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Abstract. The quality of a software architecture for component!-based distributed
systems is defined not just by its source code but also by other systemic artifacts,
such as the assembly, deployment, and configuration of the application compo-
nents and their component middleware. In the context of distributed, real-time,
and embedded (DRE) component-based systems, bin packing algorithms and
schedulability analysis have been used to make deployment and configuration de-
cisions. However, these algorithms make only coarse-grained node assignments
but do not indicate how components are allocated to different middleware con-
tainers on the node, which are known to impact runtime system performance and
resource consumption. This paper presents a model transformation-based algo-
rithm that combines user-specified quality of service (QoS) requirements with
the node assignments to provide a finer level of granularity and precision in the
deployment and configuration decisions. A beneficial side effect of our work lies
in how these decisions can be leveraged by additional backend performance opti-
mization techniques. We evaluate our approach and compare it against the exist-
ing state-of-the-art in the context of a representative DRE system.

Keywords: Model-driven engineering, Graph/model transformations, component-
based systems, deployment and configuration.

1 Introduction

Component-based software engineering (CBSE) has received much attention over the
past few years to develop distributed systems including distributed, real-time, and em-
bedded (DRE) systems, such as emergency response systems, aircraft navigation and
command supervisory systems, and total shipboard computing systems. CBSE provides
a simplified programming model and various mechanisms to separate functional and
non-functional concerns of the system being designed, which lends it to rapid prototyp-
ing, (re-) configuration, and easier maintenance of DRE systems.

DRE systems have stringent runtime quality of service (QoS) requirements includ-
ing predictable end-to-end latencies, reliability and security, among others. Naturally,
the software architecture of the DRE system plays an important role in ensuring that
the runtime QoS needs of DRE systems are met. In component-based DRE system:s,
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1 Our use of the term component is specific to CORBA Component Model and refers to the
basic building block used to encapsulate an element of cohesive functionality.



the software architecture is defined not just by the source code of the application func-
tionality but also by a wide range of systemic issues including the assembly of appli-
cation components, their deployment on the target nodes of the system and allocation
of resources such as the CPU, and the component middleware that hosts the application
components.

In component middleware, such as the CORBA Component Model (CCM) and En-
terprise Java Beans (EJB), a container is a central concept that hosts application compo-
nents. Containers hosting DRE system components provide a high degree of configura-
bility by allowing (1) the choice of the number of thread resources to be configured for
each component, their type (i.e., static or dynamic), and their attributes, such as stack-
size, etc., (2) control over asynchronous event communication, and event filtering and
delivery options, and (3) control over client request invocation priorities on the server
component. The configuration space — identified by all the mechanisms for specifying
system QoS and their appropriate values — becomes highly complex. Thus, making the
right configuration decisions is one key factor that determines the quality of the DRE
system software architecture.

Prior research in improving the quality of DRE systems software architectures has
focused on: (1) analysis-driven decomposition [1] of DRE system functionality into
reusable application components that can be assembled and deployed; (2) component-
to-node assignment [2] and resource allocations [3], and (3) schedulability and timing
analysis [4, 5] to determine whether specified priority assignments are feasible for an
application or not, and in turn helping in partitioning the system resources and config-
uring the middleware.

Despite these advances, key issues still remain unresolved in the deployment and
configuration problem space of DRE system software architectures. For example, al-
though bin packing algorithms [2] make effective decisions on component deployment,
and schedulability analysis determines whether priorities of components can be hon-
ored, both these decisions are at best coarse-grained since they determine only the nodes
on which the components must be deployed but do not indicate how they are deployed
within the containers of the component middleware. This lack of finer-grained decisions
often leads to suboptimal runtime QoS since these decisions are now left to application
developers who are domain experts but often lack detail understanding of the middle-
ware.

To address these limitations, this paper presents a heuristics-based algorithm imple-
mented within a model-transformation [6, 7] framework that combines models of user-
specified QoS requirements, node assignment decisions, and priority values. It then
transforms the combined models into optimal middleware configurations thereby en-
hancing the quality of the DRE system software architecture. Our research prototype
has been implemented using the GReAT [8] model transformation framework for the
Lightweight CCM (LwCCM) [9] middleware.

Two significant benefits accrue from our approach. First, by realizing the heuristic-
based algorithm as an automated model transformation process, it can be seamlessly
reapplied and reused during the iterative DRE system development process. Second,
the configurations generated by our algorithm can be leveraged by additional backend
optimization tools and techniques, such as the Physical Assembly Mapper (PAM) [10]



which reduces time and space overheads by merging collocated components at system
deployment-time.

This paper is organized as follows: Section 2 discusses the challenges developers
face in achieving optimal QoS configuration’ for DRE systems; Section 3 presents the
overall approach taken, the enabling technologies used in our technique, and the model
transformation algorithm we have developed; Section 4 empirically evaluates our ap-
proach in the context of a representative case study; Section 5 discusses the related work
in the area; Section 6 gives concluding remarks.

2 Impediments to the Quality of DRE System Software
Architectures

We now present the deployment and configuration-imposed impediments to the quality
of DRE systems software architectures. We focus on issues that are both innate to the
underlying middleware platforms as well as those that are accidental.

2.1 Opverview of a Real-time Component Middleware

To better articulate the challenges we address in this paper, we first present an overview
of a representative component middleware, which forms an integral part of a DRE sys-
tem software architecture. Note, however, that our solution approach is general and not
specific to the outlined middleware.

Figure 1 illustrates the Lightweight CORBA Component Middleware (LwCCM) [9]
architecture. DRE system developers can realize large-scale DRE systems by assem-
bling and deploying LwCCM components. The applications within these DRE systems
can use publish/subscribe communication semantics (by using the component event
source and sink ports) or request/response communication semantics (by using the facet
and receptacle ports).

In the context of component middleware platforms, such as LwCCM, a container
is an execution environment provided for hosting the components such that they can
access the capabilities of the hardware, networking and software (OS and middleware)
resources. In particular, containers act as a higher-level of abstraction for hosting the
components in which all the developer-specified QoS policies can be properly con-
figured. Components with similar QoS configuration specifications are hosted within
the same container so that all components in that container obtain the same QoS ca-
pabilities. Note that the bin packing algorithms described earlier cannot make these
fine-grained decisions.

LwCCM - and in particular its container — leverages Real-time CORBA (RTCO-
RBA) [11] to support the real-time QoS properties. RTCORBA in turn extends tradi-
tional CORBA artifacts, such as (a) the object request broker (ORB), which mediates
the request handling between clients and servers, (b) the portable object adapter (POA),
which manages the lifecycle of CORBA objects, (c) stubs and skeletons, which are

2 QoS configuration and QoS policy are used interchangeably throughout the remainder of the
paper.
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Fig. 1. Lightweight CORBA Component Model Architecture

generated by an interface definition language (IDL) compiler that hide the distribution
aspects from the communicating entities, with real-time policies and interfaces.

RTCORBA (and hence LwCCM) defines standard interfaces and QoS policies that
allow applications to configure and control (1) processor resources via thread pools,
priority mechanisms, intra-process mutexes, and a global scheduling service, (2) com-
munication resources via protocol properties and explicit bindings, and (3) memory
resources via buffering requests in queues and bounding the size of thread pools. For
example, the priority at which requests must be handled can be propagated from the
client to the server (the CLIENT_PROPAGATED model) or declared by the server (the
SERVER_DECLARED model).

2.2 Inherent and Accidental Complexities in Deployment and Configuration

In the CBSE paradigm, application developers must determine how to deploy com-
ponents within the containers, and grapple with the multiple different configuration
options provided by the containers. In this context we outline two critical challenges
impeding the quality of DRE system software architectures.

Challenge 1: Inherent Challenges in Deployment and Configuration. The differ-
ent analyses techniques used in the development of DRE systems (e.g. schedulabil-
ity and timing analysis) and deployment and resource allocation decisions (e.g., where
each component resides in the available computing node farm) dictate what QoS con-
figurations are chosen for individual components of the application. For example, as
shown earlier, LwWCCM provides configuration mechanisms to assign priorities to ev-
ery component, defines a fixed/variable priority request invocation and handling model



(PriorityModelPolicy), allows defining the number of thread resources, their
type (i.e., static or dynamic), and concurrency options (ThreadPool).

For a component-based application, the mapping of the above analyses onto these
available policies results in a number of unique QoS configurations, and naturally, as
many containers. Unfortunately, the principles of separation of concerns in the design
of containers in component middleware architectures force service request invocations
between components hosted on different containers to go through the typical request
demultiplexing layers and marshaling/demarshaling and mechanisms even though they
may be hosted in the same address space of the application server. Therefore, such
invocations are considerably slower than the invocations between components that share
the same container [12].

Thus, in effect, components placed on different containers (which are in turn cre-
ated from unique QoS configurations) are unable to exploit the collocation optimiza-
tions performed by the middleware.? As such, the sub-optimal QoS configuration of
the application leads to increased average end-to-end latencies. Since DRE systems are
made up of hundreds of components, as the number of components in the system that
are sub-optimally configured increases, the adverse impact on end-to-end latencies can
be significant.

Challenge 2: Accidental Complexities in Deployment and Configuration. It may be
argued that the developers can keep track of the QoS configurations that are produced,
and depending on DRE system QoS needs, make decisions on how to minimize the
containers. Such a manual approach, however, introduces several non-trivial challenges
for the application developers:

e Large-scale DRE systems typically consist of hundreds of components spanning
multiple assemblies of components. Manually keeping track of all the configura-
tions (and potentially combining them to minimize the number of containers) in
such large-scale systems is very difficult and in some cases infeasible.

e Development of DRE systems is often an iterative process where new requirements
are added. Thus, the system configuration needs to evolve accordingly to cater to
new requirements, and the optimizations listed above need to be performed at the
end of each reconfiguration cycle.

e The configuration optimization activity forces the developers to have a detailed
knowledge of the middleware platform. Further, the activity itself is not central to
the development of application logic and may in fact be counter-productive to the
promise of CBSE.

Addressing both these challenges calls for automated tools and techniques to per-
form the deployment and configuration optimizations so that the quality of the resulting
DRE system software architecture is enhanced.

3 Many middleware optimize the communication path for entities that reside in the same address
space.



3 Enhancing the Quality of DRE System Software Architectures

We now present our model transformation-based approach to address the impediments
to the quality of software architectures of component-based DRE systems stemming
from suboptimal deployment and configuration decisions. We use a simple representa-
tive example to discuss our approach.

3.1 Representative Case Study

The Basic Single Processor (BasicSP) scenario shown in Figure 2 is a reusable compo-
nent assembly available in the Boeing Bold Stroke [13] component avionics computing
product line. BasicSP uses a publish/subscribe service for event-based communication
among its components, and has been developed using a component middleware plat-
form, such as LwCCM.

get_data () get_data ()
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Fig. 2. Basic Single Processor Component Assembly

A GPS device sends out periodic position updates to a GUI display that presents
these updates to a pilot. The desired data request and the display frequencies are at 20
Hz. The scenario shown in Figure 2 begins with the GPS component being invoked by
the Timer component. On receiving a pulse event from the Timer, the GPS component
generates its data and issues a data available event. The Airframe component retrieves
the data from the GPS component, updates its state, and issues a data available event.
Finally, the NavDisplay component retrieves the data from the Airframe and updates its
state and displays it to the pilot.

In its normal mode of operation, the 7Timer component generates pulse events at a
fixed priority level, although its real-time configuration can be easily changed such that
it can potentially support multiple priority levels.

It is necessary to carefully examine the end-to-end application critical path and con-
figure the system components correctly such that the display refresh rate of 20 Hz may
be satisfied. In particular, the latency between Timer and NavDisplay components needs
to be minimized to achieve the desired end goal. To this end, several characteristics of
the BasicSP components are important and must be taken into account in determining
the most appropriate QoS configuration space.

For example, the NavDisplay component receives update events only from the Air-
frame component and does not send messages back to the sender, i.e., it just plays the
role of a client. The Airframe component on the other hand communicates with both the
GPS and NavDisplay components thereby playing the role of a client as well as a server.



Various QoS options provided by the target middleware platform (in case of BasicSP,
it is LwCCM) must ensure that these application-level QoS requirements are satisfied.
For achieving the goal of reducing the latency between Timer and NavDisplay compo-
nents, it is crucial to carefully analyze the QoS options chosen for each component in
BasicSP, and exploit opportunities to either reuse or combine them such that this goal
can be met.

The system is deployed on two physical nodes. Application developers of our case
study choose a modeling environment to model the BasicSP component assembly and
annotate its real-time requirements as shown in Figure 3. We have used the Generic
Modeling Environment (GME) [14] for modeling the DRE system. GME provides a
graphical user interface that can be used to define both modeling language semantics
and system models that conform to the languages defined in it. Model interpreters can
be developed using the generative capabilities in GME that parse and can be used to
generate deployment, and configuration artifacts for the modeled application.
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Fig. 3. BasicSP Model

The developers use the model interpreter plugins shown in the figure to automat-
ically synthesize deployment and configuration metadata that describes how the com-
ponents are assigned to nodes of the operating environment, and what configuration
options of the component middleware are to be used for each component. These model
interpreters encapsulate the bin packing and schedulability analyses algorithms alluded
to earlier.

The generated metadata is usually in the form of XML, which is then parsed by
the underlying middleware’s deployment and configuration tool to deploy and config-
ure the DRE system before operationalizing it. As mentioned earlier, due to a lack of
finer-grained decisions, the generated XML metadata will often result in DRE system
software architectures that perform suboptimally.



3.2 Heuristics-based Model-transformation Algorithm

The model transformation algorithm we developed takes the following models and gen-
erated artifacts as its input: (1) DRE QoS requirements specification in the form of mod-
els as shown in Figure 3, and (2) the generated DRE system deployment plan indicating
the coarse-grained component-to-node mapping and configuration options to be used
for the middleware. We assume that this mapping includes collocation groups, which
are sets that include the components that can be placed together on a node and that too
in the same address space. The objective of our algorithm is to improve the end-to-end
latencies in DRE system as well as reduce the memory footprint of the DRE system by
virtue of minimizing the number of containers needed to host the DRE system compo-
nents.

The output of our algorithm is an enhanced QoS policy set*, which is incorporated
into the DRE system model. Our approach produces optimized QoS policy sets by em-
ploying novel ways of reusing and/or combining existing deployment and configuration
metadata and applying deployment heuristics in an application-specific manner.

We have used the Graph Rewriting And Transformation (GReAT) [8] language for
defining our transformation algorithms. GReAT, which is developed using GME, can
be used to define transformation rules using its visual language, and executing these
transformation rules for generating target models using the GReAT execution engine
(GR-Engine). The graph rewriting rules are defined in GReAT in terms of source and
target languages (i.e., metamodels).

Below we explain the individual steps in our transformation process.

Step I: Modeling Language used in the Transformation Algorithm: To demonstrate
our technique we required a modeling language to enable the developers to annotate
their QoS requirements on the DRE system models. A simplified UML QoS configura-
tion metamodel that we used is shown in Figure 4.

The metamodel defines the following elements corresponding to several LwCCM
real-time configuration mechanisms:

e Lane, whichis alogical set of threads each one of whichruns at lane_priority
priority level. It is possible to configure the number of szatic threads (i.e., those that
remain active till the system is running, and dynamic threads (i.e., those threads that
are created and destroyed as required) using Lane element.

e ThreadPool, which controls various settings of Lane elements, or a group thereof.
These settings include st acksize of threads, whether borrowing of threads across
two Lane elements is allowed, and maximum resources assigned to the buffer re-
quests that cannot be immediately serviced.

e PriorityModelPolicy, which controls the policy model that a particular Thr—
eadPool follows. It can be set to either CLIENT_PROPAGATED if the invocation
priority is preserved, or SERVER_DECLARED if the server component changes the
priority of invocation.

4 QoS policy set is a group of configuration files that completely capture the DRE system QoS.
These files are used by the middleware to ultimately provision infrastructure resources such
that the QoS requirements can be met.
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Fig. 4. Simplified UML Notation of QoS Configuration Meta-model in CQML

e BandedConnections, which defines separate connections for individual (client)
service invocations. Thus, using BandedConnections, it is possible to define
a separate connection for each (range of) service invocation priorities of a client
component. The range can be defined using 1ow_range and high_range op-
tion values of BandedConnections.

Step II: QoS Policy Optimization Algorithm Algorithm 1 depicts our heuristics-
based model-transformation algorithm, which uses the metamodel shown in Figure 4
as its source and target language, for optimizing the deployment and configuration de-
cisions.

The algorithm is executed for all the deployment plans specified for an applica-
tion and the policy optimizations are applied for each such plan as shown in Line 2.
In Line 5, all the components from a single collocation group are found.’> Based on
whether they have SERVER_DECLARED or CLIENT_PROPAGATED priority model, they
are grouped together in SCS and SCC as shown in Lines 7 and 9, respectively.

Finally, for each set of components above, the algorithm minimizes the number of
QoS policies in Line 12 subject to the condition in Line 13. This condition stipulates
that if QoS policies of two (sets of) components a and b each indicated in the Algorithm
by gp, and gpy, respectively, are similar (binary Boolean function == finds whether the
policies are similar), then they are combined (indicated by ) leading to a reduction in
the size of SQ;.

For example, two policies would be similar if the lane borrowing feature of their
ThreadPool configuration option is same. Similarly, if the value of lane_priority
in Lane configuration option matches, the two Lanes are similar and can be com-
bined. This test in the Algorithm is applied pairwise to all components in the set. The
Algorithm implements symmetric rules for CLIENT_PROPAGATED policy model.

5 Note that this is a host-based collocation group.



Algorithm 1: Transformation Algorithm for Optimizing Deployment and
Configuration Metadata

Input: set of deployment plans SP;
set of components SC, SCS (those that use server declared policy), SCC (those that use client
propagated policy);
component c, ¢p;
deployment plan p;
set of QoS policies SQ1, SO2, gpa (QoS policy set of a specific component ’a’), gpy,
(similarly for a component ’b’);
set of collocation groups SCG;
collocation group g
1 begin
foreach p € SP do

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23 end

end

SCG « collocationGroups(p);// collect all collocation groups in the deployment plan
foreach g € SCG do
SC — SC + components(g); // Collect all components of a single collocation group
if c € SC | c.priorityModel == SERVER_DECLARED then
SCS <+ SCS + c; // Collect all components using the server declared policy
else if c € SC | c.priorityModel == CLIENT _PROPAGATED then
SCC «— SCC + c; // Collect all components using the client propagated policy
foreach ¢ € SCS do
SQ «— SQ1 + c.QoSPolicy();
minimize SQ;
subject to gpa > qpp | gpa = qpp;
end
foreach ¢ € SCC do
SQ, «— SO + c.QoSPolicy();
minimize SQ;
subject to gpg > qpp | gpa = qpy;
end
end
modifyDeploymentPlan(p,SQ1,S0>); // modify the plan and repeat until no more
optimizations are feasible

In Line 21 the results from applying all the above rules to the DRE system model
are used to modify the current deployment plan, and the process is repeated for all the
remaining plans of the DRE system until no more optimizations are feasible. The final-
ized deployment plans are then fed to a deployment and configuration tool supplied with
the component middleware so that the components can be deployed and configured, and
the DRE system can be activated.

DRE developers can subsequently test their system, and can iterate through the de-
velopment lifecycle if the right end-to-end QoS is not observed or if other requirements
change.



3.3 Resolving the Challenges in Optimizing QoS Configurations

At the end of step I, the developers create the application model that capture the initial
QoS policies. The transformation algorithm shown in Algorithm 1 is applied in step Il to
that DRE system model, which updates it and generates a modified QoS configuration
policies using the rules described in the algorithm.

Our automated, model transformation-based approach resolves the challenges we
have discussed in Section 2 as follows: The inherent platform-specific complexities
in optimizing DRE system QoS configurations are encapsulated in the transformation
rules described in Section 3.2. The developers can thus focus on application business
logic, and use our approach to optimize the QoS configuration. Further, the model trans-
formation rules are reusable and can be applied repeatedly, during application develop-
ment, and maintenance thereby addressing the accidental complexities.

4 Evaluating the Merits of the Transformation Algorithm

This section evaluates our approach to optimizing the original deployment and config-
urations for component-based DRE systems. We claim that the quality of the resulting
software architecture is improved if it is able to demonstrate an improved performance.

We describe our results in the context of our case study explained in Section 3.1. We
show how the end-to-end latency results after applying our algorithm achieves consid-
erable improvement over the existing state-of-the-art. Moreover, we also demonstrate a
beneficial side effect of our solution by discussing how the algorithm can be combined
with additional backend optimization frameworks like the Physical Assembly Mapper
(PAM) [10].

4.1 Experimental Setup & Empirical Results

We have used ISISLab (www.dre.vanderbilt.edu/ISISlab) for evaluating
our approach. Each of the physical nodes used in our experiments was a 2.8 GHz In-
tel Xeon dual processor with 1 GB physical memory, 1 GHz network interface, and
40GB hard disks. Version 0.6 of our Real-time LwCCM middleware called CIAO was
used running on Redhat Fedora Core release 4 with real-time preemption patches. The
processes that hosted BasicSP components were run in the POSIX scheduling class
SCHED_FIFO, enabling first-in-first-out scheduling semantics based on the priority of
the process.

To showcase our results, we first modeled the BasicSP scenario and generated the
deployment and configuration metadata for each of its components. Note that the meta-
data is generated using the model interpreters that encapsulate appropriate bin packing
and schedulability analysis techniques. We collected the end-to-end latency metrics for
the BasicSP scenario using the initial deployment and configuration metadata.

We then applied the transformation algorithm 1 to our BasicSP model which re-
sulted in more fine-grained optimizations to the existing deployment and configuration
metadata. The BasicSP scenario was then executed again with the updated QoS policies,
and the results were collected. For both these experiments, the results were obtained by



repeating invocations for 100,000 iterations after 10,000 warmup iterations and averag-
ing them.

Figures 5 and 6 show the results of applying our approach to BasicSP scenario
comparing them to those derived from the original deployment and configurations. The
figure plots the average end-to-end latency and its standard deviation for the invocations
from Timer to NavDisplay components in BasicSP with and without our approach.

As shown in Figure 5, the average latency improved by ~70% when our technique
was used for optimizing BasicSP QoS configurations. The standard deviation on the
other hand, improved by ~59% as plotted in Figure 6.
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Fig. 5. Average end-to-end Latency

Without our approach, the initial BasicSP QoS configuration contained separate
policies for each of its four components. Out of the four components, only the Timer
component has SERVER_DECLARED priority model, while the rest of the components
have CLIENT_PROPAGATED priority model. Thus, as indicated on Lines 12 and 13,
when Algorithm 1 is applied to BasicSP, the QoS policy set is reduced to a size of two,
one for each kind of priority model. This reduction in the size of the QoS policy set
leads to the ~70% improvement in end-to-end latency between Timer and NavDisplay
components.

The third graph in each figure indicates the additional improvements in end-to-end
latencies accrued as a result of leveraging backend optimization frameworks, such as
PAM [10]. PAM is a deployment-time technique that fuses a set of components col-
located in a container to reduce memory footprint and latency between service invo-
cations. Our approach simply indicates what components should be part of the same
container, however, individual components continue to require their own stubs and
skeletons, and other glue code, which continues to be a source of memory footprint
overhead.

Approaches like PAM can then be used to eliminate this remaining overhead, and
our model-transformation technique can give hints to PAM on which components should
be part of the same container. Since PAM is essentially a model-driven tool, the mod-
ified DRE system QoS configuration model resulting from applying our model trans-
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formation algorithm can directly be used to investigate fusion opportunities for the ap-
plication. As shown in Figures 5 and 6, when applied in conjunction with PAM, our
approach leads to a combined improvement of ~83% in the end-to-end latency and
~65% in the observed standard deviation in latency for BasicSP scenario.

4.2 Discussion

Our transformation algorithm described in Sections 3.2 relies on QoS configuration
analyses in a platform-specific manner. We specifically showed how it has been real-
ized in the context of a LwWCCM middleware implementation. Naturally to extend it to
other middleware platforms requires a careful study of the other platform’s configura-
tion space.

The results indicated an improvement of ~70% in invocation latency between an
execution path consisting of four components (the execution path here refers to the
invocations from Timer, to GPS, to AirFrame, and finally to NavDisplay components
in BasicSP). Recall that the BasicSP is an assembly of components that is used in the
context of larger DRE system architectures. With increasing scale of the DRE system,
it becomes necessary to leverage every opportunity for optimizations.

We expect the improvements accrued using our approach to be even higher. This
is because the reduction in end-to-end latency is dependent upon how effectively the
QoS policy sets SQ; and SQ» in Algorithm 1 are minimized. Large-scale DRE systems
would have a number of QoS policies specified across their component assemblies, and
in general, would be expected to have more opportunities to combine and reuse these
policies leading to further latency improvements.

5 Related Work

Since the work presented in this paper results in performance optimizations to the un-
derlying middleware thereby improving the quality of the DRE system software archi-



tecture, we compare our work with synergistic works. Moreover, since our research is
applicable at design-time, we focus primarily on design- and deployment-time tech-
niques to compare our work against.

A significant amount of prior work has focused on estimating the performance of
software architectures via prediction techniques thereby allowing architects to weed
out bad architectural choices. In this paper we have not applied these techniques. We
assume that the architectures of the underlying middleware are sound. Our objective is
to optimize performance even further by combining similar QoS policies.

Good software engineering principles argue for improving the functional cohesion
and decreasing functional decoupling in software systems. The work presented here is
similar in spirit. We strive to improve QoS cohesion by combining QoS policies that
are similar. In doing so we continue to preserve the functional cohesion and decoupling
provided by the container mechanisms in component middleware.

Design-time approaches to component middleware optimization include eliminat-
ing the need for dynamic loading of component implementation shared libraries and es-
tablishing connections between components done at runtime, as described in the static
configuration of CIAO [15]. Our approach is different since it uses model transforma-
tions of configurations at design-time. Our approach is thus not restricted to optimizing
just the inter-connections between components. Moreover, the static configuration ap-
proach can be applied in combination with our approach.

Another approach to optimizing the middleware at design/development-time em-
ploys context-specific middleware specializations for product-line architectures [16].
This work is based on utilizing application-, middleware- and platform-level properties
that do not vary during the normal application execution in order to reduce the excessive
overhead caused by the generality of middleware platforms.

Some work has also been done in the area of Aspect-Oriented Programming (AOP)
techniques that rely essentially on automatically deriving subsets of middleware based
on the use-case requirements [17], and modifying applications to bypass middleware
layers using aspect-oriented extensions to CORBA Interface Definition Language (I-
DL) [18]. In addition, middleware has been synthesized in a “just-in-time” fashion by
integrating source code analysis, and inferring features and synthesizing implementa-
tions [19].

Contrary to the above approaches, our model transformation-based technique relies
only on (1) the specified QoS requirements specification and (2) the initial deployment
plan, so that the QoS configurations can be optimized. Our approach does not necessi-
tate any modifications to the application, i.e., the application developer need not design
his/her application tuned for a specific deployment scenario. As our results in Sec-
tion 4.2 have indicated, our approach can be used in a complementary fashion to any
of the design/development-time approaches discussed above since there exist several
opportunities for QoS optimization at various stages in application development.

Deployment-time optimizations research includes BluePencil [20], which is a frame-
work for deployment-time optimization of web services. BluePencil focuses on opti-
mizing the client-server binding selection using a set of rules stored in a policy reposi-
tory and rewriting the application code to use the optimized binding. While conceptu-
ally similar, our approach differs from BluePencil because it uses models of application



structure and application deployment to serve as the basis for the optimization infras-
tructure.

BluePencil uses techniques such as configuration discovery that extract deployment
information from configuration files present in individual component packages. By op-
erating at the level of individual client-server combinations, the QoS optimizations
achieved in our transformation-based approach are non-trivial to perform in BluePen-
cil. BluePencil also relies on modification to the application source code to rewrite the
application code, while our approach is non-intrusive and does not require application
source code modifications, and it only relies on the specified application policies and
deployment plans.

Research on approaches to optimizing middleware at runtime has focused on choos-
ing optimal component implementations from a set of available alternatives based on
the current execution context [21]. QuO [22] is a dynamic QoS framework that allows
dynamic adaptation of desired behavior specified in contracts, selected using proxy
objects called delegates with inputs from runtime monitoring of resources by system
condition objects. QuO has been integrated into component middleware technologies,
such as LwCCM.

Other aspects of runtime optimization of middleware include domain-specific mid-
dleware scheduling optimizations for DRE systems [23], using feedback control the-
ory to affect server resource allocation in Internet servers [24] as well as to perform
real-time scheduling in Real-time CORBA middleware [25]. Our work is targeted at
optimizing the middleware resources required to host composition of components in
the presence of a large number of components, whereas, the main focus of these related
efforts is to either build the middleware to satisfy certain performance guarantees, or
effect adaptations via the middleware depending upon changing conditions at runtime.

6 Concluding Remarks

The last few years have seen a significant increase in the popularity of component mid-
dleware platforms for developing distributed, real-time and embedded (DRE) systems,
such as emergency response systems, intelligent transportation systems, total shipboard
computing environment across a wide range of application domains. Its higher levels
of programming abstractions coupled with mechanisms that support sophisticated and
highly tunable infrastructure configuration are well suited for rapid development and/or
maintenance of such systems.

The generality of contemporary component middleware platforms, however, has in-
creased the complexity in properly configuring these platforms to meet application-level
QoS requirements. Automated solutions [26] are an attractive alternative to achieving
the QoS configuration of component-based systems, however, they incur excessive sys-
tem resource overheads often leading to sub-optimal system QoS.

In this paper, we discussed an automated, model transformation-based approach that
takes into account the component collocation heuristics to optimize application QoS
configuration thereby improving the quality of the software architecture. We discussed
the design of our approach, and the transformation algorithm used to optimize the QoS
configuration. We also evaluated our approach and compare it against the existing state-



of-the-art. The results demonstrated the effectiveness of our approach in optimizing
QoS configuration in the context of a representative DRE system reusable component
assembly.

The following are the lessons learned from our research:

e Optimal QoS configuration for component-based systems is a crucial research area
that has been unaddressed till date. As component middleware gains popularity, and
available resources become constrained, especially in the context of DRE systems,
it is critical to improve the overall quality of the DRE system software architectures.

e Existing research in QoS configuration have focused largely on achieving locally
optimized solutions, i.e., they are restricted to analyzing and modifying/manipulating
the middleware configuration space.

e Our approach showed that excessive overheads can be avoided by analyzing QoS
configurations in the context of other application characteristics such as its compo-
nent collocation/node placement heuristics.

e We have focused on combining the deployment decisions with the application QoS
specification. However, as our results have indicated, further optimizations are pos-
sible by combining our technique with other design-, development-, run-time tech-
niques, which merits further investigation. Additional investigations are also nec-
essary to test our approach on larger DRE systems and different middleware plat-
forms.

e Our approach indicated improvements in latencies. Significant research remains to
done to see how other QoS metrics can be improved as well. When multiple QoS
metrics are considered together, simple heuristics may not work. Instead multi-
objective optimizations [27] may be necessary. Additionally, we have not demon-
strated the applicability of our work for ultra-large scale DRE systems. This will
form part of our future research.

e Our approach is not necessarily restricted to real-time systems. There may be op-
portunities for applying these arguments to other domains including high perfor-
mance computing and enterprise computing.
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