Skip to main content

Measuring Effectiveness of Pedestrian Facilities Using a Pedestrian Simulation Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5592))

Abstract

Transport planners are increasingly focusing on pedestrian facilities in order to enhance public transportation usage and thereby develop sustainable transport systems. Despite becoming a key policy requirement, no tool is yet available to measure the effectiveness of pedestrian facilities, particularly in terms of their interaction with pedestrian movements. In this study, we have developed a pedestrian simulation model based on cellular automata (CA) techniques. This model has sufficient flexibility to measure the effectiveness of pedestrian facilities in terms of a level of service index based on their interaction with pedestrian movements. We investigated the model’s ability to evaluate the effectiveness of different types of fence in a subway station, with the goal of reducing conflicting pedestrian movements in some highly congested areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.: Introduction to Artificial Life. Springer, New York (1998)

    Book  Google Scholar 

  2. AlGadhi, S.A.H., Mahmassani, H.: Simulation of Crowd Behavior And Movement: Fundamental Relations And Application. Transportation Research Record 1320, 260–268 (1991)

    Google Scholar 

  3. Bak, P.: How Nature Works: The Science Of Self-Organized Criticality. Springer, New York (1996)

    Book  MATH  Google Scholar 

  4. Burstedde, C., Klauck, K., et al.: Simulation of pedestrian dynamics using a 2-dimensional cellular automation. Physica A 295(4), 507–525 (2001)

    Article  MATH  Google Scholar 

  5. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Australia (1998)

    Book  MATH  Google Scholar 

  6. Fruin, J.: Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planners, New York (1971)

    Google Scholar 

  7. Fukui, M., Ishibashi, Y.: Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed. Journal of the Physical Society of Japan 65(6), 1868–1870 (1996)

    Article  Google Scholar 

  8. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312(1-2), 260–276 (2002)

    Article  MATH  Google Scholar 

  9. Lee, H.K., Barlovic, R., Schreckenberg, M., Kim, D.: Mechanical Restriction versus Human Overreaction Triggering Congested Traffic States. Phys. Rev. Lett. 92, 238702 (2004)

    Article  Google Scholar 

  10. Levy, S.: Artificial Life. Vintage Books, New York (1992)

    Google Scholar 

  11. Lovas, G.G.: Modeling And Simulation Of Pedestrian Traffic Flow. Transportation Research 28B, 429–443 (1994)

    Article  Google Scholar 

  12. Matsukidaira, J., Nishinari, K.: Euler-Lagrange correspondence of cellular automaton for traffic-flow models. Phys. Rev. Lett. 90, 088701 (2003)

    Google Scholar 

  13. Muramatsu, M., Irie, T., Nagatani, T.: Jamming transition in pedestrian counter flow. Physica A 267(3-4), 487–498 (1999)

    Article  Google Scholar 

  14. Tajima, Y., Takimoto, K., et al.: Scaling of pedestrian channel flow with a bottleneck. Physica A 294, 257–268 (2001)

    Article  MATH  Google Scholar 

  15. Takimoto, K., Nagatani, T.: Spatio-temporal distribution of escape time in evacuation process. Physica A 320, 611–621 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, S., Lee, S., Lee, S. (2009). Measuring Effectiveness of Pedestrian Facilities Using a Pedestrian Simulation Model. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02454-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02454-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02453-5

  • Online ISBN: 978-3-642-02454-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics