in s. We show that there exists
at most one by induction on n. For n = 0 the claim is trivial. Hence assume n > 0 and let
A′ : s → s′ →n−1 t. Let B(s′) denote the main branch in s′ with respect to A. By induction
hypothesis there exists a unique position p1 in B(s′) such that (s′ →n−1 t) a q = {p1}. Let
A′′ : s →p′,l→r s′ denote the first rewrite step in A′. Suppose p1 < p′ or p1 ‖ p′. Then
by definition A′′  p1 = {p1}. Hence the main progenitor of q in B(s) is unique. On the
other hand suppose p1 = p′p2 with p2 ∈ PosF (r) such that r|p2 ⋪ l. Then A′′  p1 = {p′}
and A′ a q is a singleton as it should be. Now suppose p1 = p′p2 with p2 ∈ PosF (r) such
that r|p2 ⊳ l. Then by definition A′′  p1 = {p′p3 | p3 ∈ PosF (l) ∧ l|p3 = r|p2}. Note that
A′ a q = A′′p1∩B(s), which is again a singleton. Finally, if p1 = p′p2p3 with p2 ∈ PosV(r),
then A′′  p1 = {p′p4p3 | p4 ∈ PosV(l)∧ l|p4 = r|p2}. As before, the intersection of the latter
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set with B(s) is a singleton. Hence the main progenitor of q in B(s) is unique. This concludes
the inductive proof.

Observe that we cannot define main progenies for (multi-step) derivations directly by
restricting the progeny relation to the main branches; it is indeed necessary to use the
inductive definition given above. In particular, Lemma 4.13 would be incorrect for that
definition, as exemplified below.

Example 4.14 (continued from Example 4.3). Consider the derivation A again. We split
A into A1 : t1 → t2, A2 : t2 → t3, and A3 : t3 → t4. The “central” branch of each term in
Figure 1 is its main branch, and the dashed lines denote the main progeny relation. Note
that 1 ∈ A a 11, since 11 ∈ A3 a 11, 11 ∈ A2 a 11, and 1 ∈ A1 a 11. Furthermore, we do
not have 11 ∈ A a 11, even though 11 ∈ A3  11, 12 ∈ A2  11, 11 ∈ A1  12, and therefore
11 ∈ A  11.

For positions pointing to non-defined symbols, we also have the reverse of Lemma 4.13.

Lemma 4.15. We assume the same notation as in Lemma 4.13. For any p ∈ B(s) such
that rt(s|p) ∈ C ∪ V, we have |p a A′| 6 1, i.e., the number of main progenies for a position
such that the root of the corresponding subterm is non-defined is at most 1.

Proof. By induction on n. It suffices to consider the case n > 0, so A′ : s → s′ →n−1 t. Let
A′′ : s →p′,l→r s

′ denote the first rewrite step in A′. If p < p′ or p ‖ p′, then p a A′′ = {p}. If
p > p′, then for any p1 ∈ p A′′, we have s|p = s′|p1 , so again, p A′′ ∩B(s′) is a singleton.
In all of these cases, the claim follows by induction hypothesis as rt(s|p) = rt(s′|p1) for any
p1 ∈ p a A′′. This concludes the proof, as the case p = p′ is impossible. Otherwise, we
derive a contradiction to the assumption that the root of s|p is not a defined symbol.

5. Dependency Pairs and Complexity

Let A : t1 →∗
R tn be a derivation with respect to R, and let m be the maximum number

of DP(R)-steps in any implicit dependency pair derivation corresponding to A. In this
section we show that the length n of A is bounded triple exponentially in m. As mentioned
at the beginning of Section 4, it suffices to show that the depth of any term occurring in
A is exponentially bounded in m. More precisely, as we consider an arbitrary derivation
A, it even suffices to show that the depth of the term tn is exponentially bounded in m,
c.f. Lemma 5.11.

Notation. In the sequel, we fix the derivation A and let B1, . . . , Bn denote the main
branches of t1, . . . , tn with respect to A. Let G be the progenitor graph of A (see Defini-
tion 5.1 below). For the remainder of this paper, let C := max({2}∪{dp(r)+1 | l → r ∈ R}).
We call C the branching constant of R.

In the next definition we formalise progenitor graphs.

Definition 5.1. The progenitor graph G of A is defined as follows.

(1) The nodes are all pairs (ti, p) such that p ∈ Bi with rt(ti|p) defined and either i = 1 or
the single element of (ti−1 → ti) a p and the redex position in the rewrite step ti−1 → ti
coincide.
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(t1, 1)

(t1, 11)

(t1, ǫ)

(t2, 1)

(t2, 11)

Figure 4: Progenitor Graph

(t1, ǫ) (t2, 1)

(t2, 11)
(t3, 111)

(t3, 1111)

(t4, 11)

(t4, 111)

Figure 5: Progenitor Graph: Full Binary Tree

(2) There is an edge from (ti, p) to (tj, q) whenever i < j, (ti →
∗ tj) a q = {p}, and for all

i 6 k < j − 1, the single element of (tk →∗ tj) a q and the redex position in the rewrite
step tk → tk+1 do not coincide.

With respect to the definition of edges note that the single element of (tj−1 → tj) a q and
the redex position in the rewrite step tj−1 → tj coincide. Also note that G is a forest, and
the root of each tree in G is (t1, p) for some p ∈ B1.

Example 5.2. Consider the derivation A from Example 4.3 again. Its progenitor graph G
is shown in Figure 4. Observe that (t2, ǫ) is not contained in G since the single element of
(t1 → t2) a ǫ is ǫ, and ǫ is not the redex position of the step t1 → t2. For similar reasons,
(t3, ǫ), (t3, 11), (t4, ǫ), (t4, 1), and (t4, 11) are not contained in G. Moreover (t3, 1) is not
contained in G either because rt(t3|1) = q is not defined. Furthermore, (t2, 12), (t3, 12), and
(t4, 12) are not contained in G because 12 is not a member of the main branch of t2, t3, and
t4, respectively.

However, (t1, ǫ), (t1, 1), and (t1, 11) are still contained in G because all positions of t1
pointing to defined symbols are in G. Moreover (t2, 1) is contained in G because rt(t2|1) ∈ D,
and the single element of (t1 → t2) a 1 is the redex position of the step t1 → t2. For the
same reason, (t2, 11) is contained in G.

The main factor of the exponentially faster growth of dp(tn) compared to the maximal
height of all trees in G is the difference between that maximal height and the size of G
(which is linearly related to dp(tn)). This becomes apparent in our next example, where G
is a full binary tree.
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Example 5.3. Consider the TRS R3 := {full(s(x)) → s(full(full(x)))} together with the
following derivation A:

full(s(s(0)))
︸ ︷︷ ︸

t1

→ s(full(full(s(0))))
︸ ︷︷ ︸

t2

→ s(full(s(full(full(0)))))
︸ ︷︷ ︸

t3

→ s(s(full(full(full(full(0))))))
︸ ︷︷ ︸

t4

.

The progenitor graph of A is shown in Figure 5.

Lemma 5.4. If there is an edge from (ti, p) to (tj , q) in G, then there exists q′ ∈ Bj−1 such
that there is a derivation (ti|p)

♯ →∗
R (tj−1|q′)

♯ →DP(R) (tj |q)
♯.

Proof. By definition, q ∈ p a (ti →
∗ tj). Therefore, by Lemma 4.7, we have the implicit

dependency pair derivation A′ : (ti|p)
♯ →∗

DP(R)∪R (tj|q)
♯. We have (tj−1 → tj) a q = {q′},

where by definition q′ is the redex position of the step tj−1 → tj . Therefore, the last step of
A′ is a DP(R)-step (see also the last clause of Definition 4.1). Note that for i 6 k < j−1, the
single element of (tk →∗ tj) a q and the redex position in tk → tk+1 do not coincide. Hence,
if there are rewrite steps before the last step, these are R-steps and the lemma follows.

The next lemma shows that Definition 5.1 is well-defined in the sense that only those
nodes that do not contribute to the branching of the progenitor graph are left out.

Lemma 5.5. Let p ∈ Bi and q ∈ Bj such that i < j and (ti →
∗ tj) a q = {p}. If for all

i 6 k 6 j − 1, the single element of (tk →∗ tj) a q and the redex position in the rewrite step
tk → tk+1 do not coincide, then p a (ti →

∗ tj) = {q}.

Proof. We show the lemma by induction on j − i. If i = j then the claim trivially holds.
Otherwise, the derivation ti →

∗ tj can be split into ti → ti+1 →∗ tj. Let p′ be the redex
position in ti → ti+1. If p ‖ p′, p < p′, or p > p′, then as in Lemma 4.15, |p a (ti → ti+1)| 6 1,
and the lemma follows by induction hypothesis. The remaining case is again impossible, since
by assumption, p and p′ do not coincide.

In the following sequence of lemmata we show the properties which allow us to bound
dp(tn) in the maximal height of all trees in G. First, we prove that almost each position in
Bn is “covered” by a node in G. Next, we show that there exists a fixed upper bound on
the number of positions in Bn each node in G can cover, and finally, we show that there is
a fixed upper bound on the branching factor of G, as well.

Lemma 5.6. Let k ∈ {1, . . . , n}. For every q ∈ Bk, there exists a unique p ∈ B1 such that
either rt(t1|p) ∈ C ∪ V and (t1 →

∗ tk) a q = {p}, or there exists a unique node (ti, pi) in G
where q ∈ pi a (ti →

∗ tk) and for any direct successor node (tj, pj) of (ti, pi) in G, we have
q /∈ pj a (tj →

∗ tk).

Proof. By Lemma 4.13, (t1 →
∗ tk) a q = {p} for some p ∈ B1. If rt(t1|p) ∈ C ∪ V, the first

alternative of the lemma holds. If rt(t1|p) ∈ D, then (t1, p) ∈ G. Therefore, there exists a
maximal natural number i such that (ti, pi) ∈ G and q ∈ pi a (ti →

∗ tk) for some pi ∈ Bi,
so the second alternative of the lemma holds for (ti, pi).

Lemma 5.6 suggest the following definition.

Definition 5.7. Let k ∈ {1, . . . , n} and let q ∈ Bk. Suppose (t1 →
∗ tk) a q = {p} such that

rt(t1|p) 6∈ C ∪ V. Furthermore let (ti, pi) be the unique node in G where q ∈ pi a (ti →
∗ tk)

and for any direct successor node (tj , pj) of (ti, pi) in G, we have q /∈ pj a (tj →
∗ tk). Then

(ti, pi) is said to cover the position q ∈ Bk.
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As shown in the next lemma, C is an upper bound on the number of positions in Bn

each node in G can cover.

Lemma 5.8. For every node (ti, p) in G, there are at most C many positions q ∈ Bn covered
by (ti, p).

Proof. If there is no i 6 j < n such that the redex position of the step tj → tj+1 and an
element of p a (ti →

∗ tj) coincide, then it follows from Lemma 5.5 that |p a (ti →
∗ tn)| 6

1 < C.
Otherwise, let k be the smallest number such that k > i and p a (ti →

∗ tk) = {pk}, where
pk is the redex position of tk → tk+1. By Definitions 4.1 and 4.12, |pk a (tk → tk+1)| 6 C. In
the next paragraph, we show for each pk+1 ∈ pk a (tk → tk+1) that |pk+1 a (tk+1 →

∗ tn)| 6 1.
Hence the node (tk, pk) can cover at most C many positions in Bn.

For each pk+1 ∈ pk a (tk → tk+1), if rt(tk+1|pk+1
) is defined, then (tk+1, pk+1) is a

successor node of (ti, p), and for any main progeny q of pk+1, by definition we have q ∈
pk+1 a (tk+1 →

∗ tn), which violates the definition of being covered by (ti, p). On the other
hand, suppose rt(tk+1|pk+1

) is a constructor symbol or a variable. Then by Lemma 4.15,
|pk+1 a (tk+1 →

∗ tn)| 6 1.

The following example illustrates the role of Lemma 5.8.

Example 5.9. Let R4 be the TRS consisting of the single rewrite rule

d(s(x)) → s(s(d(x))) .

Let t1 = d(s(s(0))), t2 = s(s(d(s(0)))), and t3 = s(s(s(s(d(0))))). We have the derivation
A : t1 → t2 → t3 and the following progenitor graph:

(t1, ǫ) (t2, 11) (t3, 1111)

Note that G leaves out all function symbols s above the d in each term. However, by
Lemma 5.8, the number of positions in the last term of A which are hidden in this way is
bounded linearly in the size of the progenitor graph.

The next lemma shows that the “branching factor” of G, i.e., the maximal number of
direct successors of a node in G, is bounded by the branching constant C.

Lemma 5.10. Every node in G has at most C many direct successor nodes.

Proof. Let (ti, p) be a node in G. If there is no i 6 j < n such that the redex position of
the step tj → tj+1 and an element of p a (ti →

∗ tj) coincide, then (ti, p) has no successor
node, so the claim holds. Otherwise, let j be the smallest number greater than i such that
p a (ti →

∗ tj) = {q}, where q is the redex position of tj → tj+1. By Definitions 4.1 and
4.12, |q a (tj → tj+1)| 6 C. Hence, (ti, p) has at most C many direct successor nodes.

We are ready to prove the main lemma of this section.

Lemma 5.11. Let R be terminating and let f(t) := max{dh(u♯,→DP(R)/R) | u E t}. Then

there exists d ∈ N such that for all terms t: pdp(t,→R) 6 (dp(t) + 1) · 2d·(f(t)+2).

Proof. Consider any derivation A : s →∗
R t and let A′ : (u)♯ →∗

DP(R)/R (v)♯ be a maximal

derivation over DP(R) modulo R such that u E s. Set m := DPl(A′). Let k be the number
of defined symbols in the main branch of s. If k = 0, then s is a normal form, hence s = t,
and the lemma follows trivially. In the following we assume k > 0. Note that k 6 dp(s) + 1.



16 G. MOSER AND A. SCHNABL

It is easy to see that the progenitor graph G forms a forest consisting of k distinct trees
T1, . . . , Tk.

Due to Lemma 5.4 the height of each tree T1, . . . , Tk in G is bounded by m. Here the
height of a tree is the number of edges on the longest path from the root to a leaf. Recall

that any C-ary tree of height m has at most Cm+1−1
C−1 6 Cm+1 many nodes. Hence, due to

Lemma 5.10, each of the trees Ti (1 6 i 6 k) has at most Cm+1 many nodes. Thus G can
have at most k · Cm+1 many nodes.

The main branch of t consists of dp(t) + 1 many positions, all of which have to fulfil
one of the two properties in Lemma 5.6. By Lemma 4.15, the first case applies to at most
dp(s) + 1 − k many positions. Furthermore, due to Lemma 5.8 each node in G can cover
at most C many positions in the main branch of t. In sum we obtain the following upper
bound on the depth of t:

dp(t) 6 (k · Cm+1) · C + dp(s)− k 6 (dp(s) + 1) · Cm+2 ,

where we have applied k 6 dp(s)+ 1 in the second inequality. By definition m = DPl(A′) =
f(s) from which the lemma follows immediately.

All that is left to show is that the derivational complexity of a finite and terminating
TRS is bounded double exponentially in its depth growth. This can be achieved by two easy
observations.

Lemma 5.12. Let R be terminating. Then there exists d ∈ N such that for all terms t:

dh(t,→R) 6 22
d·pdp(t,→R)

.

Proof. We show that there exist constants e and e′, such that for all terms t, the inequalities
psz(t,→R) 6 2e·pdp(t,→R) and dh(t,→R) 6 2e

′·psz(t,→R) hold. Then the lemma follows easily
by choosing d = e+ e′, for instance.

(1) For any term t, we have |t| 6 kdp(t)+1, where k is the maximum arity of any function
symbol in the signature. This proves the first inequality.

(2) On the other hand, by assumption the signature F of R is finite. Moreover without loss

of generality the considered derivation in R is ground. Hence we can build only 2e
′·m

different terms of size at most m, where e′ depends only on F . This proves the second
inequality.

Theorem 5.13. Let R be terminating and let

f(n) := max{dh(t♯,→DP(R)/R) | |t| 6 n} .

Then there exists D ∈ N such that dcR(n) 6 22
n·2D·(f(n)+2)

.

Proof. The theorem follows directly from Lemmata 5.11 and 5.12.

We also call the function f defined in the theorem the dependency pair complexity
function. Observe that for any argument filtering π and any terms s, t, we have that s♯ →R t♯

implies π(s♯) →=
π(R) π(t

♯). Furthermore s♯ →DP(R) t
♯ implies π(s♯) →π(DP(R)) π(t

♯). These

observations are sufficient to extend Theorem 5.13 to argument filtering.

Corollary 5.14. Let R be terminating, let π be an argument filtering, and let

f(n) := max{dh(π(t♯),→π(DP(R))/π(R)) | |t| 6 n} .

Then dcR(n) 6 22
n·2D·(f(n)+2)

, where D is defined as above.
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This concludes that termination proofs by the basic dependency pair method combined
with some base technique (possibly enhanced by argument filtering) imply a complexity
bound that is triple exponential in the derivational complexity of the base technique. For
instance, if polynomial interpretations are used as base technique, then the derivational
complexity of the TRS under consideration is bounded by 25(O(n)). On the other hand, if
KBO is used as a base technique, then the derivational complexity of the TRS is bounded
by Ack(O(n), 0).

So by Theorem 5.13, the derivational complexity of a TRS R is bounded triple exponen-
tially in its dependency pair complexity. This yields an upper-bound. The following TRS
establishes a double exponential lower-bound.

Example 5.15. Consider the following TRS R5, extending the TRS R3:

1: full(s(x)) → s(full(full(x))) 2: full(x) → cons(x, x) .

We show that R5 has linear dependency pair complexity, but admits derivations of double
exponential length.

Let C(x) be the shorthand for cons(x, x). Now, consider the starting term full(sn(0)).
As can be easily seen, this term rewrites to sn(full2

n
(0)) in 2n − 1 steps using rule 1. Now,

we can use rule 2 and an outermost strategy to reach sn(C2n(0)) in 22
n
− 1 steps, so dcR5

is at least double exponential.
On the other hand consider DP(R5):

3: full♯(s(x)) → full♯(full(x)) 4: full♯(s(x)) → full♯(x) .

We define a (very restricted) polynomial interpretation A as follows: full♯A(m) = fullA(m) =
m, sA(m) = m + 1, consA(m,n) = 0A = 0, where R5 ⊆ <A and DP(R5) ⊆ >A, and
(<A, >A) forms a reduction pair. Thus the dependency pair complexity function with respect
to R5 is at most linear.

Note that from the proof of Theorem 5.13 one can distill the following three facts, where
each of them is responsible for one of the exponentials in the upper-bound:

(1) the number of nodes in a progenitor graph may be exponential in its height,
(2) the size of a term may be exponential in its depth, and
(3) the number of terms of size n is exponential in n.

For an optimal example, we would have to utilise all three criteria, while the just given TRS
R5 utilises only the criteria (1) and (2). To us, it seems impossible to enumerate enough
terms of exponential depth and double exponential size so that this is possible. Moreover,
we believe that the first and the last criterion can be merged into a single exponential, as
shown for string rewriting in the next section. Hence, we conjecture that the upper-bound
given in Theorem 5.13 can be improved to a double exponential one.

6. String Rewriting

In this short section we consider string rewrite systems (SRSs for short), i.e., TRSs where all
function symbols are unary or nullary.1 Since the size and the height of strings are linearly
(and not just exponentially) related, the upper bound from Theorem 5.13 immediately
breaks down to a double exponential one. However, we can further improve this bound to a

1This is sometimes called unary rewriting, as opposed to “true” string rewriting, where only unary function
symbols are allowed. The results presented in this section hold for both flavours of string rewriting.
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single exponential one. Showing this is the purpose of this section. Our main proof idea is
to relate rewrite steps and nodes in the progenitor graph directly.

As in Section 5, we fix a finite SRS S, a derivation A : t1 →∗ tn over S, and the
progenitor graph G of A. In this section, the terms t1, . . . , tn do not contain any function
symbols with arity greater than 1. Therefore, each of them only consists of a single branch,
which in turn is its main branch.

Lemma 6.1. The number of nodes in G is at least n− 1.

Proof. For each 1 6 k 6 n − 1, let pk be the redex position of the step tk → tk+1, so that
rt(tk|pk) is defined.

Since we consider string rewriting, pk is in the main branch of tk. Hence by Lemma 5.6,
there exists a node (ti, p) in G that covers (tk, pk). Moreover, for any j (i 6 j < k),
the single element of (tj →

∗ tk) a pk and pj do not coincide. Otherwise (tj , pj) would be a
successor of (ti, p) that covers (tk, pk). This would contradict the choice of (ti, p). Therefore,
by Lemma 5.5, we have p a (ti →

∗ tk) = {pk}. This yields a one to one correspondence
between all n− 1 redex positions and a subset of the nodes of G, entailing the lemma.

Theorem 6.2. Let S be terminating and let f(n) := max{dh(t♯,→DP(S)/S) | |t| 6 n}. Then

there exists d ∈ N such that dcS(n) 6 n · 2d·(f(n)+1).

Proof. Recall the branching constant C = max({2}∪{dp(r)+1 | l → r ∈ S}). Let A : s →n
S t

denote any derivation with respect to S.
Let G be the progenitor graph of A. G has k many connected components, where k

is the number of defined symbols in s. By Lemma 5.10, each of them contains at most
CDPl(A′)+1 many nodes, where A′ is an implicit dependency pair derivation corresponding
to A such that DPl(A′) is maximal. Hence the total size of G is most k · CDPl(A′)+1. By
Lemma 6.1, the size of G is at least n− 1, from which we obtain:

n 6 k · CDPl(A′)+1 + 1 6 |s| · CDPl(A′)+1 + 1 .

We obtain that the length n of A is less than or equal to |s| · CDPl(A′)+1 + 1. From this the
theorem is immediate.

Thus, for string rewriting, termination proofs by the basic dependency pair method
combined with some base technique and an argument filtering imply a complexity bound
that is only single exponential in the derivational complexity of the base technique. If
polynomial interpretations are used as base technique, then the derivational complexity of
the SRS under consideration is bounded by 23(O(n)). If the base technique is KBO, then
the derivational complexity of the SRS is bounded by Ack(O(n), 0).

Example 6.3. If we restrict R5 to its first rule (i.e., we consider R3), we can see in the
same way as in Example 5.15 that dcR3 is at least exponential, and the dependency pair
complexity function with respect to R3 is at most linear. Therefore, the upper bound given
in Theorem 6.2 is tight.

This concludes our complexity analysis of the basic dependency pair method. The
purpose of the next sections is to analyse the usable rules and dependency graph refinements.
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7. Usable Rules

In this section we extend the results in Section 5 to termination proofs employing the
dependency pair method in connection with the usable rules criterion, c.f. Proposition 3.3.

Notation. For the rest of this section, we use the following constants depending only on
the TRS R. Let E := max{a, b, 2 · c} + 3, where a is the maximum arity of all function
symbols, b the number of rules in R, c is chosen such that it is larger than the size of any
right hand side of any rule in R, and hence also larger than the number of occurrences of
any variable on the right hand side. Furthermore let F := max{a,D}, where D is defined
as in Theorem 5.13.

Perhaps surprisingly, the usable rules criterion strengthens the power of the termination
technique considerably, as witnessed by the following example.

Example 7.1. Consider the TRS R6:

d(0) → 0 e(0, x) → x

d(s(x)) → s(s(d(x))) e(s(x), y) → e(x, d(y)) .

The dependency pairs of R6 are given by d♯(s(x)) → d♯(x), e♯(s(x), y) → e♯(x, d(y)), and
e♯(s(x), y) → d♯(y).

We have the following usable rules with respect to R6:

d(0) → 0 d(s(x)) → s(s(d(x))) .

The rules DP(R6)∪U(DP(R6))∪Cǫ admit only double exponentially many dependency pair
steps from any starting term t♯ with t ∈ T (F ,V). Consider for instance the algebra A over
N defined as follows:

e
♯
A(m,n) = 2m · (n+ 1) + 1 d

♯
A(m) = m dA(m) = 2 ·m

0A = 0 sA(m) = m+ 1 consA(m,n) = m+ n .

It is easy to check that DP(R6) ⊆ >A and U(DP(R6)) ∪ Cǫ ⊆ >A, and for any term
t ∈ T (F ,V), [α]A(t

♯) is double exponentially bounded in |t|.
On the other hand the derivational complexity with respect to R6 is clearly super-

exponential. Observe that also the rules DP(R6)∪R6 allow a super-exponential number of
DP-steps, e.g. for the family of starting terms e♯(Ek(0), s(0)), where E(x) is a shorthand
for e(x, s(0)).

Note that in Example 7.1 it is essential that arbitrary starting terms, as for example
e(Ek(0), s(0)), are considered. If we would restrict the starting terms to basic terms, i.e.,
terms of the form f(t1, . . . , tn) such that f is defined and ti ∈ T (C,V) for all 1 6 i 6 n,
then the results from Section 5 directly extend to Proposition 3.3. This is a consequence
of [16, Lemma 16]. We can generalise Example 7.1 to primitive recursion by employing the
Ackermann function.

Example 7.2. We employ a unary notation for the Ackermann function: we write Acki(x)
instead of Ack(i, x). Consider the following family of TRSs R7(l), parametrised by l ∈ N.
Here we assume 0 6 i < l.

Ack0(x) → s(x) I(0, x) → Ackl(x)

Acki+1(0) → Acki(s(0)) I(s(x), y) → I(x,Ackl(y))

Acki+1(s(x)) → Acki(Acki+1(x)) .
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Note that the last two rules are not contained in U(DP(R7(l))). The number of depen-
dency pair steps admitted by the rules DP(R7(l)) ∪ U(DP(R7(l))) ∪ Cǫ from any starting
term t♯ with t ∈ T (F ,V) is then bounded by Ack2l+1(O(|t|)), as witnessed by the algebra A
over N, defined as follows.

(Ack♯i)A(m) = Acki(m) + i I
♯
A(m,n) = Ackm+1

l (n) +m+ l + 1 sA(m) = m+ 1

(Acki)A(m) = Acki(m) consA(m,n) = m+ n 0A = 0

It is easy to check that DP(R7(l)) ⊆ >A and U(DP(R7(l))) ∪ Cǫ ⊆ >A. On the other hand
the derivational complexity with respect to R7(l) is bounded from below by Ackl+2(Ω(n)), as
witnessed by derivations starting from the family of terms F k(0), where F (x) is a shorthand
for I(x, s(0)).

It follows that the derivational complexity of the base technique used in the termination

proof of
⋃l

i=0 R7(l) belongs to level l+ 1 of the Ackermann function, while the derivational
complexity of the considered TRS belongs to level l + 2.

Due to Examples 7.1 and 7.2 we cannot have an elementary relationship between the
derivational complexity of the original TRS R and the complexity induced by the termination
technique employed in conjunction with Proposition 3.3.

Still, we can give an upper bound on the derivational complexity with respect to R.
This follows from a close study of the correctness proof of Proposition 3.3 given in [15],
compare also [12]. The main ingredient of this proof is the definition of the interpretation
IG.

Definition 7.3 ([15]). Let G ⊆ F . The interpretation IG is a mapping from terminating
terms in T (F ♯,V) to terms in T (F ♯ ∪ {nil, cons},V), where nil is a fresh function symbol
and cons is the function symbol introduced by Cǫ, inductively defined as follows:

IG(t) :=







t if t is a variable
f(IG(t1), . . . ,IG(tn)) if t = f(t1, . . . , tn) and f /∈ G
cons(f(IG(t1), . . . ,IG(tn)), t

′) if t = f(t1, . . . , tn) and f ∈ G

where in the last clause t′ denotes the term order({IG(u) | t →R u}) with

order(T ) :=

{
nil if T = ∅

cons(t, order(T − {t})) if t is the minimum element of T

Here an arbitrary but fixed total order on T (F ♯ ∪ {nil, cons},V) is assumed.

According to [15, Theorem 20], any DP(R)∪R-derivation starting from t can be trans-
formed into a DP(R) ∪ U(DP(R)) ∪ Cǫ-derivation starting from IG(t), where G is the set of
defined symbols of R−U(DP(R)). Therefore, estimating |IG(t)| is the key to the connection
between dh(t,→DP(R)/R) and dh(t,→DP(R)/U(DP(R))∪Cǫ). Suppose there exists a function f
that bounds dh(t,→DP(R)/ U(DP(R))∪Cǫ) in |t|. Then dh(t,→DP(R)/R) can be bounded in |t|
by f(|IG(t)|).

However, the difficulty of this estimation lies in the following mutual dependence be-
tween the definition of the interpretation IG and the derivation height. On one hand, we
bound dh(t,→DP(R)/R) in |t| by f(|IG(t)|). On the other hand, IG(t) depends on dh(t,→R)
since dh(t,→R) determines the number of recursive calls of the shape {IG(u) | t →R u} in
the definition of IG(t). The following sequence of lemmata shows how this mutual depen-
dence can be resolved.
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Definition 7.4. Let g : N × N → N be the function satisfying the following recursive defi-
nition:

g(m,n) :=







E if m = 0

E · g(m− 1, 0) if m > 0 and n = 0

E · g(m− 1, n) + E ·m · g(E ·m,n− 1) otherwise .

The next two lemmata estimate the size |IG(t)| of the interpretation IG(t) in the size of t
and the derivation height of t (with respect to R).

Lemma 7.5.

(1) The function g is well-defined and strictly monotone in each argument.
(2) For all m, n: E 6 g(m,n).
(3) For any term t: |IG(t)| 6 g(|t|, dh(t,→R)).

Proof. We only show property (3). The proof proceeds by induction on the lexicographic
order over the pair (dh(t,→R), |t|). It suffices to consider the interesting case, where t =
f(t1, . . . , tn) with f ∈ G and dh(t,→R) > 0. We obtain

|IG(t)| = 2 +

n∑

i=1

|IG(ti)|+ |order({IG(u) | t →R u})|

6 2 +
n∑

i=1

|IG(ti)|+ 1 + b · |t| · (1 + max{|IG(u)| | t →R u})

6 3 + n · max
16i6n

{g(|ti|, dh(ti,→R))} + b · |t| · (1 + max{g(|u|, dh(u,→R)) | t →R u})

6 3 + a · g(|t| − 1, dh(t,→R)) + b · |t|+ b · |t| · g(c · |t|+ c, dh(t,→R)− 1)

6 E · g(|t| − 1, dh(t,→R)) + E · |t| · g(E · |t|, dh(t,→R)− 1)

= g(|t|, dh(t,→R)) .

In the second line we use the fact that any term t has at most b · |t| many reducts. In the
third line, we apply the induction hypothesis. In the fourth line, we use that |u| 6 c · |t|+ c
whenever t →R u.

Lemma 7.6. Let g be defined as in Lemma 7.5 above. Then there exists a minimal d ∈ N

such that for all m,n ∈ N, we have g(m,n) 6 22
d·(m+n+1)

=: G(m,n).

Proof. It can be shown by straightforward induction on the lexicographic order over the pair

(m,n) that g(m,n) 6 (E · (n+ 1))(n+1)·E2·m+1
holds. It is easy to see that for suitable d we

have (E · (n+ 1))(n+1)·E2·m+1
6 22

d·(m+n+1)
. Thus the lemma follows.

For the remainder of the section, let the function G be defined as in Lemma 7.6 above.
Then we define the function H[f ] : N → N parametrised in a mapping f from the naturals
to the naturals as follows:

H[f ](m) := f(1 + F ·G(m,h(m,m))) ,

where h(m,n) := 22
m·2F ·(n+2)

.

Lemma 7.7. Let R be terminating and let the function f be defined by f(n) := max({n} ∪

{dh(t♯,→DP(R)/U(DP(R))∪Cǫ) | |t| 6 n}). Then dh(t♯,→DP(R)/R) 6 (H[f ])|t|(1).
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Proof. We show the lemma by induction on t♯. If t♯ = t is a variable, the lemma is trivial.
Otherwise, assume t♯ = f ♯(t1, . . . , tn) and recall that f ♯ /∈ G for any f ∈ F . Due to
Definition 7.3 in conjunction with Lemma 7.5 there exists i ∈ {1, . . . , n} such that

|IG(t
♯)| = |f ♯(IG(t1), . . . ,IG(tn))| 6 1 + F · g(|ti|, dh(ti,→R)) .

By Theorem 5.13, we have

dh(ti,→R) 6 22
|ti|·2

D·(dh(t
♯
i
,→DP(R)/R)+2)

.

Due to D 6 F , we conclude dh(ti,→R) 6 h(|ti|, dh(t
♯
i ,→DP(R)/R)).

As mentioned above, any DP(R)∪R-derivation starting from t can be transformed into
a DP(R)∪U(DP(R))∪Cǫ-derivation starting from IG(t). Thus, we also have dh(t♯,→DP(R)/R

) 6 f(|IG(t
♯)|). In sum we obtain:

dh(t♯,→DP(R)/R) 6 f(|IG(t
♯)|)

6 f(1 + F · g(|ti|, dh(ti,→R)))

6 f(1 + F · g(|ti|, h(|ti|, dh(t
♯
i ,→DP(R)/R))))

6 f(1 + F ·G(|ti|, h(|ti|, dh(t
♯
i ,→DP(R)/R))))

6 H[f ](max{|ti|, dh(t
♯
i,→DP(R)/R)}) .

It is easy to verify that |ti| 6 (H[f ])|ti|(1) 6 (H[f ])|t|−1(1). Moreover by induction hy-

pothesis we have dh(t♯i ,→DP(R)/R) 6 (H[f ])|ti|(1) 6 (H[f ])|t|−1(1). From this the lemma
follows.

Theorem 7.8. Let R be terminating and let

f(n) := max({n} ∪ {dh(t♯,→DP(R)/ U(DP(R))∪Cǫ) | |t| 6 n}) .

Then there exist a function f ′ which is elementary in f , and an elementary function e such
that dcR(n) 6 e(n, (f ′)n(1)).

Proof. We choose f ′ = H[f ] and e = h. Let t be a term. By Theorem 5.13 we have
that dh(t,→R) 6 h(|t|, dh(t♯,→DP(R)/R)). Furthermore by Lemma 7.7 we obtain that

dh(t♯,→DP(R)/R) 6 (H[f ])|t|(1). Combining these two observations the theorem is im-
mediate.

Consider any TRS R whose termination can be shown by the basic dependency pair
method and some base technique enhanced by the usable rules criterion. Let f , e, and f ′

be defined as in Theorem 7.8 and set j(n) := e(n, (f ′)n(1)). For instance, if polynomial
interpretations are used as a base technique, then f is bounded by a double exponential
function. Therefore j (and thus also dcR) is superexponentially bounded. On the other
hand, if LPO is used as a base technique, then f , and hence also j and dcR are bounded by
multiply recursive functions. Note that the derivational complexity induced by LPO (as a
direct method) is multiply recursive [38]. Clearly the class of multiply recursive functions is
closed under primitive recursion. Hence the complexity of the dependency pair method (in
conjunction with the usable rules refinement) becomes negligible.
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8. Dependency Graphs

We now consider dependency graphs, i.e., we establish an upper bound on the complexity
of TRSs whose termination can be shown by Proposition 3.4. As already mentioned in the
introduction the derivational complexity analysis of Proposition 3.4 does not employ the
techniques developed in Sections 5–7, but a conceptually simpler technique. Essentially it
suffices to embed the TRS R in a generic simulating TRS Rsim (see Definition 8.7), whose
derivational complexity can be analysed directly.

Notation. For the rest of this section, we use the following constants depending only on the
TRS R. Let k be the number of (trivial and nontrivial) SCCs in DG(R), a the maximum
arity of any function symbol occurring in R, and recall that C denotes the branching constant
of R.

At first glance, it might seem that the number of dependency pair steps admitted by
a TRS is bounded linearly in the number of dependency pair steps admitted within the
“worst” SCC of the dependency graph. However, this is not the case.

Example 8.1. Consider the following family of TRSs, denoted as R8(l), and parametrised
by l ∈ N. The system of TRSs R8(l) generalises a TRS given by Hofbauer in [19].

i(x) ◦k (y ◦k−1 z) → x ◦k (i(i(y)) ◦k−1 z) 2 6 k 6 l

i(x) ◦k (y ◦k−1 (z ◦k−2 w)) → x ◦k (z ◦k−1 (y ◦k−2 w)) 3 6 k 6 l

For all m,n > 0, set

tm,n := i2(n+1)(e) ◦m+2 (e ◦m+1 (. . . (e ◦1 e) . . .)) .

Then dh(tm,n,→R8(l)) > Ack(m,n), whenever l > m+ 2. This follows from Proposition 5.9
in [19]. Hence, for every primitive recursive function f there exists some l such that dcR8(l)

dominates f . Due to Theorem 5.13 the same property holds for the dependency pair com-
plexities of the TRSs R8(l).

On the other hand, we can show termination of R8(l) by orienting every nontrivial
SCC of DG(R8(l)) by a uniform and restricted polynomial interpretation A. We define

(◦♯k)A(m,n) = m, (◦k)A(m,n) = 0, iA(m) = m+1, where k ∈ {1, . . . , l}. Note that A yields
a linear upper bound on the number of dependency pair steps in each SCC.

Remark 8.2. In [27, Section 6] we falsely claimed that the derivational complexity in-
duced by Proposition 3.4 would be elementary in the complexity of the base techniques.
Example 8.1 contradicts this claim.

Example 8.1 exemplifies the fact that the bound on the maximal number of dependency
pair steps possible within a specific SCC P is related to the size of the considered term
at the moment of entering the SCC P, and not to the size of the starting term of the full
derivation. Thus, Theorem 5.13 and the techniques developed in the preceding sections,
cannot be applied directly. Instead, one needs to argue inductively so that in each step in
this induction, Theorem 5.13 is on one hand employed to estimate the number of R-steps
and on the other hand used to provide an upper bound on the size of terms.

However, this inductive argument becomes rather involved. Thus we establish a new
technique in this section, where we employ a simulating TRS Rsim. In this way the inductive
argument becomes hidden in the termination proof of Rsim. The argument needs some
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preparations. Let f be a monotone function over N defined as follows:

f(n) := max({1} ∪ {dh(t♯,→P/R) | |t| 6 n,P is SCC of DG(R)}) , (8.1)

such that f dominates the maximal number of P/R steps in any SCC P ∈ DG(R). Consider
the unary function f defined in (8.1). Note that it is an easy task to define a TRS R′

(employing the constructors s, 0) that computes the function f , whenever f is computable.

That is, there exist a TRS R′ and a defined function symbol f such that f(sn(0)) →∗
R′ s

f(n)(0).
Note that if f is a primitive recursive function it is straightforward to define the TRS

R′ in such a way that the derivational complexity function dcR′ is primitive recursive [18].
Furthermore it is not difficult to see that this generalises to any class of (computable)
functions [13].

Let P and Q denote different (trivial or nontrivial) SCCs in DG(R), respectively. Then
we call Q reachable from P if there exist nodes u ∈ P, v ∈ Q and a path in DG(R)
connecting u with v. Let Q1,Q2, . . . ,Qk be all (trivial and nontrivial) SCCs in DG(R). Let
rk : {Q1, . . . ,Qk} → {1, . . . , k} be an arbitrary but fixed mapping respecting the topological
ordering of DG(R), i.e. rk(Qi) > rk(Qj) whenever Qj is reachable from Qi. We call rk(P)
the rank of an SCC P.

Definition 8.3. The rank of a dependency pair s → t, denoted by rk(s → t), is the rank of
P such that s → t ∈ P. Let u be a term and suppose there exists an SCC P such that u♯ is
not a normal form with respect to →P/R. The rank of the term u is defined as follows:

rk(u) := max{rk(s → t) | there exists σ such that u♯ →∗
R sσ} .

Observe that rk(u) need not be defined, although u has a redex at the root position.
This is due to the fact that this redex need not be governed by a dependency pair. On the
other hand observe that if u 6∈ NF(P/R) for some SCC P, then rk(u) is defined. Furthermore
in this case rk(u) > 0 and dh(u,→P/R) > 0.

Definition 8.4. We define the mapping dh♯ from terms to N× N as follows:

dh♯(t) :=







(i, dh(t♯,→Pi/R)) if rk(t) is defined and rk(t) = i ,

(0, 1) if t♯ ∈ NF(P/R) for all SCCs P and rt(t) is defined ,

(0, 0) otherwise .

In the following we write Pi for an SCC with rank i. Note that any SCC in DG(R) is
uniquely defined by its rank. We give some intuition for Definition 8.4 that is made precise
in Lemma 8.6 below. Consider a term t and suppose t is not in normal form with respect
to →Pi/R. Then the second component of dh♯(t) estimates the remaining rewrite steps with
respect to Pi modulo R. The other cases in Definition 8.4 take care of the possibility that
t ∈ NF(Q/R) for all SCCs Q in DG(R). Note that, if dh♯(t) = (i, j) with i > 0, then j > 0,
as well.

Example 8.5 (continued from Example 4.3). There are two dependency pairs with respect
to R2:

m♯(x) → p♯(a, x) m♯(x) → a♯

The dependency graph of R2 contains no edges, so it only consists of two (trivial) SCCs.
Let rk(m♯(x) → p♯(a, x)) = 1, and rk(m♯(x) → a♯) = 2, so P1 = {m♯(x) → p♯(a, x)} and
P2 = {m♯(x) → a♯}.
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We now give the values of dh♯ for all subterms of t1 and t2. All function symbols in t1
and t2 are defined, however the terms a♯ and p♯(a, a) are normal forms with respect to

→DP(R2)/R2
. Therefore, dh♯(a) = dh♯(p(a, a)) = (0, 1). On the other hand, we have

dh(m♯(m(a)),→P2/R2
) = dh(m♯(a),→P2/R2

)

= dh(m♯(p(a, a)),→P2/R2
) = 1 .

Thus, dh♯(m(m(a))) = dh♯(m(a)) = dh♯(m(p(a, a))) = (2, 1).

We write >lex for the lexicographic extension of the standard order > on the natural
numbers.

Lemma 8.6. Let A : s →R t, let p ∈ Pos(s), and let q ∈ Pos(t). Suppose that q ∈ p  A.

Then dh♯(s|p) >
lex dh♯(t|q). Let p′ be the redex position of A. If p = p′, then dh♯(s|p) >

lex

dh♯(t|q).

Proof. By assumption q ∈ p  A. Suppose that rt(t|q) is defined. Otherwise let rt(t|q) ∈ C.

Then by Definition 8.4, dh♯(t|q) = (0, 0) and the lemma is trivial. Hence we assume rt(t|q)

is defined. Then by Lemma 4.4 (s|p)
♯ →=

DP(R)∪R (t|q)
♯.

Suppose further p = p′. Then (s|p)
♯ →DP(R) (t|q)

♯ follows from the proof of Lemma 4.4.

Thus rk(s|p) is defined and rk(s|p) = i > 0. By Definition 8.3 we have (s|p)
♯ →Pj (t|q)

♯ for
some j 6 i. Thus i > rk(t|q), or i = rk(t|q) and

dh((s|p)
♯,→Pi/R) > dh((t|q)

♯,→Pi/R) .

The lemma follows.
Suppose otherwise p 6= p′. Then

dh♯(s|p) >
lex dh♯(t|q) ,

by Definition 8.4. This concludes the proof of the lemma.

The simulating TRS Rsim is based on a mapping tr (see Definition 8.8 below) such that

s →R t implies tr(s) →+
Rsim

tr(t). Essentially, tr(t) encodes dh♯(t′) for all subterms t′ of t.
This is done by transforming t into a term with an a+ 1-ary root symbol gi, where i is the
first component of dh♯(t), the first argument of gi encodes the second component of dh♯(t),
and the remaining arguments contain the transformations of the direct subterms of t.

The main tool for achieving the simulation of a rewrite step s →R t are rules which
create the progenies of the redex position p′ of the step. The set p′  (s →R t) contains at
most aC many elements. We indicate how this behaviour is overapproximated in derivations
over Rsim. For instance, if a = 2 and C = 2, we make use of the following derivation:

gi(s(x), x1, x2) →
∗ gi(gi(x, gi(x, x1, x2), gi(x, x1, x2)), gi(x, gi(x, x1, x2), gi(x, x1, x2))) .

Recall the above definition of the TRS R′ computing the function f defined in (8.1).
The definition of the simulating TRS Rsim employs the TRS R′.
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Definition 8.7. Consider the following TRS Rsim, where 0 6 i 6 k, 1 6 i′ 6 k, and
1 6 j 6 a.

1i : gi(s(x), x1, . . . , xa) → treei(s
C(0), x, x1, . . . , xa)

2i′ : gi′(x, x1, . . . , xa) → gi′−1(f(size(g0(0, x1, . . . , xa))), x1, . . . , xa)

3i,j : size(gi(x, x1, . . . , xa)) → da(size(xj))

4: size(c) → s(0)

5: da(s(x)) → sa(da(x))

6: da(0) → 0

7: g0(x, x1, . . . , xa) → c

8i,j : gi(x, x1, . . . , xa) → xj

9: g(x) → gk(f(size(g0(0, x, . . . , x))), x, . . . , x)

10: z → gk(f(size(g0(0, c, . . . , c))), c, . . . , c)

11i : treei(0, x, x1, . . . , xa) → gi(x, x1, . . . , xa)

12i : treei(s(y), x, x1, . . . , xa) → gi(x, treei(y, x, x1, . . . , xa), . . . , treei(y, x, x1, . . . , xa)) .

These rules are augmented by R′ defining the function symbol f. Without loss of generality
we can assume that the signatures of R′ and Rsim are disjoint with the exception of f and
the constructors s and 0.

Observe that Rsim depends only on the constants a, C, k, and the function f . Some
comments: The rules 1i (0 6 i 6 k) are the main rules for the simulation of the effects of a
single step s →R t in Rsim. These rules have already been motivated above. The rules 2i′
(1 6 i′ 6 k) simulate that each of the new positions q created by s →R t might be of rank
j (i′ > j). Observe that by definition of the function f we have

f(|t|q|) > dh((t|q)
♯,→Pj/R) , (8.2)

which explains the occurrence of the first argument of the right-hand side of these rules. The
rules 3i,j–6 (0 6 i 6 k, 1 6 j 6 a) define the function symbol size, that is, size(s) reduces

to a numeral sl(0) such that l > |s|, see Lemma 8.10(3) below. The rules 7–8i,j (0 6 i 6 k,
1 6 j 6 a) make sure that any superfluous positions and copies of subterms created by the
rules of type 1i can be deleted. The rules 9 and 10 guarantee that the simulating derivation
can be started with a suitably small initial term. Note that it is in general not the case
that we have |tr(s)| 6 |s|, compare Definition 8.8 below. Finally, the rules 11i–12i define
the function symbols treei introduced by the rules 1i, which essentially unfold a full a-ary
tree using the function symbol gi.

Through a sequence of lemmata we show that the TRS Rsim indeed simulates R as
requested. Let F , Fsim denote the signatures of R and Rsim, respectively.

Definition 8.8. The mapping tr : T (F) → T (Fsim) is defined as follows. Suppose t =

f(t1, . . . , tn) and dh♯(t) = (i, l). Then we define:

tr(t) := gi(s
l(0), tr(t1), . . . , tr(tn), c, . . . , c) .

Note that for any constant t, we have tr(t) = gi(s
l(0), c, . . . , c) for some i, l ∈ N. To

simplify the presentation, we often compress sequences of c as follows: tr(t) = gi(s
l(0), c).

We exemplify the role played by the simulating TRS Rsim below.
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Example 8.9 (continued from Example 8.5). Using the results of dh♯ for all subterms of t1
and t2, we get

tr(m(m(a))) = g2(s(0), g2(s(0), g0(s(0), c), c), c)

tr(m(p(a, a))) = g2(s(0), g0(s(0), g0(s(0), c), g0(s(0), c)), c) .

For this example, we use Rsim with the parameters k = a = C = 2, and f(n) = 1. Hence, a
suitable TRS R′ for defining f consists of the single rewrite rule:

f(x) → s(0) .

The following derivation over Rsim ∪ R′ rewrites tr(t1) into tr(t2), The underlined part in
each term is the redex used in the next step in the derivation. In each rewrite step using a
rule from Rsim, the applied rule is indicated.

g2(s(0), g2(s(0), g0(s(0), c), c), c)

→12 g2(s(0), tree2(s(s(0)), 0, g0(s(0), c), c), c)

→122 g2(s(0), g2(0, tree2(s(0), 0, g0(s(0), c), c), tree2(s(0), 0, g0(s(0), c), c)), c)

→82,1 g2(s(0), tree2(s(0), 0, g0(s(0), c), c), c)

→122 g2(s(0), g2(0, tree2(0, 0, g0(s(0), c), c), tree2(0, 0, g0(s(0), c), c)), c)

→112 g2(s(0), g2(0, g2(0, g0(s(0), c), c), tree2(0, 0, g0(s(0), c), c)), c)

→82,1 g2(s(0), g2(0, g0(s(0), c), tree2(0, 0, g0(s(0), c), c)), c)

→112 g2(s(0), g2(0, g0(s(0), c), g2(0, g0(s(0), c), c)), c)

→82,1 g2(s(0), g2(0, g0(s(0), c), g0(s(0), c)), c)

→22 g2(s(0), g1(f(size(g0(0, g0(s(0), c), g0(s(0), c)))), g0(s(0), c), g0(s(0), c)), c)

→21 g2(s(0), g0(f(size(g0(0, g0(s(0), c), g0(s(0), c)))), g0(s(0), c), g0(s(0), c)), c)

→R′ g2(s(0), g0(s(0), g0(s(0), c), g0(s(0), c)), c) .

In the remainder of this section we show that the derivational complexity of Rsim, and thus
of R, is primitive recursive in f . We define the equivalence s ≈ t on T (Fsim). If s = c,
then t = c. Otherwise if s = gi(s

m(0), s1, . . . , sa), then t = gi′(s
n(0), t1, . . . , ta), such that

m,n ∈ N, 1 6 i, i′ 6 k and sj ≈ tj for all 1 6 j 6 a.

Lemma 8.10. Let i ∈ {0, . . . , k}. Then the following properties of Rsim hold:

(1) gi(s(x), x1, . . . , xa) →
+
Rsim

gi(x, x1, . . . , xa).

(2) gi(x, x1, . . . , xa) →
+
Rsim

c

(3) For all ground terms s such that t ≈ tr(s), we have size(t) →+
Rsim

sl(0) where l > |s|.

(4) If s →+
R t and tr(s) →+

Rsim
tr(t) then for any n-ary function symbol f , we have that

tr(f(u1, . . . , s, . . . , un)) →
+
Rsim

tr(f(u1, . . . , t, . . . , un)).

Proof. The first two assertions are obvious. We show the third part by induction on |s|. As s
is a ground term, s = f(s1, . . . , sn). Without loss of generality we set t = g0(0, t1, . . . , tn, c),
where sj ≈ tr(tj) for all 1 6 j 6 n. If |s| = 1, then n = 0. Thus size(t) → size(c) → s(0)
by applying rules 80,1 and 4. Otherwise, suppose |s| > 1. Then let j be such that |sj| is

maximal. By induction hypothesis, we have size(tj) →+ slj(0) with lj > |sj|. Hence, by
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applying rules 30,j, 5, and 6, we obtain

size(t) → da(size(tj)) →
∗ da(s

lj (0)) →∗ sa·lj(0) .

Due to a · lj > |s|, property (3) follows.
Finally, we show property (4). We set u := f(u1, . . . , t, . . . , un) and we suppose that

dh♯(f(u1, . . . , s, . . . , un)) = (i,m) and dh♯(f(u1, . . . , t, . . . , un)) = (i′,m′). Then we set

s′ := tr(f(u1, . . . , s, . . . , un)) = gi(m, tr(u1), . . . , tr(s), . . . , tr(un))

t′ := tr(f(u1, . . . , t, . . . , un)) = gi′(m
′, tr(u1), . . . , tr(t), . . . , tr(un)) .

By assumption, f(u1, . . . , s, . . . , un) rewrites to f(u1, . . . , t, . . . , un) by some derivation A.
Moreover ǫ ∈ ǫ  A and thus by Lemma 8.6 (i,m) >lex (i′,m′).

If i = i′, then m > m′, and we have

s′ →+ gi(m, tr(u1), . . . , tr(t), . . . , tr(un))

→∗ gi(m
′, tr(u1), . . . , tr(t), . . . , tr(un)) = t′ .

Here we apply the assumption tr(s) →+ tr(t) in the first line and property (1) in the second.
Otherwise, i > i′ and we obtain the following derivation:

s′ →+ gi(m, tr(u1), . . . , tr(t), . . . , tr(un))

→∗ gi′(f(size(t
′)), tr(u1), . . . , tr(t), . . . , tr(un))

→∗ gi′(m, tr(u1), . . . , tr(t), . . . , tr(un)) = t′ .

Here the second line follows by applying rules 2i to 2i′+1 such that t′ ≈ tr(u). In the third
line, we firstly make use of property (3) to conclude size(t′) →+ sl(0) for some l > |u|.

Secondly Definition 8.4 yields f(l) > m′. Thus by (8.2) we have f(sl(0)) →∗ sf(l)(0). Finally
property (1) is applied. This completes the proof of the lemma.

We arrive at the main lemma of this section.

Lemma 8.11. For any ground terms s and t, s →R t implies tr(s) →+
Rsim

tr(t).

Proof. Let l → r be the rewrite rule applied in the step s → t. Then there exist some
position p ∈ PosF (s) and some substitution σ such that lσ = s|p and rσ = t|p. It is not
difficult to see that there exists a position q ∈ PosF (tr(s)) such that tr(lσ) = tr(s)|q and
tr(rσ) = tr(t)|q.

First, we show tr(lσ) →+ tr(rσ). Let dh♯(lσ) = (i,m). Since l is not a variable, we have
l = f(l1, . . . , ln). Hence, tr(lσ) = gi(s

m(0), tr(l1σ), . . . , tr(lnσ), c). Since rt(l) is defined, we
have m > 0. By rules 1i, 8i,1 and 12i, we have

tr(lσ) →+ treei(s
dp(r)(0), sm−1(0), tr(l1σ), . . . , tr(lnσ), c) .

We show the following claim by induction on dp(u).

Claim 8.12. If u E r, then treei(s
dp(u)(0), sm−1(0), tr(l1σ), . . . , tr(lnσ), c) →

∗ tr(uσ), where

dh♯(lσ) = (i,m).

Since r E r and dp(r) 6 C, the claim entails tr(lσ) →+ tr(rσ). Applying Lemma 8.10(4)
then yields tr(s) →+ tr(t) and the lemma follows. Hence, the remainder of this proof is
devoted to showing the claim.
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In proof of the claim, it suffices to consider the interesting case that u ⋪ l. Since
Var(l) ⊇ Var(r) ⊇ Var(u), u is not a variable. Hence, u = g(u1, . . . , un′). Let dh♯(u) =
(i′,m′). By induction hypothesis, for all 1 6 j 6 n′ we have

treei(s
dp(uj)(0), sm−1(0), tr(l1σ), . . . , tr(lnσ), c) →

∗ tr(ujσ) . (8.3)

Moreover, employing instances of the rules 8i,1 and 12i, we obtain:

treei(s
dp(u)−1(0), sm−1(0), tr(l1σ), . . . , tr(lnσ), c)

→∗ treei(s
dp(uj)(0), sm−1(0), tr(l1σ), . . . , tr(lnσ), c) . (8.4)

From rule 12i together with (8.4) and (8.3), we obtain

treei(s
dp(u)(0), sm−1(0), tr(l1σ), . . . , tr(lnσ), c) →

∗ gi(s
m−1(0), tr(u1σ), . . . , tr(un′σ), c) ,

employing Lemma 8.10(2). We distinguish two subcases for i′: either i = i′, or i > i′. (Note
that i′ > i is impossible since (i,m) >lex (i′,m′) due to Lemma 8.6.) Suppose i′ = i, then
m > m′ due to Lemma 8.6. We obtain

gi(s
m−1(0), tr(u1σ), . . . , tr(un′σ), c) →∗ tr(uσ) .

Here we use Lemma 8.10(1). Otherwise, if i > i′, from gi(s
m−1(0), tr(u1σ), . . . , tr(un′σ), c),

we reach the term gi′(f(size(u
′)), tr(u1σ), . . . , tr(un′σ), c) for a suitable u′ ≈ tr(uσ), applying

rules 2i to 2i′+1. Thus by Lemma 8.10(1,3) and (8.2), we obtain the following derivation:

gi′(f(size(u
′)), tr(u1σ), . . . , tr(un′σ), c) →∗ gi′(s

m′
(0), tr(u1σ), . . . , tr(un′σ), c) = tr(uσ) .

This concludes the proof of the claim, and thus of the lemma.

Lemma 8.11 yields that the length of any derivation in R can be estimated by the
maximal derivation height with respect to Rsim. To extend this to measure the derivational
complexity function dcR via the function dcRsim

we make use of the following lemma; note

that |gdp(t)(z)| 6 |t|.

Lemma 8.13. For any ground term t, we have gdp(t)(z) →∗
Rsim

tr(t).

Proof. We show the slightly more general assertion that if l > dp(t), then gl(z) →∗ tr(t).

We proceed by induction on l. Since t is ground, t = f(t1, . . . , tn). Let dh♯(t) = (i,m). We
distinguish two cases: either l = 0 or l > 0. Assume l = 0, then dp(t) = 0, hence t is a
constant. We obtain the derivation

z → gk(f(size(g0(0, c))), c) →
∗ gi(f(size(g0(0, c))), c) →

∗ gi(f(s
l′(0)), c) →∗ gi(s

f(|t|)(0), c) ,

where l′ > |t|. Here we apply the rules 10 and 2k to 2i+1 in conjunction with Lemma 8.10(3)

for the derivation z →∗ gi(f(s
l′(0)), c). Note that g0(0, c) ≈ tr(t) holds. Furthermore

gi(f(s
l′(0)), c) →∗ gi(s

f(|t|)(0), c) is due to Lemma 8.10(1) together with (8.2).

On the other hand assume l > 0. It is easy to see that gl(z) →∗ gdp(t)(z). Furthermore
by an application of rule 9, we obtain

gdp(t)(z) → gk(f(size(g0(0, g
dp(t)−1(z), . . . , gdp(t)−1(z)))), gdp(t)−1(z), . . . , gdp(t)−1(z)) .

Note that g(x) → gk(f(. . .), x, . . . , x) →∗ c by Lemma 8.10(2), z →∗ c, and for all j,

gdp(t)−1(z) →∗ tr(tj) by induction hypothesis. Thus the right-hand side of the above equation
rewrites to

gk(f(size(g0(0, tr(t1), . . . , tr(tn), c))), tr(t1), . . . , tr(tn), c) ,
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which in turn rewrites to gi(f(size(s)), tr(t1), . . . , tr(tn), c) for suitable s with s ≈ tr(t).
Finally, Lemma 8.10(1),(3) and (8.2) yield gi(s

m(0), tr(t1), . . . , tr(tn), c). This concludes the
proof.

It remains to verify that Rsim is terminating and that dcRsim
is primitive recursive in f .

This is non-trivial, due to the rules 1i.

Theorem 8.14. There exists a well-founded monotone algebra I such that I is compatible
with Rsim and for all g ∈ Fsim, the function gI is primitive recursive in f . In particular
Rsim is terminating and dcRsim

is primitive recursive in f .

Proof. The proof is given in the appendix.

We arrive at the main result of this section.

Theorem 8.15. Let R be a terminating TRS and let f be the following function over N:

f(n) := max({1} ∪ {dh(t♯,→P/R) | |t| 6 n,P is SCC of DG(R)}) .

Then dcR is primitive recursive in f . This upper bound is essentially optimal if f is at least
linear.

Proof. Let t be a term. Without loss of generality we can assume that t is ground. Due to
Lemmata 8.11 and 8.13 we have the following inequalities.

dh(t,→R) 6 dh(tr(t),→Rsim
) 6 dh(gdp(t)(z),→Rsim

) .

Note that |gdp(t)(z)| 6 |t|. Hence for all n: dcR(n) 6 dcRsim
(n). Due to Theorem 8.14, dcRsim

is primitive recursive in f . Thus dcR is bounded by a function primitive recursive in f . It
follows from Example 8.1 that this bound is essentially optimal.

Consider any TRS R whose termination can be shown by the basic dependency pair
method in conjunction with dependency graphs and some base technique for each SCC of the
dependency graph. Let f be defined as in Theorem 8.15. As an example, if only polynomial
interpretations and MPO are used as base techniques, then both f and dcR are bounded by
primitive recursive functions. Note that the derivational complexity induced by MPO (as
a direct method) is primitive recursive [18]. By definition the primitive recursive functions
are closed under primitive recursion. Hence the complexity of the dependency pair method
(in conjunction with the dependency graph refinement) becomes negligible.

9. Conclusion

In this paper we have investigated the derivational complexity induced by the dependency
pair method, where the object of our investigation is the standard formulation of the de-
pendency pair method [1, 14] together with natural refinements.

We have established the following results: Firstly, for the basic dependency pair method
(potentially using argument filterings) the induced derivational complexity is triple expo-
nentially bounded in the derivational complexity of the base technique used. For string
rewrite systems we have an optimal exponential upper bound and for the general case,
we presented a double exponential lower bound. Secondly, if we consider the dependency
pair method using the usable rules refinement, then the induced derivational complexity
is primitive recursive in the derivational complexity of the base technique. Here we have
provided a nonelementary lower bound. Finally, if we consider the dependency pair method
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in conjunction with dependency graphs, then the induced derivational complexity is again
primitive recursive in the derivational complexity of the base techniques employed. This
result is essentially optimal. It is worthy of note that this is the very first analysis of the
dependency pair method (without any dilutions) from a complexity analysis point of view.
It remains to clarify to what extent such results hold for other notions of complexity.

As briefly mentioned in the introduction the derivational complexity is not the only
measure of the complexity of a TRS suggested in the literature. In particular, alternative
approaches have been suggested by Choppy et al. [7], Cichon and Lescanne [8], and Hirokawa
and the first author [16]. In [16] the runtime complexity with respect to a TRS is defined
as a refinement of the derivational complexity, by restricting the set of admitted initial
terms. This notion has first been suggested in [7], where it is augmented by an average case
analysis. Finally [8] studies the complexity of the functions computed by a given TRS. This
latter notion is often studied within implicit computational complexity theory (see [5] for an
overview).

We have chosen to present our results in terms of derivational complexity as this sim-
plifies the comparison to well-known results in this area. However, it is easy to see that
all upper bound results hold as well, if we would study the runtime complexity of a TRS.
Furthermore, the runtime complexity of a TRS is an invariant cost model [10] and thus it is
straightforward to rephrase our results in terms of the complexity of the function computed
by the TRS in question. Let f be a function computable by a TRS R and let g denote a
function that grows at least linearly. Suppose the runtime complexity of R is bounded by
g(n). Then there exists a Turing machine running in time polynomial in g(n) that computes
f [3]. Thus our results also characterises the complexity of functions computed by rewrite
systems, whose termination has been shown by the dependency pair method together with
natural refinements.

From the original viewpoint of derivational complexity analysis, as an analysis of the
strength of termination methods, the implications of our results are easy to state. For exam-
ple, our results imply that the (technically simple) extensions of the dependency pair method
with the dependency graph refinement greatly increase the strength of the method. On the
other hand our results also provide limitations on the strength of the studied techniques.
For instance consider the following example.

Example 9.1. Consider the TRS R9 introduced by Touzet in [36].2

b(u(x)) → b(s(x)) s(b(s(x))) → b(t(x)) t(b(x)) → b(s(x)) t(s(x)) → t(t(x))

s(b(x)) → b(s(s(s(x)))) s(u(x)) → s(s(x)) t(b(s(x))) → u(t(b(x))) t(u(x)) → u(t(x))

R9 encodes the Ackermann function [36] and therefore the derivational complexity function
belongs to Ack(Θ(n), 0).

Our results imply that any successful termination proof of R9 has to employ techniques
that go beyond the basic dependency pair method and the refinements studied here. Very
recently, Sternagel and Middeldorp presented in [33] an automatic termination proof of R9.
Based on our work it is indeed no surprise that this proof makes crucial use of an extension
of the dependency pair method, the dependency pair framework [12, 35].

Motivated by this and like-minded examples we have very recently started investiga-
tions into the complexity induced by the dependency pair framework. A first result in this

2This is example Zantema_04/z090 in the termination problems database, see
http://termcomp.uibk.ac.at/.

http://termcomp.uibk.ac.at/
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direction shows that the complexity of the dependency pair framework may be multiply
recursive [28]. Furthermore, for a clearly defined subset of processors, this bound is optimal.

In recent years (derivational) complexity results mainly focused on crafting new methods
that induce low-complexity upper bounds, like for example polynomial upper bounds. We
exemplarily mention results by Neurauter et al. studying the use of matrix interpretations
to polynomially bound the derivational complexity of TRSs [31]. Moreover, in the area of
implicit computational complexity, Bonfante et al. study the use of quasi-interpretations to
characterise complexity classes like LINSPACE, PTIME, or PSPACE [6]. In the context of
our results these classes are clearly of a low complexity.

With respect to this motivation our results are arguably negative: our results clearly
show that the undiluted dependency pair method is not a suitable tool to yield low complex-
ity upper bound. Again it does not matter much whether we consider derivational complexity
or runtime complexity: the example given for the double exponential lower bound for the
basic dependency pair method also shows a double exponential lower bound for the runtime
complexity.

Recently a number of variants of the dependency pair method have been proposed in
the literature [2, 16, 17, 23, 24, 32, 39]. We believe that our results can also be profitably
employed in the crafting of variants of the dependency pair method or framework in the
context of polynomial complexity analysis. This will be subject to future work.
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Appendix A. Termination of the Simulating TRS Rsim

Recall the definition of the simulating TRS Rsim given in Section 8. In this appendix we
define a well-founded monotone algebra I = (N, >), where > denotes the usual order on the
natural numbers. Termination of Rsim follows as I is compatible with Rsim. Furthermore,
if the function f , defined in (8.1), is primitive recursive, then I makes only use of primitive
recursive interpretation functions. The definition of I makes use of a family of fast growing
functions, defined below. This definition is parametrised in d. The exact value of the
parameter d will become clear from the termination proof. To simplify the notation we
assume the function f is primitive recursive. Otherwise Definition A.1 has to be replaced
by a function hierarchy that is parametrised in f .

Definition A.1. Let d > 2 be a given number. We define:

F0(m) := dm+1 Fn+1(m) := Fm+1
n (m) .

The following properties of the family of functions {Fn | n > 0} are easy to verify.

Lemma A.2. Let n, m, a, and b be natural numbers.

(1) Fn(a) > da+1 > d · a > a.
(2) If a > b, then Fn(a) > Fn(b).
(3) If n > m, then Fn(a) > Fm(a) for a > 1.
(4) Fm(a+ b) > Fm(a) + b and Fm(a+ 1) > 2 · Fm(a).
(5) Each function Fn is primitive recursive.
(6) For every n-ary primitive recursive function g, there exists a number k such that for all

numbers m1, . . . ,mn: Fk(max{m1, . . . ,mn}) > g(m1, . . . ,mn).

The next proposition is due to Hofbauer [19].

Proposition A.3. Let A = (N, >) denote a weakly monotone algebra, compatible with a
TRS R and let p be a strictly monotone unary function on N such that for all f ∈ F

p(n) > fA(n, . . . , n) for all n ∈ N .

Then we have dcR(n) 6 pn(0).

Recall that Fsim denotes the signature of the TRS Rsim. By definition f ∈ Fsim and
we assume that the function f is primitive recursive. The rules R′ defining f constitute
a (terminating) subset of Rsim, c.f. Definition 8.7. For the definition of the well-founded
monotone algebra I it suffices to define primitive recursive mappings fI for all f ∈ Fsim. A
complication is the definition of fI as the TRS R′ has only been defined implicitly above.
However, following the construction in [18], we conclude the existence of a well-founded
monotone algebra J compatible with R′ such that fJ is primitive recursive. More precisely,
without loss of generality we can assume that there exists ℓ ∈ N such that fJ (n) = Fℓ(n)
and that sJ (n) = n+ 1 and 0J = 1.

Preparing the definition of the well-founded monotone algebra I , we define the inter-
pretation functions fI , sI , and 0I as follows:

fI(n) := Fℓ(n) sI(n) = n+ 1 0I = 1 . (A.1)

The next definition gives the mappings associated to the function symbols gi (0 6 i 6 k).
Let d > max{C + 2, a+ 1}.

(gi)I(n, x1, . . . , xa) := F
dn+1·(C+1)
ℓ+2i (n + x1 + · · ·+ xa) . (A.2)
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Before we continue the definition of I we give the following auxiliary result. Let α
denote an arbitrary assignment. Let x be a variable and let x abbreviate [α]A(x).

Lemma A.4. Let α be an assignment such that for all x ∈ V, α(x) > 1. Then there exists
q ∈ N such that Fq(n+ x1 + · · ·+ xa) > [α]A(gi(n, x1, . . . , xa)).

Proof. By definition [α]A(gi(n, x1, . . . , xa)) = F
dn+1·(C+1)
ℓ+2i (n+x1+· · ·+xa), we set p := ℓ+2i

and abbreviate n+ x1 + · · ·+ xa as n+ x. Due to Lemma A.2(1) and the assumption on d,
we have F1(n+ x) > dn+2+x > dn+2 + x > dn+1 · (C + 1) + x for n > 1. In sum, we obtain:

Fp+2(n+ x) > Fp+1 ◦ Fp+1(n+ x)

> Fp+1 ◦ F1(n+ x)

> Fp+1(d
n+1 · (C + 1) + x)

> Fd
n+1·(C+1)+1

p (dn+1 · (C + 1) + x)

> Fd
n+1·(C+1)

p (n+ x) .

Hence the lemma follows, if we set q := p+ 2.

The next definition gives the mappings associated to the function symbols treei (0 6

i 6 k).

(treei)I(m,n, x1, . . . , xa) := F
dn+2·(m+1)
ℓ+2i (x+ x1 + · · ·+ xa) . (A.3)

The interpretation functions given in (A.1)–(A.3) are sufficient to prove the main result
of this appendix.

Theorem 8.14 (revisited). There exists a well-founded monotone algebra I, such that I
is compatible with Rsim and for all g ∈ Fsim, the function gI is primitive recursive in the
parameter function f . In particular Rsim is terminating.

Proof. Without loss of generality we can assume that f is primitive recursive. Otherwise a
straightforward extension of Definition A.1 suffices to prove the more general proposition.

Set I = (N−{0}, >) and recall that in (A.1), (A.2), and (A.3) the mappings fI , sI , 0I ,
(gi)I and (treei)I have been defined, where 0 6 i 6 k and 0 6 j 6 C holds. We extend these
definitions, by setting cI := 3 and sizeI(n) := n. Hence it remains to consider the mappings
dI , gI , and zI . Based on Lemma A.4 it is not difficult to define suitable interpretations such
that the rules 3i,j—10 are strictly decreasing with respect to I . We leave these definitions
to the reader.

We write f ◦ g(n) for the function composition f(g(n)) and we abbreviate x1 + · · ·+ xa
as x. In proving compatibility, we restrict our attention to the (families of) rules 1i, 11i, 12i
(i ∈ {0, . . . , k}) and 2i′ (i′ ∈ {1, . . . , k}). Let i be arbitrary, but fixed.

Consider the rule 1i:

gi(s(n), x1, . . . , xa) → treei(s
C(0), x, x1, . . . , xa) .

Due to Lemma A.2(1) we obtain (for an arbitrary assignment α):

[α]A(gi(s(n), x1, . . . , xa)) = F
dn+2·(C+1)
ℓ+2i (n+ 1 + x)

> F
dn+2·(C+1)
ℓ+2i (n+ x)

= [α]A(treei(s
C(0), n, x1, . . . , xa)) .
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Consider the rule 11i:

treei(0, x, x1, . . . , xa) → gi(x, x1, . . . , xa) .

Then we obtain:

[α]A(treei(0, n, x1, . . . , xa)) = Fd
n+2

p (n+ x1 + · · ·+ xa)

> Fd
n+1·(C+1)

p (n+ x1 + · · ·+ xa)

= [α]A(gi(n, x1, . . . , xa)) ,

where we use Lemma A.2(1) together with the fact d > C + 1.
Consider the rule 12i:

treei(s(y), x, x1, . . . , xa) → gi(x, treei(y, x, x1, . . . , xa), . . . , treei(y, x, x1, . . . , xa)) .

We obtain:

[α]A(treei(s(m), n, x1, . . . , xa)) = Fd
n+2·(m+2)

p (n+ x)

> Fd
n+2·(m+1)+dn+2−dn+1+1

p (n+ x)

= Fd
n+2·(m+1)+dn+1·(d−1)+1

p (n+ x)

> Fd
n+2·(m+1)+dn+1·(C+1)+1

p (n+ x)

= Fd
n+1·(C+1)

p ◦ Fp ◦ F
dn+2·(m+1)
p (n+ x) .

Due to (A.3) F
dn+2·(m+1)
p (n+x) = [α]A(treei(m,n, x1, . . . , xa)). Thus due to Lemma A.2(1)

and d > a + 1, we obtain: Fp ◦ F
dn+2·(m+1)
p (n + x) > n + a · [α]A(treei(m,n, x1, . . . , xa)).

Moreover, due to (A.2):

Fd
n+1·(C+1)

p (n+ a · [α]A(treei(m,n, x1, . . . , xa))) =

[α]A(gi(n, treei(m,n, x1, . . . , xa), . . . , treei(m,n, x1, . . . , xa))) .

In sum we obtain

Fd
n+1·(C+1)

p ◦ Fp ◦ F
dn+2·(m+1)
p (n+ x) > Fd

n+1·(C+1)
p (n+ a · [α]A(treei(m,n, x1, . . . , xa))) =

= [α]A(gi(n, treei(m,n, x1, . . . , xa), . . . , treei(m,n, x1, . . . , xa))) ,

where we employ Lemma A.2(2).
Finally, consider the family of rules (2i′)16i′6k and let i′ ∈ {1, . . . , k} be arbitrary, but

fixed. Consider the rule 2i′ :

gi′(n, x1, . . . , xa) → gi′−1(g(size(g0(0, x1, . . . , xa))), x1, . . . , xa) .

Set p := ℓ+ 2i′, hence p− 2 = ℓ+ 2(i′ − 1). Recall that d > C + 2 > 4.
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We obtain for any assignment α such that α(x) > 1 for all x ∈ V:

[α]A(gi′(n, x1, . . . , xa)) = Fd
n+1·(C+1)

p (n+ x)

> Fp ◦ Fp ◦ F
d·(C+1)
p (n + x)

> Fp ◦ Fp ◦ F
dn+2·(C+1)
p−2 (n+ x)

> Fp ◦ Fℓ ◦ F
dn+2·(C+1)
p−2 (1 + x)

> F
d
(Fℓ◦F

d2·(C+1)
p−2 (1+x))+1

·(C+1)
p−2 ◦ Fℓ ◦ F

dn+2·(C+1)
p−2 (1 + x)

> F
d
Fℓ(F

d2·(C+1)
ℓ

(1+x))+1
·(C+1)

p−2 (Fℓ(F
d2·(C+1)
ℓ (1 + x)) + x)

= [α]A(gi′−1(f(size(g0(0, x1, . . . , xa))), x1, . . . , xa)) .

In lines 3 and 5 we apply slight variants of the proof of Lemma A.4, and in line 6 we apply
Lemma A.2(4).

This completes the proof of compatibility for the crucial families of rules 1i, 11i, 12i
(i ∈ {0, . . . , k}) and 2i′ (i′ ∈ {1, . . . , k}). Hence the theorem follows.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
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