Skip to main content

Approaching the Time Dependent Cocktail Party Problem with Online Sparse Coding Neural Gas

  • Conference paper
Book cover Advances in Self-Organizing Maps (WSOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Included in the following conference series:

Abstract

We show how the “Online Sparse Coding Neural Gas” algorithm can be applied to a more realistic model of the “Cocktail Party Problem”. We consider a setting where more sources than observations are given and additive noise is present. Furthermore, we make the model even more realistic, by allowing the mixing matrix to change slowly over time. We also process the data in an online pattern-by-pattern way where each observation is presented only once to the learning algorithm. The sources are estimated immediately from the observations. In order to evaluate the influence of the change rate of the time dependent mixing matrix and the signal-to-noise ratio on the reconstruction performance with respect to the underlying sources and the true mixing matrix, we use artificial data with known ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haykin, S., Chen, Z.: The cocktail party problem. Neural Comput. 17(9), 1875–1902 (2005)

    Article  Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  3. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  4. Hyvärinen, A., Cristescu, R., Oja, E.: A fast algorithm for estimating overcomplete ica bases for image windows. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 1999, vol. 2, pp. 894–899 (1999)

    Google Scholar 

  5. Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters 6(4), 87–90 (1999)

    Article  Google Scholar 

  6. Lewicki, M.S., Sejnowski, T.J.: Learning Overcomplete Representations. Neural Computation 12(2), 337–365 (2000)

    Article  Google Scholar 

  7. Theis, F., Lang, E., Puntonet, C.: A geometric algorithm for overcomplete linear ica. Neurocomputing 56, 381–398 (2004)

    Article  Google Scholar 

  8. Hyvärinen, A.: Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters 6(6), 145–147 (1999)

    Article  Google Scholar 

  9. Labusch, K., Barth, E., Martinetz, T.: Learning Data Representations with Sparse Coding Neural Gas. In: Verleysen, M. (ed.) Proceedings of the 16th European Symposium on Artificial Neural Networks, pp. 233–238. D-Side Publishers (2008)

    Google Scholar 

  10. Labusch, K., Barth, E., Martinetz, T.: Sparse Coding Neural Gas: Learning of Overcomplete Data Representations. Neurocomputing 72(7-9), 1547–1555 (2009)

    Article  Google Scholar 

  11. Labusch, K., Barth, E., Martinetz, T.: Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources. In: Koutník, J., Kůrková, V., Neruda, R. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 788–797. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems (November 1993)

    Google Scholar 

  13. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 52(1), 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rebollo-Neira, L., Lowe, D.: Optimized orthogonal matching pursuit approach. IEEE Signal Processing Letters 9(4), 137–140 (2002)

    Article  Google Scholar 

  16. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martinetz, T., Schulten, K.: A “Neural-Gas Network” Learns Topologies. Artificial Neural Networks I, 397–402 (1991)

    Google Scholar 

  18. Martinetz, T., Berkovich, S., Schulten, K.: “Neural-gas” Network for Vector Quantization and its Application to Time-Series Prediction. IEEE-Transactions on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  19. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006); see also IEEE Transactions on Acoustics, Speech, and Signal Processing

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Labusch, K., Barth, E., Martinetz, T. (2009). Approaching the Time Dependent Cocktail Party Problem with Online Sparse Coding Neural Gas. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics