Skip to main content

Collective Aggregation Pattern Dynamics Control via Attractive/Repulsive Function

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

In the coordinated collective behaviors of biological swarms and flocks, the attractive/repulsive (A/R) functional link between each pair of particles plays an important role. By changing the slope of the A/R function, a dramatic transition between different aggregation patterns surfaces. With a high value of the slope, the particle aggregation shows a liquid-like pattern in which the outer particles are sparsely distributed while the inner ones densely. In addition, the particle density is reduced from the outside to the inside of each cluster. By comparison, when the slope decreases to a sufficiently low value, the particle aggregation exhibits a crystal-like pattern as the distance between each pair of neighboring particles remains constant. Remarkably, there is an obvious spinodal in the curve of particle-particle distance variance versus the slope, indicating a transition between liquid-like and crystal-like aggregation patterns. Significantly, this work may reveal some common mechanism behind the aggregation of physical particles and swarming of organisms in nature, and may find its potential engineering applications, for example, UAVs and multi-robot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computers Network 38, 393–422 (2002)

    Article  Google Scholar 

  2. Aldana, M., Dossetti, V., Huepe, C., Kenkre, V., Larralde, H.: Phase Transitions in Systems of Self-Propelled Agents and Related Network Models. Phys. Rev. Lett. 98, 095702 (2007)

    Article  Google Scholar 

  3. Arai, T., Pagello, E., Parker, L.E.: Guest editorial advances in multirobot systems. IEEE Trans. Robotics and Automation 18, 655–661 (2002)

    Article  Google Scholar 

  4. Archer, A.J., Wilding, N.B.: Phase behavior of a fluid with competing attractive and repulsive interactions. Phys. Rev. E 76, 31501 (2007)

    Article  Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: Comment on Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 52, 968–969 (2007)

    Article  MathSciNet  Google Scholar 

  6. Breder, C.M.: Equations descriptive of fish schools and other animal aggregations. Ecology 35, 361–370 (1954)

    Article  Google Scholar 

  7. Chuang, Y.L., Orsogna, M.R.D., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2d interacting, self-propelled particle system. Physica D 232, 33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Couzin, L.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433, 513 (2005)

    Article  Google Scholar 

  9. D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse. Phys. Rev. Lett. 96, 104302 (2006)

    Article  Google Scholar 

  10. Gazi, V., Passino, K.M.: Stability Analysis of Swarms. IEEE Trans. Automat. Contr. 48, 692–697 (2003)

    Article  MathSciNet  Google Scholar 

  11. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst., Man, and Cybernetics 34, 539–557 (2004)

    Article  Google Scholar 

  12. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)

    Article  Google Scholar 

  13. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  14. Li, W., Wang, X.F.: Adaptive velocity strategy for swarm aggregation. Phys. Rev. E 75, 021917 (2007)

    Article  Google Scholar 

  15. Li, W., Zhang, H.T., Chen, M.Z.Q., Zhou, T.: Singularities and symmetry breaking in swarms. Phys. Rev. E 77, 021920 (2008)

    Article  MathSciNet  Google Scholar 

  16. Lev, B.I.: Exactly solvable three-dimensional lattice model with attractive and repulsive interactions. Phys. Rev. E 58, 2681 (1998)

    Article  Google Scholar 

  17. Liu, X., Wang, J., Huang, L.: Stabilization of a class of dynamical complex networks based on decentralized control. Physica A 383, 733 (2007)

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Wang, J., Huang, L.: Global synchronization for a class of dynamical complex networks. Physica A 386, 543 (2007)

    Article  MathSciNet  Google Scholar 

  19. Melzer, A., Schweigert, V.A., Piel, A.: Transition from Attractive to Repulsive Forces between Dust Molecules in a Plasma Sheath. Phys. Rev. Lett. 83, 3194 (1999)

    Article  Google Scholar 

  20. Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Ann. Rev. Microbiol. 55, 165–199 (2001)

    Article  Google Scholar 

  21. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Contr. 50, 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  22. Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Automat. Contr. 49, 1292–1302 (2004)

    Article  MathSciNet  Google Scholar 

  23. Ohnesorge, F., Binnig, G.: True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces. Science 260, 1451 (1993)

    Article  Google Scholar 

  24. Olfati-Saber, R.: Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEE Trans. Automat. Contr. 51, 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  25. Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  26. Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Contr. 50, 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  27. Ren, W., Beard, R.W., Arkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control System Magazine 71, 71–82 (2004)

    Google Scholar 

  28. Reynolds, C.W.: Flocks, herds and schools: A distributive behavioral model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  29. Schlottmann, P.: Integrable two-band model with attractive and repulsive interactions. Phys. Rev. Lett. 68, 1916 (1992)

    Article  Google Scholar 

  30. Shi, H., Wang, L., Chu, T.: Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D 213, 51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y., Sano, M.: Collective motion in a system of mobile elements. Phys. Rev. Lett. 76, 3870–3873 (1996)

    Article  Google Scholar 

  32. Su, H., Wang, X.F., Lin, Z.: Flocking of Multi-Agents with a Virtual Leader. IEEE Trans. Automat. Contr. (to appear)

    Google Scholar 

  33. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, Part I: Fixed topology. In: Proc. IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 2010–2015 (2003)

    Google Scholar 

  34. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  35. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theoret. Biolo. 150, 473–488 (1991)

    Article  Google Scholar 

  36. Zhang, H.T., Chen, M.Z.Q., Stan, G.-B., Zhou, T., Maciejowski, J.M.: Collective behavior coordination with predictive mechanisms. IEEE Circuits and Systems Magazine 3, 65–87 (2008)

    Google Scholar 

  37. Zhang, H.T., Chen, M.Z.Q., Zhou, T.: Predictive protocol of flocks with small-world connection pattern. Phys. Rev. E (to appear)

    Google Scholar 

  38. Zhang, H.T., Chen, M.Z.Q., Zhou, T., Stan, G.-B.: Ultrafast consensus via predictive mechanisms. Europhys. Lett. 83, 40003 (2008)

    Article  Google Scholar 

  39. Zimmer, C.: From ants to people, an instinct to swarm, The New York Times, November 13 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Chen, M.Z.Q., Cheng, Z., Zhang, HT., Zhou, T., Postlethwaite, I. (2009). Collective Aggregation Pattern Dynamics Control via Attractive/Repulsive Function. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics