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Abstract. The aim of this paper is to study the use of a prototype of wearable 
device for long term monitoring of gait and balance using inertial sensors. First, 
it is focused on the design of the device that can be used all day during the 
patient daily life activities, because it is small, usable and non invasive. 
Secondly, we present the system calibration to ensure the quality of the sensors 
data. Afterwodrs, we focus in the experimental methodology for data harvest 
from extensive types of falls. Finally a statistical analysis allows us to 
determine the discriminant information to detect falls.  

1 Introduction 

In recent years, the progressive aging in our society has produced an increase in the 
number of dependents or disabled people and at least a growing number of persons 
that need special attention. In Spain, for example, there are 7.7 million of people older 
than 65 years. The 32.2 % of them presents some sort of disability, and this 
percentage is greater as the age range grows [1], [2]. The new requirements arising 
from this situation require social efforts, but also efforts in science and technology to 
design together new services and systems in order to improve people’s wellbeing and 
quality of life.  

It is a fact that the third part of the population older than 65 years suffers falls each 
year doing their daily life activities. This falls are one of the major causes of disability 
and dependency as they can cause major injuries. For instance, the 90% of hip 
fractures in the elderly are caused by a fall [3]. This is a dramatic factor in disability 
and mortality as the 33 % of the old people that suffers from a hip fracture dies in the 
next 12 months, and a 60 % develops some sort of disability that difficult their daily 
activities and makes their quality of life worse [4]. 
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The early detection of fall risk persons is the most efficient way to not only prevent 
hip fractures, but also in dependency, institutionalization, and mortality in the elderly. 
The existent methods for the falling risk estimation are based in interviews with the 
patient about his fall historical [5], or in an exploration of gait and equilibrium at the 
laboratory [6]. These methods have numerous disadvantages as they take into account 
only punctual determinations of the state of the patient and include subjectivity. Thus 
monitoring the body movements for long periods of time during the patients daily life 
activities could be a good source of information for a fall risk diagnosis. Moreover, 
the reliable detection of falls could be crucial in emergency situations.  

Inertial sensors such as accelerometers and gyroscopes have proven to be useful in 
the analysis of human motion [7] with the advantage that they can be integrated in 
some sort of wearable device. Although many works and research groups related to 
the area have reached good results,  as for example,  in  the classification of activities 
[8] , detection of falls [9], [10] and fall risk prediction [11], this is still is an open 
research subject which needs more robust algorithms, technological improvement 
with user experience and adaptation and integration in complete ambient intelligent 
systems.[12] 

The aim of this paper is to study the use of a prototype of wearable device for long 
term monitoring of gait and balance using inertial sensors. First, it is focused on the 
design of the device that can be used all day during the patient daily life activities, 
because it is small usable and non invasive. Secondly, we present the system 
calibration to ensure the quality of the sensors data. Third, we focus in the 
experimental methodology for data harvest from a extensive types of falls. Finally an 
statistical analysis allows us to determine the discriminant information to detect falls. 

2 Inertial Sensor System 

The wearable device, as seen in fig.1) is composed by a central Intelligent Hardware 
Unit (IHU) and three different inertial sensor technologies. The IHU is the central part 
of the system, and its function is handling the sensor data. It features a 
microcontroller based process unit, a communications module, external memory, and 
interfacing circuitry. The core of the IHU is a dsPIC (Microchip Technology Inc.), a 
hybrid microcontroller with basic digital signal processor (DSP) features that enables 
the system with mathematic capabilities. The microcontroller operates at 20 MIPS 
(Mega Iterations Per Second) and have an internal program memory of 24Kbytes 
which allows a wide range of programming possibilities. The dsPIC uses different 
digital interfaces to communicate with the sensors in order to provide robustness to 
the readings. Another interesting feature of the dsPIC is his low power consumption 
along with its low power operation modes which enhances battery life. 

The device integrates three different MEMS inertial sensors which can measure 3D 
linear acceleration, angular rate and compass orientation. The accelerometer is a 
three-axis sensor model LIS3LV02 (ST Microelectronics Inc.) with a measuring range 
of ±6 g and a sensitivity of 323 bit/g. The sensors have a built-in digital circuitry that 
uses to apply a first low pass filter to the data captured and to transmit it using a 
digital I2C interface. The three-axis gyroscope is constructed by assembling two 
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different MEMS gyroscopes, the one-axis ADIS16100 (Analog Devices Inc.), and the 
two-axis IDG300 (Invensense Inc.). The two sensors have similar characteristics and 
work well in conjunction, with a typical range of ±300 deg./s. and a typical sensitivity 
of 4 bit/deg/s. The analog output signals from the IDG300, are redirected to the 
auxiliary inputs of the ADIS16100 which has a digital interface used to send the 
three-axis signals digitally to the IHU. The magnetometer or electronic compass is a 
three-axis sensor which can determine the absolute orientation of the device using the 
earth magnetic field as reference. The sensor has a resolution of 0.2 degrees of 
deviation and is very sensible to tiny variations in the magnetic field in its 
surroundings. For this reason its application is reduced to controlled scenarios. 

The device can operate in two different modes: online or offline. In online mode 
the sensors readings are transmitted in near real time via Bluetooth radio. It integrates 
a Bluetooth transceiver Parani- ESD200 (Sena Technologies Inc.) capable to establish 
a wireless communication with another device using the RFCOMM protocol (virtual 
serial RS232 connection). This is a much extended protocol, so it enables the system 
to communicate with a large range of devices including laptops, handheld devices and 
mobile phones. The alternative is the offline mode where the sensors readings 
together with a time stamp are stored in an external memory. The memory used is a 
micro SD flash card of 1 or 2 Gbytes capacity. The main features of this memory are 
its reduced size, high capacity, low power consumption and the possibility to use a 
standard SPI interface to communicate with de microcontroller.  

Fig. 1. Inertial system 

The device, including the sensors, is powered by a single Lithium Polymer 
rechargeable battery with a capacity of 610 mAh. With this battery the system can run 
for about 5 hours without interruption. All the electrical interface circuits including 
the battery charger, battery monitor, battery protection and voltage regulation are 
integrated in the device. The size of the sensor system with the battery and the casing 
included is 78x40x22 mm. and has an approximate weight of 30 gr. 

3 Inertial system calibration 

In order to extract useful information from the designed system it is necessary to 
calibrate the inertial sensors, to translate the output electrical signals to 
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understandable physical measurements. This calibration process has to be done with 
each single sensor, correcting its main sources of error such as drift, sensitivity error, 
misalignment of the axes and other errors due to environmental factors like 
temperature. This calibration process in inertial sensors is complex and normally 
requires the use of expensive precision instruments. An alternative is the simple but 
systematic procedure designed by Ferrari et al. [13], for accelerometers and 
gyroscopes and the one designed by O'Donovan [14] for the calibration of the 
magnetometer. 

These procedures provide correction for the major sources of error in inertial 
sensors: these are the drift, the sensitivity and the axis misalignment. They also have 
the advantage of not needing any special equipment to carry them out, as they use 
physical phenomenon’s (i.e. gravity, earth magnetic field) as references for the 
calibration.  

3.1 Combined Sensor Calibration 

The calibration processes for the three sensors can be joined in a single process that 
involves putting the sensor in 12 predefined static positions and 3 full revolution 
rotations, reducing the calibration time. This calibration process, once developed, is 
also suitable for its integration in the on board device controller, as it only involves 
sum and matrix multiplication for each sensor. 

3.2 Temperature Compensation 

The calibration of the sensors is hampered by one main issue; it only takes into 
account the internal sensor factors but not the external ones. The main external factor 
that affects inertial sensors is the temperature. Only a few degrees of temperature 
variation can modify the sensor parameters introducing errors in the readings that 
cannot be neglected.  

 In applications such as subject movement monitoring, great temperature gradients 
are not to be expected, and as the sensor would be directly attached to the patient’s 
body, one can expect constant temperatures between 20°C and 40°C. For this reason, 
a linear approximation can be a good solution for this kind of systems. The 
effectiveness of this approximation has been proved experimentally with all the 
sensors and with a large number of trials, as can be seen in figure 2. 

This method provides a long term calibration valid for a range of temperatures, so 
it is not longer necessary to carry out a calibration each time the sensor has to be used. 
This procedure can be also embedded in the on-board controller in devices that have a 
temperature sensor. 
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Fig. 2. Accelerometer sensitivity variation over temperature. 

4 The simulated fall study 

The fall study involved 16 healthy volunteers performing falls over large crash mats 
for two different scenarios and performing three repetitions each exercise. Signals 
from the three sensors in the device were recorded during each fall-event with the 
device located at the chest. These subjects ranged in age from 24-35 years old, with a 
body mass from 68 to 111 kg, and a  height from 1.65 to 1.96m. The University of 
Limerick Research Ethics Committee (ULREC) approved the falls protocol. 

The fall types used during testing for the current study were selected to simulate 
common fall types in elderly people The falls performed were similar to those 
performed in the study of Bourke et al. [15]. The different types of falls are the 
following:  

Forward falls    
1. Faint with flexed knees.        
2. Step down from a platform and fall forward. Thick (>15cm) soft mat on 

floor.  
3. Walking and trip yourself up. Thick (>15cm) soft mat on floor. 

Backward falls 
4. Faint with Round back and flexed knees.  
5. Backward Sitting down on empty (on the floor without using your arms or 

taking a step back). Thick (>15cm) soft mat on floor. 
6. Backward to the base of a padded wall. Thick (>15cm) soft mat on wall and 

floor. 
Side falls left   

7. Faint with flexed knees.  
8. Fall backward and turn to the side. 
9. Side fall to the base of a padded wall. Thick (>15cm) soft mat on wall. 
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Side falls right  

10. Faint with flexed knees.  
11. Fall backward and turn to the side . 
12. Side fall to the base of a padded wall. Thick (>15cm) soft mat on wall. 

Free falls  
13. Falling off a chair.  
14. Unrestricted activities (fall-over as you like). 

In order to compare the falls data with other movements we inquire to the same 
group of  young healthy subjects performing Activities of Daily Living while fitted 
with the same sensor as the simulated-fall study, performing three repetitions. Each 
subject started and finished each ADL in a standing position. The ADL chosen were 
those that may have produced impacts or abrupt changes in a person’s movement (and 
thus possibly results in false triggering of a threshold-based fall-detection algorithm) 
resembling activities carried out during the normal course of an elderly person’s daily 
life. 
Activity tests 

15. Walking 10 meters. 
16. Standing position to a sitting position in a normal chair. (height 43cm). 
17. Standing position to a sitting position in a bank. (height 44.5cm). 
18. Standing position to a lying on a mat or bed. (height 40cm). 

In one month we achieved to compile a signal database of 636 data sets, 468 of 
which are falls in a large diversity of scenarios. This rich database is used now to train 
different algorithms for the movement/fall identification problem. Also using two 
different sensor technologies during the same experiments can give us the opportunity 
to compare the differences between sensors on different body locations. 

5 Fall detection algorithm 

The data recorded from the three-axis accelerometer was derived by taking the 
equation norm to calculate the module. With this signals and looking at the exact 
moment of the fall, an extraction of characteristics was done. The characteristics 
analyzed were the following:  

a) Upper fall threshold. This threshold is related to the peak of acceleration produced 
during the impact with the floor in a fall. This acceleration peak can be very high 
in direct falls to the floor, but it is lower in faints or falls to a wall. So it is not 
possible to distinguish completely a fall with only this characteristic because of the 
acceleration peaks produced in some ADLs.  

b) Lower fall threshold. There is always a minimum peak related to the bounce 
occurred after the fall 

c) Time between upper and lower fall threshold. 
d)  Difference between upper and lower threshold. 
e) Maximum angular velocity peak. 
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The analysis of these characteristics with a Box Plot with Median, 25 and 75 

 
 

Fig. 3. Box Plot of the difference between max. and min. acceleration peaks  

Percentile and outlayers is ploted in Fig 3 for the difference between upper and lower 
threshold. This characteristic is the most discriminant and allows us to define a 
threshold between falls (1-13) and DAL (15-18) 

6 Conclusions and future work 

An ambulatory inertial system for mobility analysis is presented. The first results 
show that the system could be useful for fall detection. Further work is needed to 
develop algorithms for activity identification and to embed it into the on-board 
controller of the device.  
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