

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02481-
8_12

http://link.springer.com/chapter/10.1007/978-3-642-02481-8_12

http://hdl.handle.net/10251/69194

Springer

Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE. (2009). Adding an ontology to a
standardized QoS-based MAS middleware. En Distributed Computing, Artificial Intelligence,
Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer. 83-90.
doi:10.1007/978-3-642-02481-8_12.

Adding an ontology to a standardized QoS-based MAS

middleware

José L. Poza, Juan L. Posadas, José E. Simó

Institute of Industrial Control Systems

Polytechnic University of Valencia

Camino de Vera s/n, 46022, Valencia, Spain

jopolu@ai2.upv.es; jposadas@ai2.upv.es; jsimo@ai2.upv.es

Abstract. In a Multi-Agent system, middleware is one of the components used

to isolate control and communications. The use of standards in the

implementation of an intelligent distributed system is always advantageous.

This paper presents a middleware that provides support to a multi-agent system.

Middleware is based on the standard Data Distribution Services (DDS),

proposed by Object Management Group (OGM). Middleware organizes

information by tree based ontology and provides a set of quality of service

policies that agents can use to increase efficiency. DDS provides a set of quality

of service policy. Joining quality of service policy and the ontology allows

getting many advantages, among others the possibility of to conceal some

details of the communications system to agents, the correct location of the

agents in the distributed system, or the monitoring agents in terms of quality of

service. For modeling the middleware architecture it has used UML class

diagrams. As an example it has presented the implementation of a mobile robot

navigation system through agents that model behaviors.

1. Introduction

One of the biggest problems in the distributed systems is the efficient location of

information. Most times, the view that the agents have of the system is rather strict,

and depends entirely on communications system. Abstract details of the system to the

agents, provides greater flexibility, adaptability and scalability of the system. Also,

one of the most significant technological challenges is the management of peer-to-

peer quality of service (QoS) for component-based distributed intelligent control

systems.

These aspects of the distributed systems, go beyond the real time requirement, and

involve considerations such as: availability of computational resources, security,

cooperative control algorithms, stability, task control performance and management

of redundant information. Nowadays, the design of communication systems does not

offer an abstract view of the system and a complex QoS, just very simple features of

QoS like message sequencing, traffic congestion relieving, and so on. The union of

ontology and quality of services policies provides by the middleware, offers to agents

a meta-information attractive to optimize their processes.

2 José L. Poza, Juan L. Posadas, José E. Simó

The rest of the paper has been organized as follows: Second section presents

essential concepts about middleware, quality of services and ontology. Third section

explains the standard of communications DDS proposed by OMG. Next section

describes the architecture modelled in UML. This model unifies concepts of message

queues, quality of service policies and the ontology. Fifth section shows an example

of the use of ontology in robot navigation architecture. Finally presents concluding

remarks and future of the project.

2. Middleware, quality of service and ontology

Most of the communications systems that provide support to the distributed control

architectures need a module that hides some details of the communications

components. Usually, when this module is separated from control components, is

known as “middleware”. To provide to control components, the services needed to

increase efficiency of communication is the main responsibility of middleware.

Among the required services are: identification of components, authentication,

authorization, hierarchical structuring or components mobility.

Above all, technology underlying programming like objected-oriented

programming, component-based programming or service-based programming, partly

determine control architecture and its ability to provides more QoS [1]. There are a lot

of interfaces and tools for developing a middleware. Some of the tools like JMS [2]

and MSMQ [3] are generic protocols, and widely used on distributed systems.

In distributed multi-agent systems some components need to be adapted to the

communication interfaces For example, if communications are based on CORBA [4],

the multi-agent system must be implemented with the object-oriented programming

technology. To avoid the use of a particular technology is common to use

standardized protocols like FIPA [5].

QoS defines a set of parameters for evaluation of a service offered. In the field of

control architectures there are many definitions of quality of service. From the

viewpoint of processing, QoS represents quantitative and qualitative characteristics of

a distributed system. These characteristics are needed to achieve the functionality

required by an application.

From the viewpoint of communications, QoS is defined as all the features that a

network has to meet for message flow [6]. The term ontology has its origin in

philosophy, and has been applied in computer science research [7]. The core meaning

within computer science is a model for describing the world that consists of a set of

types, properties, and relationship types [8].

Adding an ontology to a standardized QoS-based MAS middleware 3

Fig. 1. Overview DCPS components from the DDS model.

3. Data Distribution Service

Data Distribution Service (DDS) provides a platform independent model that is aimed

to real-time distributed systems. DDS is based on publish-subscribe communications

paradigm. Publish-subscribe components connect information producers (publishers)

and consumers (subscribers) and isolate publishers and subscribers in time, space and

message flow [9]. To configure the communications, DDS uses QoS policies. A QoS

policy describes the services behavior according to a set of parameters defined by the

system features or by the administrator. Consequently, service-oriented architectures

are recommended to implement QoS in its communications modules.

DDS specifies two areas: Data-Centric Publish-Subscribe (DCPS) which is

responsible for data distribution and DLRL which is responsible for adjusting the data

to local level of applications. DLRL area is optional due to the DCPS components can

work directly with the control objects without data translations. DCPS has a large

number of component and some of them are required in any implementation. This is

presented in figure 1.

When a producer (component, agent or application) wants to publish some

information, should write it in a “Topic” by means of a component called

“DataWriter” which is managed by another component called “Publisher”. Both

components, DataWriter and Publisher, are included in another component called

“DomainParticipant”. On the other hand, a Topic cans delivery messages to both

components: “DataReaders” and “Listeners” by means of a “Subscriber”. When the

application requires it, DataReader provides the messages instead of a “Listened”.

Messages are sent without waiting for the application requires.

4 José L. Poza, Juan L. Posadas, José E. Simó

Fig. 2. UML class diagram of the middleware with the ontology support.

4. Formal Model

Among formal specifications, Unified Modelling Langage (UML) is the language of

modelling and formal software systems descriptions best-known [10].UML is

supported by the Object Management Group (OMG). Consequently, is appropriate

use UML to describe the Middleware internal architecture.

Figure 2 shows a formal description of the middleware architecture by means of a

UML class diagram. “Entity” is class base for all components, except for the QoS

policy. Each component can have associated several QoS policies.

The role of a “LogicalData” is the same that “Topic” in DCPS. When a “Logical

Sensor” does not have an associated “Adapter”, then is a control component, and can

be associated with others control components.

The ontology is implemented from the abstract class "LogicalData". This class

provides the logical datas to agents. Through a logical data, agents have access to

information. The root node contains the sequence of logical nodes that make up the

ontology and each logical node has a property that relates it to other. Initially only

have been defined relations "is a" and "part of", through these relations, an agent can

learn the system structure and act accordingly to their interests.

Adding an ontology to a standardized QoS-based MAS middleware 5

Fig. 3. Example of mobile robot system ontology.

The use of ontology, as a method of information access, is useful to agents because

it provides two important functions. The first of these functions is the system

accessing interface, either to receive data from the sensors, to send control actions.

The second of these functions, is to get a representation of the system that allows to

agents to learn. An agent can learn about the information to communicate with other

agents and the system structure that provides such information.

The structure of the system is interesting because agents can ask to the

communications system about questions like “what kind of sensors are installed on

the robot”. In addition, an agent can be connected to a specific data set like “warn

only when proximity sensors above a certain value”. Moreover, the structure allows

an agent to write to the data belonging only to a specific category like “stop all the

wheels”.

Joining ontology with the quality of service policies provides other benefits. An

agent can search process nodes based on both criteria. For example, is possible to

search a sensor that provides data with a deadline less than a specific value or a motor

driver with a message queue with of a specific buffer size. Based on the previous

model, simple robot navigation architecture has been developed. The architecture has

two distinct parts: control and communications. Quality of service joints both levels

[11]. Communications layer manages the ontology and offers its services through the

DDS interface [12].

5. Case of use: mobile robot architecture

Usually, robot navigation architectures are organized in two layers: deliberative and

adaptive or three layers with an intermediate layer. No such differentiation in the

FSA-Ctrl architecture due to agents can be auto-organized. Logical data of the

ontology differentiates deliberative agents from reactive. Usually deliberative agents

are connected to logical data near the root node, and reactive agents are connected to

logical data away from the root.

6 José L. Poza, Juan L. Posadas, José E. Simó

Fig. 4. Robot navigation architecture implemented with the FSA-Ctrl architecture.

Figure 5, shows an example of ontology used to describe the distributed system of

sensors for a mobile robot and in figure 4, shows an example of the use of basics

behaviours of navigation architecture. One of them, like the obstacle avoidance or

obstacle tracking, can be considered as reactive, since the decision doesn’t imply the

query to a pre-established plan, and has high temporal restrictions of data.

Other behaviours, such as route path planning, may be considered as deliberative

because they have more time limits. When determining behaviour in the robot

navigation system, they are associated with logical data. The depth in the ontology of

an agent connection to a logical data of the middleware provides information about if

the agent prefers the reactive or the deliberative layer.

This organization may change depending on the system needs. Sensors have been

organized according to the type. Obstacle avoidance agent uses the infrared ring. In

this case, actuators are the motors of the robot and agents can write the desired speed.

Through the writing on each logical data logical, left or right motor, agent can provide

a turn in either direction.

A reactive agent writes data to motors to avoid an obstacle and a deliberative agent

writes data to maintain a previously planned path. Quality of service policies

differentiates the priority of the reactive agent in front of the deliberative agent.

The "n" infrared sensors that make up the infrared ring are grouped into a logical

node called “infrared ring”, as an infrared sensor value exceeds a threshold the logical

data is activated, and notifies this change to a “listener”. If some obstacle avoidance

agent is connected to this logical data, automatically decreases the speed, without

know what specific sensor has sent the alarm.

Adding an ontology to a standardized QoS-based MAS middleware 7

Fig. 5. Example of ontology to provide information to a obstacle avoidance behaviour.

Moreover, a small-distance path planner agent receives the same message, but this

agent request the specific distance to every infrared sensor and calculates the new

path to avoid the obstacle. The frequency that messages are sent to agents is not the

same to the “Listener” that to de “DataReaders”, the quality of service defined by the

designer will determine this aspects.

6. Conclusions

This article has presented the internal architecture of a middleware with QoS support

and ontology to organize the information, in order to facilitate the work of agents.

Figure 6, shows an application in Visual C that has been developed to design the

ontology and create the specified service to the robot. Currently, system is in stage of

simulation to determine what set of quality of services parameters are more

appropriate to optimize the performance of a home automation system. Results will be

presented in future publications.

8 José L. Poza, Juan L. Posadas, José E. Simó

The architecture is based on the DDS standard model proposed by OMG. Use QoS

policies provided by the DDS model, and ontology to hide system details, allowing

the system to increase its performance. The middleware can be used to implement

various systems. Agents can be reactive or deliberative, only the logical data

connections, determine the layer in which the agent works. The hierarchy provided by

the ontology, in addition to the quality of service can be used to self-organize agents

by means the middleware.

The advantages of the system lie in the possibility to organize information

hierarchically by means the ontology. Quality of service provides a mechanism for

agents, that allows a self-organized distributed system. Weakness lies in the loss of

efficiency typical of a middleware. The use of the standardized DDS interface to

communicate agents can be considered a disadvantage if the multi-agent system uses

another communication standards, like CORBA or FIPA, but the use of a standard it

is always desirable.

Acknowledgements. The MAS architecture described in this article is a part of the

coordinated project SIDIRELI: Distributed Systems with Limited Resources. Control

Kernel and Coordination. Education and Science Department, Spanish Government.

CICYT: MICINN: DPI2008-06737-C02-01/02

References

1. Coulouris, G., Dollimore, J. and Kindberg, T. Distributed systems, concepts and design. Third

edition. Addison Wesley. 2001.

2. Hapner, M., Sharma, R., Fialli, J. and Stout, K. JMS specification. Sun Microsystems Inc. Santa

Clara, CA 95054 USA, Vol. 1.1. 2002.

3. Lewis, R. Advanced Messaging Applications with MSMQ and MQ Series. Que Publishing. 1999.

4. OMG. Real-Time Corba Specification version 1.1. Document formal /02-08-02. 2002.

5. FIPA. Specfication. Part 2, Agent Communication Language. Founda-tion for Intelligent Physical

Agents. 1997.

6. Vogel, A., Kerherve, B., von Bochmann, G. and Gecsei, J. Distributed Multimedia and QoS: A

Survey. IEEE Multimedia.Vol.2, No. 2, pp. 10-19. 1995.

7. Smith B. Beyond concepts, or: Ontology as reality representation, Formal Ontology in Information

Systems (FOIS 2004), p. 73-84.

8. Gruber, T. R., "Toward Principles for the Design of Ontologies Used for Knowledge Sharing". In:

International Journal Human-Computer Studies, 43(5-6):907-928, 1995

9. Pardo-Castellote, G. OMG Data-Distribution Service: architectural overview. Proceedings of 23rd

International Conference on Distributed Computing Systems Workshops. Providence, USA. Vol.

19-22, pp. 200-206. 2003.

10. Object Management Group (OMG). Unified Modeling Language Specification, v1.4.2 (ISO/IEC

19501), 2001.

11. Poza, J.L., Posadas, J.l. and Simó, J.E. Distributed agent specification to an Intelligent Control

Architecture. 6th International Workshop on Practical Applications of Agents and Multiagent

Systems. Salamanca. 2007.

12. Poza, J.L., Posadas, J.l. and Simó, J.E. QoS-based middleware archi-tecture for distributed

control systems. International Symposium on Distributed Computing and Artificial Intelligence.

Salamanca. 2008.

