Skip to main content

Lattice Constant Prediction of A2BB’O6 Type Double Perovskites

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5593))

Abstract

Researchers are taking interest in the computational prediction models to efficiently predict the structure of perovskites. we are using Support Vector Regression, Artificial Neural Network, Multiple Linear Regression and SPuDS program based approaches in predicting the lattice constants (LC) of double perovskites of A2BB’O6-type. These prediction models correlate the LC to atomic parameters i.e., size of ionic radii, electro-negativity, and oxidation state. These models are developed using training data. Their performance is then estimated for validation data. To investigate the generalization capability, 48 new perovskites are also collected from recent literature. Analysis shows that SVR based proposed models are more accurate and generalized, reducing the prediction error effectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baran, E.J.: Structural chemistry and physicochemical properties of perovskite-like materials. Catalysis Today 8, 133–151 (1990)

    Article  Google Scholar 

  2. Wolfram, T., Ellialtioglu, S.: Electronic and Optical Properties of d-Band Perovskites. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Azad, A.K.: Synthesis, Structure, and Magnetic Properties of Double Perovskites of the type A2MnBO6 and A2FeBO6 (A=Ca, Sr, Ba; B= W, Mo, Cr). Ph.D. Thesis. Göte-borg University, Sweden (2004)

    Google Scholar 

  4. Bouville, M., Ahluwalia, R.: Effect of lattice-mismatch-induced strains on coupled diffu-sive and displacive phase transformations. Physical Review B - Condensed Matter and Materials Physics 75, 054110–054118 (2007)

    Article  Google Scholar 

  5. Philipp, J.B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M.S., Simon, J., Walther, T., Mader, W., Topwal, D., Sarma, D.D.: Structural and doping effects in the half-metallic double perovskite A 2CrWO6 (A = Sr, Ba, and Ca). Physical Review B - Condensed Matter and Materials Physics 68, 1444311–14443113 (2003)

    Google Scholar 

  6. Serrate, D., De Teresa, J.M., Ibarra, M.R.: Double perovskites with ferromagnetism above room temperature. Journal of Physics Condensed Matter 19, 023201–023287 (2007)

    Article  Google Scholar 

  7. Faik, A., Gateshki, M., Igartua, J.M., Pizarro, J.L., Insausti, M., Kaindl, R., Grzechnik, A.: Crystal structures and cation ordering of Sr2AlSbO6 and Sr2CoSbO6. Journal of Solid State Chemistry 181, 1759–1766 (2008)

    Article  Google Scholar 

  8. Bokov, A.A., Protsenko, N.P., Ye, Z.G.: Relationship between ionicity, ionic radii and or-der/disorder in complex perovskites. Journal of Physics and Chemistry of Solids 61, 1519–1527 (2000)

    Article  Google Scholar 

  9. Dimitrovska, S., Aleksovska, S., Kuzmanovski, I.: Prediction of the unit cell edge length of cubic A2BB 2006 perovskites by multiple linear regression and artificial neural networks. Central European Journal of Chemistry 3, 198–215 (2005)

    Google Scholar 

  10. Lufaso, M.W., Woodward, P.M.: Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B: Structural Science 57, 725–738 (2001)

    Article  Google Scholar 

  11. Shannon, R.D.: Revised effective ionic radii and Systematic Studies of Interatomic Dis-tances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  12. Environmental, Chemistry & Hazardous Materials Resources, http://environmentalchemistry.com/yogi/periodic/

  13. Xu, L., Wencong, L., Shengli, J., Yawei, L., Nianyi, C.: Support vector regression applied to materials optimization of sialon ceramics. Chemometrics and Intelligent Laboratory Systems 82, 8–14 (2006)

    Article  Google Scholar 

  14. Li, J., Liu, H., Yao, X., Liu, M., Hu, Z., Fan, B.: Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines. Chemometrics and Intelligent Laboratory Systems 87, 139–146 (2007)

    Article  Google Scholar 

  15. Pan, Y., Jiang, J., Wang, R., Cao, H., Cui, Y.: Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine. Chemometr. Intell. Lab. Syst. 92, 169–178 (2008)

    Article  Google Scholar 

  16. Smola, A., Schoelkopf, B.: A Tutorial on Support Vector Regression, vol. 14, pp. 199–222. Springer, Netherlands (2004)

    Google Scholar 

  17. Gunn, S.: Support vector machines for classification and regression. ISIS Technical Report (1999)

    Google Scholar 

  18. Majid, A., Khan, A., Mirza, A.M.: Combination of Support Vector Machines Using Ge-netic Programming. International Journal of Hybrid Intelligent System 3, 1–17 (2006)

    Article  Google Scholar 

  19. MATLAB7.0: Mathworks, http://www.mathworks.com

  20. Javed, S.G., Khan, A., Majid, A., Mirza, A.M., Bashir, J.: Lattice constant prediction of or-thorhombic ABO3 perovskites using support vector machines. Computational Materials Science 39, 627–634 (2007)

    Article  Google Scholar 

  21. Woodward, P.M., Goldberger, J., Stoltzfus, M.W., Eng, H.W., Ricciardo, R.A., Santhosh, P.N., Karen, P., Moodenbaugh, A.R.: Electronic, magnetic, and structural properties of Sr2MnRuO 6 and LaSrMnRuO6 double perovskites. Journal of the American Ceramic Society 91, 1796–1806 (2008)

    Article  Google Scholar 

  22. Kato, H., Okuda, T., Okimoto, Y., Tomioka, Y., Oikawa, K., Kamiyama, T., Tokura, Y.: Structural and electronic properties of the ordered double perovskites A2MReO6 (A = Sr,Ca; M = Mg,Sc,Cr,Mn,Fe,Co,Ni,Zn). Physical Review B - Condensed Matter and Materials Physics 69, 184412–184420 (2004)

    Article  Google Scholar 

  23. Popov, G., Greenblatt, M., Croft, M.: Large effects of A-site average cation size on the properties of the double perovskites Ba2-xSrxMnReO6: A d5-d1 system. Physical Review B - Condensed Matter and Materials Physics 67, 244061–244069 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Majid, A., Farooq Ahmad, M., Choi, TS. (2009). Lattice Constant Prediction of A2BB’O6 Type Double Perovskites. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02457-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02457-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02456-6

  • Online ISBN: 978-3-642-02457-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics