Skip to main content

Haplotype Inference Constrained by Plausible Haplotype Data

  • Conference paper
Book cover Combinatorial Pattern Matching (CPM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5577))

Included in the following conference series:

Abstract

The haplotype inference problem (HIP) asks to find a set of haplotypes which resolve a given set of genotypes. This problem is of enormous importance in many practical fields, such as the investigation of diseases, or other types of genetic mutations. In order to find the haplotypes that are as close as possible to the real set of haplotypes that comprise the genotypes, two models have been suggested which by now have become widely accepted: The perfect phylogeny model and the pure parsimony model. All known algorithms up till now for the above problem may find haplotypes that are not necessarily plausible, i.e. very rare haplotypes or haplotypes that were never observed in the population. In order to overcome this disadvantage we study in this paper, for the first time, a new constrained version of HIP under the above mentioned models. In this new version, a pool of plausible haplotypes \(\widetilde{H}\) is given together with the set of genotypes G, and the goal is to find a subset \(H \subseteq \widetilde{H}\) that resolves G. For the constrained perfect phylogeny haplotyping (CPPH) problem we provide initial insights and polynomial-time algorithms for some restricted cases that help understanding the complexity of that problem. We also prove that the constrained parsimony haplotyping (CPH) problem is fixed parameter tractable by providing a parameterized algorithm that applies an interesting dynamic programming technique for solving the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The international hapmap project. Nature 426, 789–796 (2003)

    Google Scholar 

  2. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. Journal of Computational Biology 10, 323–340 (2003)

    Article  Google Scholar 

  3. Barzuza, T., Beckmann, J.S., Shamir, R., Pe’er, I.: Computational problems in perfect phylogeny haplotyping: Xor-genotypes and tag sNP’s. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 14–31. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Brown, D., Harrower, I.M.: A new integer programming formulation for the pure parsimony problem in haplotype analysis. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 254–265. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Damaschke, P.: Fast perfect phylogeny haplotype inference. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 183–194. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (pph) problem. Journal of Computational Biology 13, 522–553 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  8. Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype structure via perfect phylogeny. Journal of Bioinformatics and Computational Biology 1, 1–20 (2003)

    Article  Google Scholar 

  9. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: On the complexity of haplotyping via perfect phylogeny. In: Proceedings of RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotypes (2004)

    Google Scholar 

  10. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Applied Mathematics 155, 788–805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenspan, G.: Geiger D. Model-based inference of haplotype block variation. In: Research in Computational Molecular Biology (RECOMB 2003), pp. 131–137 (2003)

    Google Scholar 

  12. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions (extended abstract). In: Proceedings of RECOMB, pp. 166–175 (2002)

    Google Scholar 

  13. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Gusfield, D., Orzack, S.H.: Haplotype inference. In: Aluru, S. (ed.) CRC Handbook on Bioinformatics (2005)

    Google Scholar 

  15. Gusfield, D., Song, Y., Wu, Y.: Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 152–164. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Halldorsson, B., Bafna, V., Edwards, N., Lipert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Proceedings of RECOMB Satellite on Computational Methods for SNPs and Haplotype Inference, pp. 26–47 (2003)

    Google Scholar 

  17. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics 20, 1842–1849 (2004)

    Article  Google Scholar 

  18. Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Proceedings of RECOMB, pp. 10–19 (2004)

    Google Scholar 

  19. Hudson, R.: Gene genealogies and the coalescent process. Oxsford Survey of Evolutionary Biology 7, 1–44 (1990)

    Google Scholar 

  20. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Beaches of islands of tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyping problems. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 80–91. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Kimmel, G., Shamir, R.: The incomplete perfect phylogeny haplotype problem. Journal of Bioinformatics and Comutational Biology 3, 359–384 (2005)

    Article  Google Scholar 

  22. Lancia, G., Pinotti, C., Rizzi, R.: Haplotyping population by pure parsimony: Complexity, exact and approximation algorithms. INFORMS Journal on Computing, special issue on Comutational Biology 16, 348–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem. Operations Research Letters 34, 289–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden markov technique for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyping. Journal of Computational Biology 13(4), 897–928 (2006)

    Article  MathSciNet  Google Scholar 

  26. Sharan, R., Halldorsson, B., Istrail, S.: Islands of tractability for parsimony haplotyping. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3, 303–311 (2006)

    Article  Google Scholar 

  27. Tavare, S.: Calibrating the clock: Using stochastic process to measure the rate of evolution. In: Lander, E., Waterman, M. (eds.) Calculating the Secrets of Life (1995)

    Google Scholar 

  28. Wang, L., Xu, L.: Haplotype inference by maximum parsimony. Bioinformatics 19, 1773–1780 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fellows, M.R., Hartman, T., Hermelin, D., Landau, G.M., Rosamond, F., Rozenberg, L. (2009). Haplotype Inference Constrained by Plausible Haplotype Data. In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02441-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02440-5

  • Online ISBN: 978-3-642-02441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics