Skip to main content

Functional Principal Component Learning Using Oja’s Method and Sobolev Norms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Abstract

In this paper we present a method for functional principal component analysis based on the Oja-learning and neural gas vector quantizer. However, instead of the Euclidean inner product the Sobolev counterpart is applied, which takes the derivatives of the functional data into account and, therefore, uses information contained in the functional shape of the data into account. We investigate the theoretical foundations of the algorithm for convergence and stability and give exemplary applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kantorowitsch, I., Akilow, G.: Funktionalanalysis in normierten Räumen, 2nd revised edn. Akademie-Verlag, Berlin (1978)

    MATH  Google Scholar 

  2. Kolmogorov, A., Fomin, S.: Reelle Funktionen und Funktionalanalysis. VEB Deutscher Verlag der Wissenschaften, Berlin (1975)

    MATH  Google Scholar 

  3. Kushner, H., Clark, D.: Stochastic Appproximation Methods for Constrained and Unconstrained Systems. Springer, New York (1978)

    Book  Google Scholar 

  4. Labusch, K., Barth, E., Martinetz, T.: Learning data representations with sparse coding neural gas. In: Verleysen, M. (ed.) Proceedings of the European Symposium on Artificial Neural Networks ESANN, pp. 233–238. D-Side Publications (2008)

    Google Scholar 

  5. Landgrebe, D.: Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken (2003)

    Book  Google Scholar 

  6. Lee, J., Verleysen, M.: Generalization of the l p norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) Proc. of Workshop on Self-Organizing Maps (WSOM) 2005, Paris, Sorbonne, pp. 733–740 (2005)

    Google Scholar 

  7. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  8. Oja, E.: Neural networks, principle components and suspaces. International Journal of Neural Systems 1, 61–68 (1989)

    Article  Google Scholar 

  9. Oja, E.: Nonlinear pca: Algorithms and applications. In: Proc. of the World Congress on Neural Networks Portland, Portland, pp. 396–400 (1993)

    Google Scholar 

  10. Olshausen, B., Finch, D.: Emergnece of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  11. Ramsay, J., Silverman, B.: Functional Data Analysis, 2nd edn. Springer Science+Media, New York (2006)

    MATH  Google Scholar 

  12. Rossi, F., Delannay, N., Conan-Gueza, B., Verleysen, M.: Representation of functional data in neural networks. Neurocomputing 64, 183–210 (2005)

    Article  Google Scholar 

  13. Sanger, T.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 12, 459–473 (1989)

    Article  Google Scholar 

  14. Triebel, H.: Analysis und mathematische Physik. BSB B.G., 3rd revised edn., Teubner Verlagsgesellschaft, Leipzig (1989)

    Google Scholar 

  15. Villmann, T.: Sobolev metrics for learning of functional data - mathematical and theoretical aspects. Machine Learning Reports, 1(MLR-03-2007), 1–15 (2007) ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/mlr_01_2007.pdf

  16. Villmann, T., Claussen, J.-C.: Magnification control in self-organizing maps and neural gas. Neural Computation 18(2), 446–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villmann, T., Hammer, B. (2009). Functional Principal Component Learning Using Oja’s Method and Sobolev Norms. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics