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Abstract. The ASCoVeCo State space Analysis Platform (ASAP) is
a tool for performing explicit state space analysis of coloured Petri nets
(CPNs) and other formalisms. ASAP supports a wide range of state space
reduction techniques and is intended to be easy to extend and to use,
making it a suitable tool for students, researchers, and industrial users
that would like to analyze protocols and/or experiment with different
algorithms. This paper presents ASAP from these two perspectives.

1 Introduction

State space analysis (or model checking) is one of the main approaches to model-
based verification of concurrent systems and is one of the most successfully
applied analysis methods for formal models. Its main limitation is the state ex-
plosion problem, i.e., that state spaces of systems may have a large number of
reachable states, meaning that they are too large to be handled with the avail-
able computing power (CPU speed and memory). Methods for alleviating this
inherent complexity problem is an active area of research and has led to the
development of a large collection of state space reduction methods. These meth-
ods have significantly broadened the class of systems that can be verified and
state spaces can now be used to verify systems of industrial size. A computer
tool supporting state space analysis must implement a wide range of reduction
algorithms since no single method works well on all systems. The software ar-
chitectures of many such tools, e.g., CPN Tools [5], SPIN [1], make it difficult
to support a collection of state space reduction methods in a coherent manner
and to extend the tools.

This paper presents the ASCoVeCo State Space Analysis Platform (ASAP)
[2] which is currently being developed in the context of the ASCoVeCo research
project [3]. ASAP represents the next generation of tool support for state space
exploration and analysis of CPN models [13] and other formal models. The aim
and vision of ASAP is to provide an open platform suited for research, edu-
cational, and industrial use of state space exploration. This means that ASAP
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supports a wide collection of state space exploration methods and has an ar-
chitecture that allows the research community to extend the set of supported
methods. Furthermore, we aim at making ASAP sufficiently mature to be used
for educational purposes, including teaching of advanced state space methods,
and for use in industrial projects as has been the case with CPN Tools and
Design/CPN [6].

This paper is structured as follows. The next section is an overview of the
architecture of our tool. Section 3 briefly describes how the tool can be extended
with new verification algorithms or modeling languages. A few benchmarks com-
paring our tool with CPN Tools and DiVinE [7] are presented in Section 4.
Section 5 concludes this work and presents some future extensions to our tool.

2 Architecture of ASAP

The ASAP platform consists of a graphical user interface (GUI) and a state
space exploration engine (SSE engine). Figure 1(a) shows the software architec-
ture of the graphical user interface which is implemented in Java based on the
Eclipse Rich Client Platform [8]. The software architecture of the SSE engine is
shown in Fig. 1(b). It is based on Standard ML and implements the state space
Exploration and model checking algorithms supported by ASAP. The choice of
SML for the SSE engine is primarily motivated by its ability to easily specify
and extend algorithms. The state space exploration and model checking algo-
rithms implemented rely on a set of Storage and Waiting Set components for
efficient storage and exploration of state spaces. Furthermore, the SSE engine
implements the Query Languages(s) used for writing state space queries and to
verify properties.

User interface. The ASAP GUI makes it possible to create and manage verifi-
cation projects consisting of a collection of verification jobs. Verification jobs are
constructed and specified using the verification Job Specification and Execution
Language (JoSEL) [17] and the JoSEL Editor. We will briefly highlight the key
ideas of JoSEL later. JoSEL and the JoSEL Editor are implemented using the
Eclipse Modeling Framework and GMF, the Graphical Modeling Framework. The
ASAP GUI additionally has a Model Loader component and a Model Instantiator
component that can load and instantiate, e.g., CPN models [13] created with
CPN Tools [5]. It is worth noticing that only the dark gray (red) boxes in Fig. 1
(CPN Model Loader, CPN Model Instantiator, and CPN Model Representation as
well as the Model Simulator(s) component of the SSE engine) are language spe-
cific; all other components are independent of any concrete modeling language,
and indeed we have implemented components for loading models specified in
DVE, the input language of the DiVinE model checker.

The GUI has two different perspectives for working with verification projects:
An editing perspective for creating and editing verification jobs, and a verification
perspective for inspecting and interpreting verification results. Figure 2(a) shows
a snapshot of the graphical user interface in the editing perspective. The user
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Fig. 1. ASAP platform architecture.

interface consists of three main parts apart from the usual menus and tool-bars
at the top. To the left is an overview of the verification projects loaded, in this
case just a single project named Demo is loaded. A verification project consists
of a number of verification jobs, models, queries, and generated reports. In this
case there is one verification job, safety check, concerned with checking safety
properties. A CPN model named ERDP is loaded, which is a CPN model of
an edge router discovery protocol from an industrial case study [14]. We have
one query, checking if buffers of the model overflow, and two reports from two
different verification job executions. At the bottom is a console making it possible
to interact directly with the SSE engine using SML. This allows experimenting
with the tool and issuing queries that need not be stored as part of the verification
project. The area at the top-right is the editing area used to edit queries and
verification jobs. Here, the safety checker job is being edited and the window
shows its graphical representation in JoSEL. Other components may be added
to this job by using the tool palette adjacent to the editing area.

A snapshot of the verification perspective is shown in Figure 2(b). Here, a
verification report is opened. It consists of three parts. The Configuration report
lists general information like the model name or the different reduction tech-
niques enabled, e.g., hash compaction in this case. The Results report specifies
which properties were checked and whether or not they hold. In case of error,
it also displays a counter-example that proves why the property does not hold.
The Statistics report gives information on the state space, the exploration time
and additional information depending on the reduction techniques used.

The Job Specification and Execution Language. JoSEL [17] is a graph-
ical language inspired by data-flow diagrams that makes it possible to specify
the formal models, queries, state space explorations, and processing of analysis
results that constitute a verification job. The top-right panel in Fig. 2(a) shows
a graphical representation of a JoSEL job that we use to illustrate the different
key ideas behind this language.
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(a) The editing perspective

(b) The verification perspective

Fig. 2. Snapshots of the graphical user interface.

In JoSEL, tasks are the basic units of computation used as blocks to construct
jobs. A task can, for instance, load a CPN model from a file or explore the
state space of a model using a specific search algorithm. Tasks are graphically
represented by rounded boxes.

A job consists of a set of interconnected tasks. Connections are used to specify
a producer/consumer scenario: tasks can produce data that can be in turn used
by another task. Each task has a set of input ports that specify the type of data
it waits for in order to be executed. Once its execution is finished, the production
of the task is specified by output ports. Both are graphically represented using
small triangles placed at the left of tasks for inputs and at the right for outputs.
In our example, the Instantiate Model task takes as input a CPN Model file, and
from it, produces a Model which is an SML representation of the CPN model
usable by the SSE engine (see the next paragraph and Section 3). This one
can be consumed by the No dead states and SML Safety Property tasks that
instantiate two properties, absence of deadlock and a user defined property.
These are analyzed by the Safety checker task.
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At this level, the type of algorithm or reduction techniques used by the Safety
checker are not visible to the user. This is because this task has been defined
as a macro. A macro is at the same time a job (described by the user with
tasks and connections) and a task that can be part of other jobs. The graphical
representation of macros differs from the one of tasks in that the rounded box
is drawn using a double outline. Besides the advantages of clarifying the view
of jobs and allowing the reuse of macros along different jobs, their use allows
different levels of abstraction. Many users are not interested in the details of
the safety checker whereas some with more background in model checking would
perhaps like, for a specific model, to use a specialized search algorithm assumed
to be especially efficient in that particular case. Double-clicking on the Safety
checker macro expands the view of the macro and allows the user to tune the
way properties are checked.

The main motivation of JoSEL is to provide the user with an intuitive and
graphical language that allows different level of abstractions for users with differ-
ent background in model checking such as: students, researchers, and industrial
users.

The state space search engine. It is commonly agreed upon in the model
checking community that no reduction technique works well on all models and
that algorithms and methods are usually designed for a specific stage of the
verification process. Therefore tools have to support several algorithms in order
to prove useful.

Currently, ASAP supports checking deadlocks in systems and user specified
safety properties. ASAP implements a broad range of techniques and below we
briefly mention some of them.

Bit-state hashing and hash-compaction [12] are incomplete methods based
on hashing and are generally used prior to any other analysis technique for their
ability to quickly discover errors rather than proving their absence. The sweep-
line method [15] exploits a notion of progression exhibited by many protocols to
garbage collect states during the search thereby lowering peak memory require-
ments. The recently developed ComBack method [18,11] is especially suited to
models having complex states, e.g., with many tokens in places for CPNs. It
makes it possible to represent states with 16–24 bytes independently from the
model, hence achieving a memory reduction close to the one provided by hash
compaction without the loss of precision associated with that method. If, using
these techniques, memory is still lacking, the user can switch to efficient disk-
based algorithms [4,10]. In experiments reported in [10] we were able to explore
large state spaces with 108–109 states in a reasonable time (4–20 hours).

3 Extending ASAP

An important design guideline of ASAP is to provide a flexible and modular
architecture that can be easily extended with new algorithms or modeling lan-
guages. We give in this section a brief overview of how this can be done.
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� �
1 functor SweepLineExploration (
2 structure Model : MODEL

3 structure Storage : STORAGE

4 val progressValue : Model . state −> int ) : EXPLORATION =
5 struct
6 fun explore initialStates = . . .
7 end� �

(a) First of lines of the sweep-line search algorithm in the SSE engine.� �
1 class SweepLineExplorationTask implements FunctorTask {
2 String getName ( ) { return ”Sweep Line Explorat ion ” ; }
3 String getFunctor ( ) { return ”SweepLineExploration ” ; }
4 Value getReturnType ( ) {
5 return new Value ( ” Traver sa l ” , Exploration . class ) ; }
6 Value [ ] getParameters ( ) {
7 return new Value [ ] {
8 new Value ( ”Model” , Model . class ) ,
9 new Value ( ” Storage ” , Storage . class ) ,

10 new Value ( ” Progres s Measure” , Measure . class ) } ; }
11 Exploration exec ( Model m , Storage s , Measure p ) {
12 Exploration e = new Exploration (m . getSimulator ( ) ) ;
13 m . getSimulator ( ) . evaluate (
14 e . getDeclaration ( ) + ” = ” + getFunctor ( ) +
15 ” ( s t r u c tu r e Model = ” + m . getStructure ( ) +
16 ” s t r u c tu r e Storage = ” + s . getStructure ( ) +
17 ” va l progressValue = ” + p . getName ( ) + ” ) ” ) ;
18 return e ; }
19 }� �

(b) Creation of a Sweep-Line Exploration task (see Fig 4) in the JoSEL editor.

Fig. 3. Integration of the sweep-line method in ASAP.

Integrating new algorithms. Let us suppose that we wish to integrate the
sweep-line method [15] into ASAP. Only the light gray (green) boxes in Fig. 1 are
method specific and have to be considered for this integration. On the SSE engine
side we have to implement the search algorithm used by this method. Since
this one is independent from any storage method, and uses its own waiting set
component to store unvisited states, we only have to implement an exploration
component. The engine is based on a number of SML signatures (the equivalent
of JAVA interfaces) among which the most important ones are: EXPLORATION
that describes search algorithms, e.g., depth-first search; STORAGE that describes
data structures used to store visited states, e.g., hash tables; and MODEL used to
describe language dependent features of the analyzed model, e.g., how states are
represented (see the next paragraph). The SweepLineExploration of Figure 3 is
a generic EXPLORATION, i.e., an SML functor, that requires three parameters to
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be instantiated: Model, the model of which the state space is explored; a Storage
data structure used to store visited states; and a function, progressValue, that
maps each state to a progress value, here an integer (see [15] for details). As
this functor implements the EXPLORATION signature, it has to define a function,
explore, that explores the state space from some starting state(s) and returns
a storage containing the set of visited states upon termination of the algorithm.
Because of space limitations we have left out the implementation of the explore
function.

For these changes to be visible in the graphical interface, we then have to
extend the JoSEL language with the Method-specific tasks of Fig. 1. The main
one, Sweep Line Exploration is graphically represented in Fig. 4. It corresponds
to the instantiation of functor SweepLineExploration and is implemented in
the JoSEL editor by the SweepLineExplorationTask class of Fig. 3. This one
inherits from FunctorTask, which is used to describe JoSEL tasks that simply
consist of the instantiation of a functor. The methods getName and getFunctor
return the name of the task, i.e., the label appearing in the graphical repre-
sentation of the task, and the name of the underlying SML functor. The in-
put and output ports (their names and types) of the task are specified by the

Fig. 4. Graphical representation
of the Sweep Line Exploration task

getParameters and getReturnType meth-
ods. Note that a FunctorTask can only have
one output port, namely, the SML struc-
ture resulting from the instantiation of the
functor. Also, there usually is a one-to-
one mapping between the parameters of the
functor and the items returned by method
getParameters, as it is the case here. The
last method, exec, specifies the SML code
that is interpreted as the task is executed.
Its parameters match the list of output ports
specified by method getParameters.

Integrating new modeling languages. All search algorithms implemented
by the SSE engine receive a model, which from the SSE engine point of view,
is an SML structure implementing the MODEL signature (see Fig 5). To be valid,
such a structure must define two types: the type of states and the type of events.
For CPNs, the state type consists of a set of multi-sets over typed tokens and
an event is a pair composed of a transition identifier and an instantiation for
the variables of this transition. To be able to explore the state space of the
model, the engine must know its initial state(s) and from a given state how to
calculate its successor(s). This is the purpose of functions initialStates and
succ. Non-deterministic systems are supported. Indeed, both initialStates
and succ return a list of states (rather than single states) along with their
enabled events. Functions stateToString and eventToString return a user
readable representation of states and events that can be used, for instance, to
display counter-examples.
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� �
1 signature MODEL = sig
2 type state

3 type event

4 val initialStates : unit −> ( state ∗ event list ) list

5 val succ : state ∗ event −> ( state ∗ event list ) list

6 val stateToString : state −> string

7 val eventToString : state −> string

8 end� �
Fig. 5. The MODEL signature

Note that providing a model structure is the minimal requirement to be able
to use the SSE engine. Many algorithms or reduction techniques expect more
information, e.g, a state serializer for external algorithms or an independence
relation for partial order reduction.

The easiest way to integrate a new specification language is to write a com-
piler that, from a specification file, can produce an SML MODEL structure. Since
the other components of the engine are independent of any concrete language,
those will remain unchanged. Although our work focuses on the development
of language independent algorithms, the architecture of the SSE engine does
not prevent us from integrating algorithms or reduction techniques specifically
tailored for a specific language, e.g., search algorithms that exploit Petri net
invariants. It is sufficient to define a new signature that extends MODEL with the
desired features.

4 Benchmarks

The ability of ASAP to load CPN and DVE models makes it possible to experi-
mentally compare different algorithms and reduction techniques on models from
our own collection [3], e.g., [9,14], and on the numerous models of the BEEM
database [16].

For comparison, we have shown in Table 1 the performance of ASAP com-
pared to CPN Tools and DiVinE. For each Model, the table shows its number
of States, the full exploration time with the Basis tool (CPN Tools or DiVinE)
and with ASAP (with and without the ComBack method). Times are in seconds,
and Speedup is the ratio between Basis and ASAP time. We see that ASAP per-
forms significantly better than CPN Tools, achieving speedups of several orders
of magnitude for both full state space generation and the ComBack method com-
pared to full generation in CPN Tools. The performances of DiVinE and ASAP
are comparable although slightly in favor of ASAP. On 50 models we observed
an average speedup of 1.4 without using reduction. Even with the ComBack
method, ASAP was able to perform at 0.7 of the speed of DiVinE despite the
time overhead of the ComBack method.
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Table 1. Performance of ASAP, CPN Tools, and DiVinE on some models.

Model States Time Time (ComBack)

Basis ASAP Speedup ASAP Speedup

C
P

N
T
o
o
ls

Dining Philosophers 40 · 103 6,614 27 245 55 120
Simple Protocol 204 · 103 7,084 33 215 54 131
ERDP 207 · 103 19,351 112 173 197 98
DYMO 114 · 103 7,403 308 24 355 21

Average on 4 models 164 92

D
iV

in
E

brp2.6 5.7 · 106 39 17 2.29 90 0.43
firewire tree.5 3.8 · 106 227 525 0.43 388 0.59
plc.4 3.7 · 106 55 45 1.22 67 0.81
rether.4 9.5 · 106 51 34 1.52 191 0.27

Average on 50 models 1.39 0.72

5 Conclusion

ASAP is a graphical tool based on Eclipse for the analysis of CPN models and
other formalisms. It provides the user with an intuitive and graphical language,
JoSEL, for specification of verification jobs. To alleviate the state explosion
problem, ASAP implements several algorithms and reduction techniques. Among
these are: hash compaction, the sweep-line method, the ComBack method and
external memory algorithms. The tool has been designed to be easily extended
with new algorithms or specification languages and its modular architecture
allowed us to write a sweep-line plug-in and a DVE plug-in to load DVE models
in a few days without modifying the rest of the code. ASAP is also very useful
for experimenting with and comparing algorithms as it gives the possibility to
analyze more than 60 CPN and DVE models from our test-suite or from the
BEEM database. Last but not least, ASAP significantly outperforms CPN Tools
regarding performance and performs as well as DiVinE for DVE models. For
these reasons we believe the tool to be suitable for students, researchers, and
industrial users who would like to analyze CPN models or to experiment with
different verification algorithms.

ASAP has replaced CPN Tools in our group to perform verification tasks and
has been used to analyze an edge router discovery protocol [14] and a dynamic
mobile ad-hoc network routing protocol [9]; and to experiment with state space
algorithms [18,10,11]. It is also intended to be used in a future advanced state
space course at Aarhus University.

We are currently considering adding new features to ASAP. In its current
version, ASAP can analyze deadlocks and verify user defined safety properties.
In the design phase of communication protocols, properties are, however, often
specified in a temporal logic, e.g., LTL or CTL. The integration of temporal logic
in ASAP is therefore one of our main priorities.

9



Since parallel machines are nowadays widespread, it is crucial that model
checkers take advantage of this additional computational power. As the SSE en-
gine of ASAP is currently single-threaded we consider extending it with parallel
and distributed algorithms. In particular, we are working on a parallel version
of the ComBack method of which we briefly mentioned the principle in [11].

Availability ASAP is a stand-alone tool available for Windows XP/Vista,
Linux, and Mac OS X. The current version, 1.0, can be freely downloaded from
our web page [2].
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