
O. Gervasi et al. (Eds.): ICCSA 2009, Part II, LNCS 5593, pp. 130–144, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

MDA-Based Framework for Automatic Generation of 
Consistent Firewall ACLs with NAT 

Sergio Pozo, A.J. Varela-Vaca, and Rafael M. Gasca 

QUIVIR Research Group, Department of Computer Languages and Systems 
Computer Engineering College, University of Seville 

Avda. Reina Mercedes S/N, 41012 Sevilla, Spain  
{sergiopozo, ajvarela, gasca}@us.es 

http://www.lsi.us.es/~quivir 

Abstract. The design and management of firewall ACLs is a very hard and er-
ror-prone task. Part of this complexity comes from the fact that each firewall 
platform has its own low-level language with a different functionality, syntax, 
and development environment. Although several high-level languages have 
been proposed to model firewall access control policies, none of them has been 
widely adopted by the industry due to a combination of factors: high complex-
ity, no support of important features of firewalls, no common development 
process, etc. In this paper, a development process for Firewall ACLs based on 
the Model Driven Architecture (MDA) framework is proposed. The framework 
supports the market leaders firewall platforms and is user-extensible. The most 
important access control policy languages are reviewed, with special focus on 
the development of firewall ACLs. Based on this analysis a new DSL language 
for firewall ACLs, AFPL2, covering most features other languages do not 
cover, is proposed. The language is then used as the platform independent meta-
model, the first part of the MDA-based framework.  

Keywords: firewall, acl, ruleset, framework, language. 

1   Introduction 

A firewall is a network element that controls the traversal of packets across different 
network segments. It is a mechanism to enforce an Access Control Policy, represented 
as an Access Control List (ACL), or a rule set. Firewalls use obligation policies, (also 
known as Event Condition Action Rules (ECA) that must perform certain actions 
when certain events occur. By contrast, authorisation policies permit or deny actions 
based upon the action, the source of the action and the target of the action. Thus, a 
layer 3 Firewall ACL is in general a list of linearly ordered (total order) condi-
tion/action rules. Let ACLf be a firewall ACL consisting of f+1 rules, 

{ }0
, ...

ffACL R R= . Consider as a rule , , , 0 ,
fjR ACL H Action H Z j f∈ =< > ⊆ ≤ ≤  

Z protocol srcIP srcPrt dstIP dstPrt= × × × × , where { },Action allow deny= is its action. 

A selector of a firewall rule Rj is defined as [ ], , 0
j

R k k H j f∈ ≤ ≤ . A rule Rj 

matches a packet p when the values of each field of the header of a packet 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 131 

[ ],p k k H∈  are subsets or equal to the values of the rule selector 

[ ], , 0jR k k H j f∈ ≤ ≤ (i.e. [ ] [ ],jp k R k k H⊆ ∀ ∈ ).  

Firewalls have to face many problems in modern networks. Two of the most  
important ones are the high complexity of ACL design [1] and ACL consistency di-
agnosis [2, 3]. Networks have different access control requirements which must be 
translated by a network administrator into firewall ACLs. Writing and managing 
ACLs are tedious, time-consuming and error-prone tasks for a wide range of reasons 
[4]. Low-level firewall languages are, in general, hard to learn, use and understand. In 
addition, each firewall platform has its own low-level language which usually is very 
different from other vendors’ ones. Changing from one firewall platform to another 
often means a complete rewrite of the ACL. In this translation process, inconsisten-
cies and redundancies can be introduced [2, 3]. Figs. 1 and 2 present two fragments of 
ACLs written in IPTables and Cisco PIX respectively to give an idea of the complex-
ity and differences of these languages. Note that the number of rules of a Firewall 
ACL may range between a few ones and 5000 [5]. 

Many third-party domain specific languages (DSLs) have been proposed to ab-
stract the network administrator from the underlying firewall platform details and 
language syntax [6, 7, 8, 9, 10, 11]. A domain specific language provides more possi-
bilities to network administrators, since it can raise the abstraction level of the prob-
lem domain using its own concepts. However, as we are going to show in the next 
section, the proposals of DSLs have different problems regarding different aspects of 
design and deployment of ACLs. 

The result is that these languages are not widely adopted by industry. This possibly 
is not only due to their problems, but also to the need of companies to maintain a 
large user base tied to a particular low-level language and firewall platform.  

We think that there is a clear need of a DSL for Firewalls with the expressive 
power of existing low-level firewall-specific languages, but with significantly less  
 

-A FORWARD -i -s 192.168.1.0 -d 170.0.1.10 -p tcp -m tcp --sport any --dport 21 -p tcp -j ACCEPT 
-A FORWARD -i -p tcp -p tcp -j DROP
-A FORWARD -i -s 192.168.1.0 -d 170.0.1.10 -p udp -m udp --dport 53 -p udp -j ACCEPT
-A FORWARD -i -d 170.0.1.10 -p udp -m udp --dport 53 -p udp -j ACCEPT
-A FORWARD -i -s 192.168.2.0 -d 170.0.2.0 -p udp -p udp -j ACCEPT
-A FORWARD -i -p udp -p udp -j DROP 

 

Fig. 1. IPTables ACL fragment 

access -list acl -out permit gre host 192.168.201.25 host 192.168.201.5
access -list acl -out permit tcp host 192.168.201.25 host 192.168.201.5 eq 1723
static (inside ,outside ) 192.168.201.5  10.48.66.106 netmask 255.255.255.255 0 0 
access -group acl -out in interface outside
access -list acl -out permit udp host 192.168.201.25 host 192.168.201.5 eq 1701
static (inside ,outside ) 192.168.201.5  10.48.66.106 netmask 255.255.255.255 0 0 
access -group acl -out in interface outside 

 

Fig. 2. Cisco PIX ACL fragment 
 



132 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

complexity than currently proposed high-level policy languages. In addition, this 
language must have the possibility of automatic compilation to the market-leader low-
level firewall languages, and be easily user-extensible in order to support new features 
and firewall platforms. Recently, we have proposed a new high level firewall DSL 
with all these capabilities, called Abstract Firewall Policy Language (AFPL) [12]. The 
DSL was defined in the XML technological space. In this paper we propose an exten-
sion of AFPL with Network Address Translation (NAT) [16], a must-have feature of 
firewall languages. To the best of our knowledge, AFPL2 is the first firewall DSL to 
support NAT. 

However, with AFPL some advanced features of firewall platforms cannot be 
modeled, since the language is an abstraction based on the common features of the 
market-leaders. For this reason, we propose a framework where AFPL2 can be used 
along with the integration of other lower-level concepts related to particular plat-
forms. This framework is heavily based on the concepts of MDA extended with a 
model consistency stage to guarantee the quality of the resulting compiled ACL. The 
framework is extensible by end-users, in the sense that more concepts can be added to 
the meta-models, as well as modifications to the transformations between them, in 
order to represent more features and/or low-level firewall platforms and languages. 

The structure of this paper is as following: in section 2 related works are described. 
In section 3 the MDA-based framework for Firewalls is described. In section 4 a DSL 
with Network Address Translation support is proposed as the MDA-based framework 
PIM. We conclude in section 5 and propose a research direction for our future works. 
Finally, in Appendix I it is presented the analysis of firewall platforms (NAT features). 

2   Related Works 

In [14] the authors propose a high-level language, Firmato, which models ACLs as 
ERDs in order to automatically generate low-level firewall ACLs. However, the com-
plexity of Firmato is similar to that of many low-level languages. Two major limita-
tions of Firmato are that (1) it does not support NAT and (2) can only represent 
knowledge in positive logic (allow rules), which complicates the specification of 
exceptions (a rule with a general allow action, immediately preceded by a more re-
strictive rule with a deny action). This could result in the need to write a lot of rules to 
express them. However, as a lateral effect, rules are always consistent and order-
independent. FLIP [15] is a recently proposed firewall language which can also be 
compiled into several low-level ones, although in the paper no more information 
about his feature is provided. Their authors claim that ACLs expressed in FLIP are 
always consistent. In fact they are because of one of its limitations: it does not support 
overlapping between rule selectors. Prohibiting the use of overlaps is a major limita-
tion, since it is impossible to express exceptions. In addition, its syntax is even more 
complex than Firmato’s one. However, due to this lack of expressiveness, FLIP ACLs 
are order independent. Finally, NAT is not supported in FLIP. In [7] the authors pro-
vide a general language, Ponder, to represent network policies (in general), which 
cannot compile to any low-level language. A re-engineered version, Ponder2, is also 
available. However, the complexity of Ponder surpasses the needs of firewall ACLs. 
In theory, a language that can express any network policy could express a firewall 
 
 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 133 

Table 1. Survey of features of access control languages 

 Firmato Ponder2 FLIP SRML Rule-ML PCIM XACML AFPL 
FW-Specific x x √ x x x x √ 
User extensible x x x x √ Partial √ √ 
Consistency diagnosis x x √ x x x x x 
Redundancy diagnosis x x √ x x x x √ 
Support stateful rules √ N/A √ N/A N/A N/A N/A √ 
Support stateless rules √ N/A √ N/A N/A N/A N/A √ 
Support NAT x N/A x N/A N/A N/A N/A x 
Positive logic √ √ √ √ √ √ √ √ 
Negative logic Partial √ √ √ √ √ √ √ 
Selector-values overlap √ √ x √ √ √ √ √ 
User-controlled rule 
order x √ N/A x x √ √ √ 

Topology/logic 
separation √ N/A √ N/A N/A N/A √ √ 

Relative complexity High High Low Low Low Medium Low Low 
Compilation to low-level √ x √ x x x x √ 
Low-level lang. import x x x x x x x Partial 

 

access control policy. However, concepts such as NAT cannot be expressed with 
Ponder. AFPL [12] is a language developed after an analysis of the features of major 
firewall languages, supporting most of their functionality at a fraction of their com-
plexities. It can express stateful and stateless rules (although an administrator does not 
need to know these kind of details, since complexity is hidden in the language),  
positive and negative rules, overlappings, exceptions, and can be compiled to six 
market-leader firewall languages. 

Some organizations have even proposed languages to represent access control poli-
cies as XML documents, such as XACML [8], PCIM [9], Rule-ML [10], and SRML 
[11]. However, none of these languages is specific enough for firewall access control 
policies, resulting in a complexity to express firewall concepts, or in an impossibility 
to express them at all (this is the case of NAT for all these languages). Even UML has 
been proposed to model access control policies [17]. However, in our problem do-
main, UML could be an aid for the requirements definition stage, but then these mod-
els need to be translated into a DSL. These models and languages are very generic 
and are not intended for the area of any particular access control problem. Table 1 
presents a survey of the most important features of the reviewed languages (related to 
express firewall ACL knowledge). 

With respect to commercial or Open Source applications, the two most important 
ones are Firewall Builder and Solsoft ChangeManager. However, these kind of appli-
cations have been left out of the comparison, because they are not based on a model 
of a firewall, but rather on an abstraction of their command-line syntax. For example, 
in these two solutions, the firewall platform must be specified upon firewall instantia-
tion, since each firewall platform supports a different set of features. The reviewed 
proposals and the one proposed in this paper are focused towards a unique model for 
all firewalls. 

3   MDA for Firewall ACL Design 

In the last few years Model-Driven Development (MDD) has promoted the use of mod-
els and transformations in software development processes [19]. The Model-Driven 
 



134 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

M2T Transf

M2M
Transf

M2M
Transf

Computation 
Independent
Model (CIM)

Platform 
Independent
Model (PIM)

Platform Specific 
Model 1 (PSM)

Platform Specific 
Model 2

Platform Specific 
Model 3

Low-level 
code for 

Platform 1

Low-level 
code for 

Platform 2

Low-level 
code for 

Platform 3

Platform 
Information

 

Fig. 3. MDA Framework 

Architecture [18] is the approach for MDD promoted by the Object Management Group 
(OMG) (Fig. 3). 

However, the use of the MDA framework does not guarantee that the model is free 
of inconsistencies and redundancies. Moving the verification stage to earlier stages in 
the process, prior to code generation, can reduce budget dedicated to consistency 
diagnosis and correction of the final ACL. In an MDD approach, this is even more 
important, since models are the core of the methodology, and executable code will be 
automatically generated from them. It is important to note that, since the focus of 
MDD paradigm is on the creation of static models, there are no execution details. 
Thus, the proposed diagnosis stage is in reality a (static) verification one. This diag-
nosis stage has been proposed in earlier works [1], and is not the focus of the paper.  

Fig. 4 shows the proposed framework, which follows MDA, but with the inclusion of 
two diagnosis stages, one for the PIM and other for the PSM. Note that the PSM diagno-
sis stage is only necessary (1) if the information regarding the PIM is modified; or (2) 
when information is modified or added by an end-user to the PSM. If an inconsistency is 
found, then it must be corrected before applying the next model transformation. 

3.1   Modeling Considerations 

Firewall platforms are very different from one vendor to another, and even among the 
available Open Source platforms. These differences range from differences in the 
number, type, and syntax of selectors that each platform’s filtering algorithm can 
handle, to huge differences in rule-processing algorithms that can affect the design of 
the ACL. Fortunately, the vast majority of filtering actions can be expressed with any 
of the filtering languages and platforms, with the only difference on the number of 
rules needed, and/or in their syntax. For example, an IP address range can be  
translated into several blocks of single IP addresses, so both syntaxes are equivalent. 

PIM 
Diagnosis

AUTOMATIC

AUTOMATIC

Computation 
Independent
Model (CIM)

Platform 
Independent
Model (PIM)

IPTables Specific 
Model (PSM)

PIX Specific 
Model (PSM)

FW-1 Specific 
Model (PSM)

IPTables PSM 
Diagnosis

PIX PSM 
Diagnosis

FW-1 PSM 
Diagnosis

Firewall Platform 
Information

IPTables 
ACL

PIX ACL

FW-1 ACL

MANUAL

MANUAL

AUTOMATIC

AUTOMATIC

MANUAL

 

Fig. 4. MDA Framework for Firewalls (with Model Verification) 
 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 135 

                 PIM

- Filtering Selectors
- Syntax for each Selector
- Actions
- NAT

          IPTables PSM

- PIM features extension
- Packet mangling
- Rule hit frequency
- Malformed packets
- Connection Tracking
- Rule Processing
- Logging

         Cisco PIX PSM

- PIM features extension
- Content inspection
- Interface configuration
- VPN
- Rule Processing
- Logging

Others

               CODE

- Connection Tracking
- State inspection
- Rule order processing
- ...

 

Fig. 5. PIM and PSM meta-models proposal 

With the focus on modelling firewall languages and platform functionality, some 
questions may arise. The first one is whether all firewall platforms analyzed share a 
common set of filtering selectors (or a common set of functionality). Another one is, 
for the common set of selectors, if there is at least one common syntax among all 
firewall platforms (in order to be able to use the functionality); or if not, if the avail-
able syntaxes for each platform have equivalencies in the other ones (i.e. are  
emulable). This part is in fact, the configuration of the ACL an administrator can 
design. 

For the design of AFPL2 we use the same methodology as for AFPL [12]: first a 
DSL with a set of selectors (or features) and syntaxes supported by all the analyzed 
firewall platforms and languages is created. Then, the non common selectors and 
syntaxes are analyzed and only added to AFPL2 if they comply to a criterion that is 
going to be defined in the next section. This methodology yielded in the case of AFPL 
to a lightweight language with a very simple syntax that would satisfy the vast major-
ity of administrators. We expect the same for AFPL2. The methodology is described 
in the next sections with more detail, but has been described in detail in [12]. We 
propose to consider AFPL2 part as the PIM in our framework. 

However, for each analyzed firewall language and platform there is a set of func-
tionality that has not been modelled in the PIM. There are basically two options for it: 
to model it in another (lower) level of the framework, or to completely remove it. 
Removal would cause an advanced administrator needing to use it to modify the gen-
erated ACL. However, if this part is introduced in a lower level meta-model, then the 
administrator can model this advanced behaviour without modifying the ACL. For 
this reason, we propose to consider this platform-specific functionality as the PSM for 
each platform. Note that a PSM could modify in some way the PIM (during the auto-
matic M2M transformation, or with a direct modification of the administrator over the 
PSM), and thus new inconsistencies could be introduced (this is the reason why in 



136 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

Fig. 4 there is a diagnosis stage before the M2T transformations). With this approach 
the PIM is as simple as possible, serving for the vast majority of administrators, while 
the PSM facilitates the use of platform specific features (all of them if needed). 

Besides filtering, firewall platforms have other specific features. These are for ex-
ample how each platform threats connection tracking (that is, stateful or stateless 
connections), how the rule processing is performed (forward, backward, with jumps), 
etc. However, part is related to how each platform executes the ACL, and thus an 
administrator cannot modify this behaviour. For these reasons, this behaviour is  
considered only in the M2T transformation from PSM to low-level ACL. 

We think that the proposed concept separation fits well with the MDA approach. 
Fig. 5 shows the proposed feature division for Firewalls. 

4   AFPL with NAT. PIM Meta-model 

In this work, we depart from previous results for the DSL design, where various alter-
native models for a Firewall DSL were created in a bottom-up process, and discussed. 
The result was Abstract Firewall Policy Language (AFPL) [12]. The main goals of 
AFPL were simplicity, ease of use, and support of a common set of functionality valid 
for most administrators. In this section, AFPL is extended to support NAT. This new 
DSL, AFPL2, serves as the PIM meta-model in the proposed MDA framework. 

4.1   AFPL Extended with NAT: AFPL2 

NAT is a must-have feature of modern low-level firewall languages (it was defined in 
the year 1999), and nowadays all firewall platforms support it. The main idea behind 
NAT is to change (translate) the values of some headers of TCP/IP packets in differ-
ent situations. These changes are specified using rules (translation rules) in a similar 
way as filtering rules are specified. There are mainly two modes of NAT (as defined 
in RFC2663 [16]). 

• Source NAT (SNAT). Also know as Outbound NAT, Network Address Port 
Translation (NAPT), or Masquerading, in which the source of a packet is 
translated when it traverses an outbound interface of a firewall. Response 
packets are translated back to their real address. 

• Destination NAT (DNAT). Also known as Packet Forwarding, in which the 
destination of a packet is translated when it traverses an inbound interface of a 
firewall. Response packets are translated back to their real address. 

However, although NAT has been defined in an RFC, it has not been standardized. 
For this reason, an analysis of the NAT features supported by the market-leader fire-
wall platforms is needed for the design of AFPL2 in order to satisfy the vast majority 
of administrators. 

The considered firewall platforms in the NAT analysis for AFPL2 are the same 
ones as for AFPL: IPTables 1.4.2, Cisco PIX 8, FreeBSD 8 IPFilter, FreeBSD 8 IP-
Firewall, OpenBSD 4.1 Packet Filter, and Checkpoint Firewall-1 4.1. The analysis is 
presented in Appendix I and shows the supported NAT modes, its filtering selectors, 
and available syntaxes. 

 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 137 

Table 2(a). AFPL2 Source NAT 

Translated 
Selector 

Obligation Syntax Comments 

Source IP 
Address 

Mandatory 
-Host IP 

-Interface name 

If the interface name 
is given, the interface 
IP is used (it could be 

dynamic link) 

Table 2(b). AFPL2 Destination NAT 

Translated 
Selector 

Obligation Dependencies Syntax 

Destination 
IP Address 

Mandatory  -Host IP 

Destination 
Port 

Optional 

Destination 
port must be 

specified in the 
original packet 

-Number 
-Range: [p1,p2] 

Our start point is the factorized AFPL2 model presented in Table 2. A factorized 
model is a model where only common NAT modes, selectors and syntaxes are de-
fined. We take it as a basic NAT model. Note that NAT use both filtering rules for 
matching packets and translation rules for defining which selectors of the matched 
packets and how will be translated. In Table 2 only the part related with translation 
rules is presented, since filtering was covered in AFPL [12]. In the next sections, non-
common functionality is going to be analyzed for its inclusion in AFPL2. 

4.1.1   Addition of Uncommon NAT Modes 
Although there are a lot of ways of expressing translations, only two kinds of transla-
tion rules are supported in AFPL2 (Table 2). In fact, the analyzed firewall languages 
support more NAT modes (analyzed in Appendix I). There, we show that all these 
modes are in reality variations of the two basic NAT modes defined in RFC2663 
(Source and Destination NAT) and can be reproduced in one way or another using 
these two basic types. Although RFC2663 defines more NAT modes (like Twice 
NAT or Multi-homed NAT), they are not supported in any of the analyzed firewall 
platforms. For these reasons, no more NAT modes are necessary in AFPL2. 

4.1.2   Addition of Uncommon Selectors 
An uncommon selector can be added if its functionality can be reproduced (emulated) 
with the selectors of the factorized model, and it also adds new functionality to the 
model. A selector adds new functionality to the model if it cannot be emulated with 
translation rules which do not contain it. The conclusion is that using this criterion, no 
more selectors can be added to AFPL2. An exhaustive list of selectors per firewall is 
presented in Appendix I. 

4.1.3   Addition of Uncommon Syntaxes 
In this section, we analyze the possibility of supporting uncommon syntaxes in the 
considered selectors. In general, we consider an uncommon syntax as a candidate for 



138 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

its addition to the collection of supported syntaxes for that selector in AFPL2, if it can 
be emulated with the common syntaxes of the same selector and it provides clear 
usability improvements for human users. A syntax provides clear usability improve-
ments if its use by a human cannot introduce inconsistencies [3] in an ACL created 
with AFPL2 and it provides compactness. Again, we will base this analysis on results 
presented in Appendix I. 

• SNAT Source IP address. The uncommon syntaxes of this selector are  
identifiers, block IPs, IP ranges and collections of IPs. Note that the use of 
identifiers provides a clear usability improvement and does not introduce in-
consistencies in the ACL, and thus will be considered for AFPL2. All the 
other syntaxes provide ACL compactness, and also represent usability im-
provements. As they cannot cause ACL inconsistencies, they will also be 
considered (except IP ranges and IP collections, which are redundant). Block 
IPs, IP ranges, and in general collections of IPs can be emulated in low-level 
languages that do not support them by decomposing these collections of IPs 
into several unique IPs, and defining one NAT rule for each. 

• DNAT Destination IP address. The uncommon syntaxes of this selector are 
identifiers and IP ranges. Identifiers are included for the same reasons stated 
for SNAT source IPs. However, IP ranges cannot be included because it is 
only used for load balancing, a non-emulable feature not supported by all the 
analyzed platforms. 

• DNAT Destination port. Many range syntaxes are possible in many firewall 
platforms, as is the case of ranges ‘<p’, ‘<=p’, ‘>p’, ‘>=p’, ‘(p1, p2)’ and ‘)p1, 
p2(‘. These syntaxes provide no new functionality or a clear usability improve-
ment, and can be easily emulated with the common ‘[p1, p2]’ syntax without 
loss of functionality. For this reason they will not be included in AFPL2. 

In order to match the original packet, the same selectors and rule format used for 
filtering in AFPL can be used without restrictions, since all firewall languages support 
them in at least one of their NAT modes. For translation selectors, selectors presented 
in Table 3 must be used, with the presented constraints about their syntax. This table 
represents the final AFPL2 language (NAT part). 

4.2   PIM Meta-model 

It is necessary to clarify that MDA does not require the use of UML to specify PIMs 
or PSMs, it is just a recommendation. When a developer has to define a meta-model, 
she has to choose the meta-modelling technique: a UML-based profile (also named 
lightweight extension) or a MOF-based meta-model (or heavyweight extension). 
There are different reasons for selecting one of them [13].  

AFPL2 PIM meta-model (from now, PIM) is composed of a hierarchical structure 
of meta-classes (Fig. 6). The PIM root element is the Policy which represents the 
ACL concept. An instance of the Policy meta-class could have one or more Rule 
children meta-classes, and zero or more SNAT and/or DNAT rules. Thus AFPL2 sup-
ports three kinds of rules: filtering (also present in AFPL), SNAT, and DNAT. SNAT 
and DNAT are not mandatory, but at least one filtering rule must be specified (for the 
default policy). Note that the left part of the figure (grey boxes) represents AFPL  
meta-model (without NAT), and the right part (white boxes) the NAT extension. 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 139 

Table 3. Final AFPL2 model (only NAT part) 

Source NAT 

Translated 
Selector Obligation Dependencies 

Common 
Syntax 
(Can be 

optimized) 

Uncommon 
Syntax 

(Must be 
emulated) 

Comments 

Source IP 
Address Mandatory  -Host IP 

-Interface name 
-Identifier 

-Block 

If the interface name is 
given, the interface IP 

is used (it could be 
dynamic link) 

 

Destination NAT 

Translated 
Selector 

Obligation Dependencies 

Common 
Syntax 
(Can be  

optimized) 

Uncommon 
Syntax 

(Must be 
emulated) 

Comments 

Destination 
IP Address 

Mandatory  -Host IP -Identifier  

Destination 
Port 

Optional 

Destination 
port must be 

specified in the 
original packet 

-Number 
-Range: [p1,p2] 

- Identifier  

Each instance of the Rule meta-class represents a condition/action rule of the ACL 
(this part is related to AFPL [12]). A rule can be applied to a particular interface of 
the underlying firewall platform (interface attribute), and with a particular direction of 
the flow of packets (direction attribute). These two attributes of the Rule meta-class 
are optional, since if no interfaces are defined, the rule is applied to all interfaces in 
all directions (in and out). The comment attribute is also optional and represents the 
documentation for a rule. In addition, the Rule meta-class has an action attribute rep-
resenting the action that the firewall should take if a packet matches its condition part. 
Note that it must be at least one rule in a policy, stating that at least the default policy 
(allow all or deny all) is present. 

The information regarding the condition part is represented in the Matches meta-
class, which it is a child of the Rule meta-class, and the last meta-class of the hierar-
chy. Each Rule can have only one condition part and, for that reason, the cardinality is 
one. The Matches meta-class has a set of attributes representing the filtering selectors 
of AFPL [12]. These selectors are the fields which are considered during the filtering 
process, and are: source and destination IP addresses, source and destination ports, 
protocol, and ICMP type (only if protocol is ICMP). All these attributes have their 
own data types which represent the syntaxes allowed for a user. These data types are 
presented in the right part of Fig. 6. Some of them are enumerations and others are 
regular expressions. 

At the same level of Rule meta-class there are the DstNATrule and SrcNATrule 
meta-classes (this is the part related to AFPL2). These meta-classes represent DNAT 
and SNAT rules (the extended part of AFPL2). Note that NAT rules are optional. 
Following the analysis for NAT of the previous section, a DNAT rule can be applied 
to an interface. Note that no information regarding direction can be modelled, since 
DNAT rules are always applied with incoming direction. In the same way, a SNAT 
rule can only be applied with outgoing direction. Again, for both kind of rules, it is 
 



140 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

 

Fig. 6. AFPL2 PIM meta-model (in EMF) 

possible to specify the characteristics of the packet being translated using the NatOrig-
Packet meta-class, which has the same attributes as the Matches meta-class, but with 
different cardinalities. However, translation information differs between SNAT and 
DNAT: their attributes represent the translation selectors explained in the previous 
subsection (Table 2). 

Note that there is no way to represent rule priorities in the model. The reason is 
that rule priority is represented using the rule specification order in the PIM (i.e. rule 
priority is implicit in the model). 

As we have noted before, for each analyzed firewall language and platform there is 
a set of advanced features that has not been included in the PIM meta-model. How-
ever, this if part is introduced in the PSM, then administrators can use the advances 
features without modifying the ACL and without sacrificing PIM simplicity. Note that 
AFPL2 can be compiled to any of the analyzed low-level firewall languages without 
any loss of information. In addition, if all non common features of each analyzed 
firewall platform and languages are supported in its PSM (as proposed), a lossless 
transformation from the low-level languages is also possible. 

Furthermore there are also differences regarding how each firewall platform exe-
cutes NAT (mainly before or after executing filtering rules). However, these differ-
ences must only be taken into account only in AFPL2 ACL compilers, and are not 
considered in this paper. 

5   Conclusions 

The contribution of this paper is twofold. First, we have proposed a new abstract 
language to represent firewall ACLs with NAT, AFPL2. To the best of our knowl-
edge, AFPL2 is the first firewall DSL to support NAT. With AFPL2 an administrator 
is able to model the vast majority of features present in any of the analyzed firewall 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 141 

platforms and languages (which are market-leaders). However, for an advanced  
administrator, there could be features that cannot be modelled with AFPL2 alone.  

Second, AFPL2 is used as the PIM for a framework heavily based on the concepts 
of MDA extended for model consistency diagnosis stages. The framework can incor-
porate these advanced features of all the analyzed firewall languages in another 
(lower) modelling level, allowing administrators to use the features of a particular 
low-level firewall language not present in AFPL2. This MDA-based framework is 
extensible by end-users, in the sense that more concepts can be added to the meta-
models, as well as modifications to the transformations between them, in order to 
represent more features and/or low-level firewall platforms and languages. In fact, we 
have identified the features not modelled in the PIM and propose to model them in the 
PSM of each firewall platform as a topic for future research. 

In future works, we pretend to develop the full framework with automatic  
transformations and ACL generation. 

Acknowledgements 

This work has been partially funded by Spanish Ministry of Science and Education pro-
ject under grant DPI2006-15476-C02-01, and by FEDER (under ERDF Program). Many 
thanks to T. Reina and J. Peña for their useful comments on early versions of the paper. 

References 

1. Pozo, S., Ceballos, R., Gasca, R.M.: Model Based Development of Firewall Rule Sets: Diag-
nosing Model Faults. Information and Software Technology Journal 51(5), 894–915 (2009) 

2. Al-Shaer, E., Hamed, H.H.: Modeling and Management of Firewall Policies. IEEE 
eTransactions on Network and Service Management 1(1) (2004) 

3. Pozo, S., Ceballos, R., Gasca, R.M.: A Heuristic Polynomial Algorithm for Local Inconsis-
tecy Diagnosis in Firewall Rule Sets. In: International Conference on Security and Cryp-
tography (SECRYPT), Porto, Portugal (2008) 

4. Wool, A.: A quantitative study of firewall configuration errors. IEEE Computer 37(6), 62–
67 (2004) 

5. Taylor, D.E.: Survey and taxonomy of packet classification techniques. ACM Computing 
Surveys 37(3), 238–275 (2005) 

6. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A Novel Firewall Management 
Toolkit. ACM Transactions on Computer Systems 22(4), 381–420 (2004) 

7. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Specification Language 
Workshop on Policies for Distributed Systems and Networks (POLICY), HP Labs Bristol, 
UK, pp. 29–31 (2001) 

8. OASIS eXtensible Access Control Markup Language (XACML), 
http://www.oasis-open.org/committees/xacml/ 

9. Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy Core Information Model 
(PCIM), IETF RFC 3060 (2001) 

10. Rule Markup Language (RuleML), http://www.ruleml.org/ 
11. Simple Rule Markup Language (SRML): A General XML Rule Representation for For-

ward-chaining Rules, ILOG S.A (2001) 
12. Pozo, S., Ceballos, R., Gasca, R.M.: AFPL, An Abstract Language Model for Firewall 

ACLs. In: 8th International Conference on Computational Science and Its Applications 
(IC-CSA), Perugia, Italy. Springer, Heidelberg (2008) 



142 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

13. Desfray, P.: UML Profiles versus Metamodeling Extensions... an Ongoing Debate. In: 
COM 2000, proceedings of the First Workshop on UML in the .COM Enterprise: Model-
ing CORBA, Components, XML/XMI and Metadata (2000) 

14. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A Novel Firewall Management 
Toolkit. ACM Transactions on Computer Systems 22(4), 381–420 (2004) 

15. Zhang, B., Al-Shaer, E., Jagadeesan, R., Riely, J., Pitcher, C.: Specifications of a High-
level Conflict-free Firewall Policy Language for Multi-domain Networks. In: ACM Sym-
posium on Access Control Models and Technologies (SACMAT), Sophia Antipolis, 
France, pp. 185–194 (2007) 

16. Srisuresh, P., Holdrege, M.: RFC 2663: IP Network Address Translator (NAT) Terminol-
ogy and Considerations. IETF (August 1999) 

17. Basin, D., Dorser, J., Lodderstedt, T.: Model Driven Security: from UML Models to Ac-
cess Control Infrastructures. ACM Transactions on Software Engineering and Methodol-
ogy 15(1), 39–91 (2006) 

18. OMG. MDA guide version 1.0. Technical Report omg/2003-05-01, OMG (May 2003) 
19. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM 

Systems Journals 45(3), 451–462 (2006) 

Appendix I 

This analysis is related to NAT rules of market-leader firewall languages, and refers 
to the conditions that may be matched against a packet that arrives at the firewall, and 
how it must be translated.√ indicates that a selector is supported, and x that is not 
supported. 

Table 4. Netfilter IPTables analysis 

NAT Type SNAT / 
MASQ 

DNAT / 
PORT FW 

Src IP Address Opt Opt 
Translated Src 

IP Address 
√ * 
-IP 

x 

Src Port Opt Opt 
Translated Src 

Port 
Opt** 

- Number, range 
x 

Dst IP Address Opt Opt 
Translated Dst 

IP Address 
x √ * 

-IP 
Dst Port Opt Opt 

Translated Dst 
Port 

x 
Opt 

- Number, range 
Protocol Opt Opt 
Interface Opt (Outgoing) Opt (Incoming) 

Comments 

*It is not possible to 
do load balancing in 

K >=2.6.11 
** If port is given, 

NAPT is done instead 
of SNAT 

*It is not possile 
to do load balanc-
ing in K >=2.6.11 

 



 MDA-Based Framework for Automatic Generation of Consistent Firewall ACLs 143 

Table 5. Cisco PIX analysis 

NAT Type Dynamic NAT and  PAT Dynamic Policy NAT and 
PAT 

Static NAT and PAT Policy Static NAT and PAT 

Address Pool √ √ x x 

Src IP Address √ 
Collection using the pool 

√ 
Collection using the pool √ √ 

Translated Src 
IP Address 

√ 
-IP, Block 

-Range, Collection 

√ 
-IP 

√ 
-IP, Interface IP 

√ 
-IP, Interface IP 

Src Port x Opt x Opt 
Translated Src 

Port 
Automatic 

(only for PAT) 
Automatic 

(only for PAT) 
Opt 

(only for PAT) 
Opt 

(only for PAT) 

Dst IP Address x √ 
(one or more) x √ 

(one or more) 
Translated Dst 

IP Address x x √ / x 
(bidi) 

√ / x 
(bidi) 

Dst Port x Opt x Opt 
Translated Dst 

Port x x Opt 
(only for PAT) 

Opt 
(only for PAT) 

Protocol x √ TCP or UDP. Only for PAT TCP or UDP. Only for PAT 

Interface 
(outbound) 

√ 
Only in less secure to more 

secure  interface connections 

√ 
Only in less secure to more 

secure  interface connections 
x x 

Interface 
(inbound) x x √ √ 

Connection 
Settings 

Misc options for TCP and 
UDP 

Misc options for TCP and 
UDP 

Misc options for TCP and 
UDP 

Misc options for TCP and 
UDP  

 

    Table 6. OpenBSD Packet Filter analysis              Table 7. FreeBSD IPFirewall analysis 

 
 
 
 
 
 
 
 
 
 

Table 6. OpenBSD Packet Filter analysis 
 

NAT Type NAT Port Forwarding 

Src IP Address √ √ 
Translated Src IP 

Address 
√ 

- IP Collection x 

Src Port Opt Opt 
Translated Src 

Port √ x 

Dst IP Address √ √ 
Translated Dst IP 

Address x √ * 

Dst Port Opt Opt 
Translated Dst 

Port x Opt 

Src/Dst Protocol x √ 
Interface √ √ 

Comments 
Bidirectional 

connections are 
possible 

* If multiple 
translated dst IPs are 

specified, load-
balancing is 

 
NAT Type Outgoing 

connections 
Incoming 

connections 
Src IP Address Opt Opt 

Translated Src IP 
Address √ x 

Src Port Opt Opt 
Translated Src Port x x 

Dst IP Address Opt Opt 
Translated Dst IP 

Address x √ *** 

Dst Port Opt Opt 
(Port or range) 

Translated Dst Port Opt* Opt* 
Src/Dst Protocol Opt** Opt** 

Interface √ √ 

Comments 

* Mandatory 
if Dst Port is 

specified 
** 

Mandatory if 
ports are 
specified 

* Mandatory if Dst 
Port is specified, 
but could be the 
same by default 
** Mandatory if 

ports are specified 
*** If multiple 

translated dst IPs 
are specified, load-

balancing is 
accomplished  

 

 

 



144 S. Pozo, A.J. Varela-Vaca, and R.M. Gasca 

          Table 8. OpenBSD IPFilter analysis                           Table 9. Checkpoint FW-1 analysis 

 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
NAT Type All types 

Src IP Address Opt 
Translated Src IP Address Opt 

Src Port Opt 
Translated Src Port Opt 

Dst IP Address Opt 
Translated Dst IP Address Opt 

Dst Port Opt 
Translated Dst Port Opt 

Src/Dst Protocol Opt 
Interface x 

 

 
NAT Type Basic NAT Port Redirection 

Src IP Address √ Opt 

Translated Src IP 
Address 

√ 
[Only IP or 

Block] 
x 

Src Port Opt Opt 
Translated Src Port Opt* x 

Dst IP Address Opt √ * 
[Only IP] 

Translated Dst IP 
Address x √ (host only) 

Dst Port Opt Opt 
Translated Dst Port x √ 

Src/Dst Portocol Opt Opt 
Interface √ √ 

Comments 

* If port is 
given, NAPT is 
done instead of 

SNAT 

* If multiple dst IPs 
are specified, round-

robbin load-
balancing is 

accomplished  
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


