Skip to main content

Using the Weighted Rich-Club Coefficient to Explore Traffic Organization in Mobility Networks

  • Conference paper

Abstract

The aim of a transportation system is to enable the movement of goods or persons between any two locations with the highest possible efficiency. This simple principle inspires highly complex structures in a number of real-world mobility networks of different kind that often exhibit a hierarchical organization. In this paper, we rely on a framework that has been recently introduced for the study of the management and distribution of resources in different real-world systems. This framework offers a new method for exploring the tendency of the top elements to form clubs with exclusive control over the system’s resources. Such tendency is known as the weighted rich-club effect. We apply the method to three cases of mobility networks at different scales of resolution: the US air transportation network, the US counties daily commuting, and the Italian municipalities commuting datasets. In all cases, a strong weighted rich-club effect is found. We also show that a very simple model can account for part of the intrinsic features of mobility networks, while deviations found between the theoretical predictions and the empirical observations point to the presence of higher levels of organization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pareto, V.: Cours d’èconomie politique. Macmillan, Paris (1897)

    Google Scholar 

  2. Zipf, G.K.: The Psycho-Biology of Language: An introduction to dynamic philology. Houghton Mifflin, Massachusetts (1935)

    Google Scholar 

  3. Simon, E.H.: On a class of skewed distribution functions. Biometrika 42, 425–440 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci (USA) 101, 3747–3752 (2004)

    Article  Google Scholar 

  7. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dorogotsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford Univ. Press, Oxford (2003)

    Book  Google Scholar 

  10. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge Univ. Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  11. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  12. Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology. Oxford Univ. Press, Oxford (2007)

    Book  MATH  Google Scholar 

  13. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge Univ. Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  14. Colizza, V., Flammini, A., Serrano, M.A., Vespignani, A.: Detecting rich-club ordering in complex networks. Nature Phys. 2, 110–115 (2006)

    Article  Google Scholar 

  15. Zhou, S., Mondragon, R.J.: The rich-club phenomenon in the Internet topology. IEEE Commun. Lett. 8, 180–182 (2004)

    Article  Google Scholar 

  16. De Masi, G., Iori, G., Caldarelli, G.: Fitness model for the Italian interbank money market. Phys. Rev. E 74, 066112 (2006)

    Article  Google Scholar 

  17. Balcan, D., Erzan, A.: Content-based networks: A pedagogical overview. Chaos 17, 026108 (2007)

    Google Scholar 

  18. Wuchty, S.: Rich-Club Phenomenon in the Interactome of P. falciparum–Artifact or Signature of a Parasitic Life Style? PLoS ONE 2, e355 (2007)

    Google Scholar 

  19. Guimerá, R., Sales-Pardo, M., Amaral, L.A.N.: Classes of complex networks defined by role-to-role connectivity profiles. Nature Phys. 3, 63–69 (2007)

    Article  Google Scholar 

  20. Guimerá, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. (USA) 102, 7794–7799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dorogovtsev, S.N., Mendes, J.F.F.: Evolving Weighted Scale-Free Networks. In: AIP Conference Proceedings, Science of complex networks: < From Biology to the Internet and WWW: CNET 2004, vol. 776, pp. 29–36 (2005)

    Google Scholar 

  22. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)

    Article  Google Scholar 

  23. Granovetter, M.: The strength of weak ties. Am. J. Sociology 78, 1360–1380 (1973)

    Article  Google Scholar 

  24. Simmel, G.: The Sociology of Georg Simmel. Free Press, New York (1950)

    Google Scholar 

  25. Hansen, M.T.: The search-transfer problem: The role of weak ties in sharing knowledge across organization subunits. Administrative Science Quarterly 44, 82–111 (1999)

    Article  Google Scholar 

  26. Uzzi, B.: Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly 42, 35–67 (1997)

    Article  Google Scholar 

  27. Panzarasa, P., Opsahl, T.: Growth mechanisms for evolving social networks: Triadic closure, homophily and tie strength. In: Proc. of the XXVII Int. Sunbelt Social Network Conf. (2007)

    Google Scholar 

  28. Ramasco, J.J.: Social inertia and diversity in collaboration networks. Eur. J. Phys. ST 143, 47–50 (2007)

    Article  Google Scholar 

  29. Ramasco, J.J., Morris, S.: Social inertia in collaboration networks. Phys. Rev. E 73, 016122 (2006)

    Article  Google Scholar 

  30. Valverde, S., Solé, R.V.: Self-organization versus hierarchy in open-source social networks. Phys. Rev. E 76, 046118 (2007)

    Article  Google Scholar 

  31. Opsahl, T., Colizza, V., Panzarasa, P., Ramasco, J.J.: Prominence and control: The weighted rich-club effect. Phys. Rev. Lett. (2008)

    Google Scholar 

  32. Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C.: Scaling laws for the movement of people between locations in a large city. Phys. Rev. E 68, 066102 (2003)

    Article  Google Scholar 

  33. De Montis, A., Barthélemy, M., Chessa, A., Vespignani, A.: The structure of interurban traffic: a weighted network analysis. Environment and Planning B: Planning and Design 34, 905–924 (2007)

    Article  Google Scholar 

  34. Patuelli, R., Reggiani, R., Gorman, S.P., Nijkamp, P., Bade, F.-J.: Network analysis of commuting flows: A comparative static approach to German data. Networks and Spatial Economics 7, 315–331 (2007)

    Article  MATH  Google Scholar 

  35. Bureau of Transportation Statistics (BTS), http://www.bts.gov/

  36. Italian National Statistics Institute (ISTAT), http://www.istat.it/

  37. Amaral, L.A.N., Guimerá, R.: Complex networks: Lies, damned lies and statistics. Nature Phys. 2, 75–76 (2006)

    Article  Google Scholar 

  38. Serrano, M.A., Boguñá, M.: Vespignani: Patterns of dominant flows in the world trade web. J. Econ. Interac. Coor. 2, 111–124 (2007)

    Article  Google Scholar 

  39. Florida, R.: The Rise of the Creative Class: And How it’s Transforming Work, Leisure, Community and Everyday Life. Basic Books (2003)

    Google Scholar 

  40. Nuvolati, G.: Popolazioni in movimento, citta’ in trasformazione. Abitanti, pendolari, city users, uomini d’affari e flaneurs. Il Mulino Ricerca (2000)

    Google Scholar 

  41. Wu, Z., Braunstein, L.A., Colizza, V., Cohen, R., Havlin, S., Stanley, E.H.: Optimal paths in complex networks with correlated weights: The world-wide airport network. Phys. Rev. E 74, 056104 (2006)

    Article  Google Scholar 

  42. Ramasco, J.J., Gonçalves, B.: Transport on weighted networks: When the correlations are independent of the degree. Phys. Rev. E 76, 066106 (2007)

    Article  Google Scholar 

  43. Serrano, M.A., Boguñá, M., Pastor-Satorras, R.: Correlations in weighted networks. Phys. Rev. E 74, 055101(R) (2006)

    Google Scholar 

  44. Colizza, V., Vespignani, A.: Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008)

    Article  MathSciNet  Google Scholar 

  45. Macdonald, P.-J., Almaas, E., Barabási, A.-L.: Minimum spanning trees of weighted scale-free networks. Europhys. Lett. 72, 308–314 (2005)

    Article  Google Scholar 

  46. Almaas, E., Krapivsky, P., Redner, S.: Statistics of weighted treelike networks. Phys. Rev. E 71, 036124 (2004)

    Article  MathSciNet  Google Scholar 

  47. Barrat, A., Barthélemy, M., Vespignani, A.: Weighted evolving networks: coupling topology and weight dynamics. Phys. Rev. Lett. 92, 228701 (2004)

    Article  Google Scholar 

  48. Barrat, A., Barthélemy, M., Vespignani, A.: Modeling the evolution of weighted networks. Phys. Rev. E 70, 066149 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ramasco, J.J., Colizza, V., Panzarasa, P. (2009). Using the Weighted Rich-Club Coefficient to Explore Traffic Organization in Mobility Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics