Skip to main content

The Control Based on Internal Average Kinetic Energy in Complex Environment for Multi-robot System

  • Conference paper
  • 1077 Accesses

Abstract

In this paper, reference trajectory is designed according to minimum energy consumed for multi-robot system, which nonlinear programming and cubic spline interpolation are adopted. The control strategy is composed of two levels, which lower-level is simple PD control and the upper-level is based on the internal average kinetic energy for multi-robot system in the complex environment with velocity damping. Simulation tests verify the effectiveness of this control strategy.

This work is sponsored by the National Science Foundation of China (Grant No: 60675057).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, Y., Tian, Y., Qi, X., Zhao, X.: Mathematical Analysis of Swarm Robots Foraging Based on Division Strategy. In: International Conference on Computational Intelligence and Security (2007)

    Google Scholar 

  2. Yang, Y., Tian, Y.: Swarm Robots Aggregation Formation Control Inspired by Fish School. In: IEEE International Conference on Robotics and Biomimetics, pp. 805–809. IEEE Press, New York (2007)

    Google Scholar 

  3. Gazi, V., Passino, K.M.: Stability analysis of foraging swarms. IEEE Trans. Systems, Man and Cybernatics, Part B 34, 539–557 (2004)

    Article  Google Scholar 

  4. Gazi, V., Ordonez, R.: Target tracking using artificial potentials and sliding mode control. In: Proc. 2004 American Control Conf. (2004)

    Google Scholar 

  5. Pedrami, R., Gordon, B.W.: Control and Analysis of energetic Swarms. Technical Report, CIS LAB, Concordia University (2006)

    Google Scholar 

  6. Pedrami, R., Gordon, B.W.: Temperature control of energetic swarms. Technical Report, CIS LAB, Concordia University (2007)

    Google Scholar 

  7. Pedrami, R., Gordon, B.W.: Control of energetic robotic swarms systems. In: IEEE International Conference on Robotics and Biomimetics, pp. 547–552. IEEE Press, New York (2007)

    Google Scholar 

  8. John, H.R., Hongyan, W.: Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots. Robotics and Autonomous Systems (1999)

    Google Scholar 

  9. Brooks, R.A.: A Robust Layered Control System for a Mobile Robot. J. IEEE Transactions on Robotics and Automation (1986)

    Google Scholar 

  10. Lerman, K., Galstyan, A.: A general methodology for mathematical analysis of multi-agent systems. USC Information Sciences Technical Report ISI-TR-529 (2001)

    Google Scholar 

  11. Gerkey, B.P., Sold, M.M.J.: Auction methods for Multi Robot coordination. IEEE Transactions on Robotics and Automation 18(5), 758–768 (2002)

    Article  Google Scholar 

  12. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150, 473–488 (1991)

    Article  Google Scholar 

  13. Lee, C.T., Hoopes, M.F., Diehl, J., Gilliland, W., Huxel, G., Leaverand, E.V., McCann, K., Umbanhowar, J., Mogilner, A.: Non-local concepts and models in biology. J. Theor. Biol. 210, 201–219 (2001)

    Article  Google Scholar 

  14. Miller, R.S., Stephen, W.J.D.: Spatial relationships in flocks of sandhill cranes. Ecology 47(2), 323–327 (1966)

    Article  Google Scholar 

  15. Misund, O.A.: Sonar observations of schooling herring: school dimensions swimming behaviour and avoidance of vessel and purse seine Rapp. P.-v. Reun. Cons. int. Explor. Mer. 189, 135–146 (1990)

    Google Scholar 

  16. Misund, O.A.: Dynamics of moving masses: variability in packing density shape and size among herring sprat and saithe schools. ICES. J. Sci. 50, 145–160 (1993)

    Article  Google Scholar 

  17. Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Newlands, N.: PhD Thesis: Shoaling dynamics and abundance estimation: Atlantic BluefinTuna (Thunnus thynnus), Fisheries Center UBC, Vancouver BC Canada (2002)

    Google Scholar 

  19. Niwa, H.-S.: Self-organizing dynamic model of fish schooling. J. Theor. Biol. 171, 123–136 (1994)

    Article  Google Scholar 

  20. Niwa, H.-S.: Newtonian dynamical approach to fish schooling. J. Theor. Biol. 181, 47–63 (1996)

    Article  Google Scholar 

  21. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer, New York (1980)

    MATH  Google Scholar 

  22. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  23. Parr, A.E.: A contribution to the theoretical analysis of the schooling behaviour of fishes. Occasional Papers of the Bingham Oceanographic Collection 1, 1–32 (1927)

    Google Scholar 

  24. Parrish, J., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999)

    Article  Google Scholar 

  25. Radin, C.: The ground state for soft discs. J. Stat. Phys. 26, 365–373 (1981)

    Article  MathSciNet  Google Scholar 

  26. Sakai, S.: A model for group structure and its behavior. Biophysics Japan 13, 82–90 (1973)

    Article  Google Scholar 

  27. Sinclair, A.R.E.: The African buffalo: a study of resource limitation of populations. University of Chicago Press, Chicago (1977)

    Google Scholar 

  28. Suzuki, R., Sakai, S.: Movement of a group of animals. Biophysics Japan 13, 281–282 (1973)

    Article  Google Scholar 

  29. Tegeder, R.W., Krause, J.: Density dependence and numerosity in fright stimulated aggregation behaviour in shoaling fish. Phil. Trans. R. Soc. Lond. B 350, 381–390 (1995)

    Article  Google Scholar 

  30. Turchin, P.: Beyond simple diffusion: models of not-so-simple movement in animals and cells. Comments on Theor. Biol. 1, 65–83 (1989)

    Google Scholar 

  31. Uvarov, B.P.: Locusts and Grasshoppers, Imperial Bureau of Entomology, London (1928)

    Google Scholar 

  32. Vabo, R., Nottestad, L.: An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature. Fisheries Oceanography 6(3), 155–171 (1997)

    Article  Google Scholar 

  33. Viscido, S.V., Miller, M., Wethey, D.S.: The response of a selfish herd to an attack from outside the group perimeter. J. Theor. Biol. 208, 315–328 (2001)

    Article  Google Scholar 

  34. Viscido, S.V., Wethey, D.S.: Quantitative analysis of fiddler crab flock movement: evidence for ‘selfish herd’ behaviour. Animal Behaviour 63(4), 735–741 (2002)

    Article  Google Scholar 

  35. Krause, J., Tegeder, R.W.: The mechanism of aggregation behaviour in fish shoals: individuals minimize approach time to neighbors. Anim. Behav. 48, 353–359 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Yang, M., Tian, Y., Yin, X. (2009). The Control Based on Internal Average Kinetic Energy in Complex Environment for Multi-robot System. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics