Skip to main content

The UVa-Neuromuscular Training System Platform

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Abstract

This paper presents the portable UVa Neuromuscular Training System (UVa-NTS). It is a myoelectric real-time system for research and upper-limb training. A set of training tools is included: this paper focuses on the game Myo-Pong, a simple graphical table-tennis game included in the UVa-NTS. To measure the performance, a set of control parameters is explained. Thus, Myo-Pong demonstrates the capabilities of the UVa-NTS as a myoelectric real-time system for training and for playing by means of myoelectric control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dupont, A.C., Morin, E.L.: A Myoelectric Control Evaluation and Trainer System. IEEE Trans. Rehab. Eng. 2(2), 100–107 (1994)

    Article  Google Scholar 

  2. Farry, K.A., Walker, I.D., Baraniuk, R.: Myoelectric Teleoperation of a Complex Robotic Hand. IEEE Trans. Robotics and Automation 12(5), 775–788 (1996)

    Article  Google Scholar 

  3. Jorgensen, C., Wheeler, K., Stepniewski, S.: Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation. In: Proceedings of the World Automation Congress (2000)

    Google Scholar 

  4. Kampas, P.: Myoelektroden - optimal eingesetz. Medizinisch - Ortohopädische Technik 1(121), 21–27 (2001)

    Google Scholar 

  5. Clancy, E.A., Farry, K.A.: Adaptive Whitening of the Electromyogram to Improve Amplitude Estimation. IEEE Trans. Biomed. Eng. 47(6), 709–719 (2000)

    Article  Google Scholar 

  6. Englehart, K., Hudgins, B., Parker, P.A.: A Wavelet-Based Continuous Classification Scheme for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 48(3), 302–311 (2001)

    Article  Google Scholar 

  7. Hauschild, M., Davoodi, R., Loeb, G.E.: A Virtual Reality Environment for Designing and Fitting Neural Prosthetic Limbs. IEEE Trans. Neur. Sys. Rehab. Eng. 15(1), 9–15 (2007)

    Article  Google Scholar 

  8. De la Rosa, R.: Real Time Signal Conditioning and Processing of Biologic Signals. In: ProQuest Information and Learning, Ann Arbor, Michigan (2006)

    Google Scholar 

  9. Alonso, A., Hornero, R., Espino, P., De la Rosa, R., Liptak, L.: Myoelectric Prostheses Trainer for Hand and Arm Amputees. Mapfre Medicina 13(1), 11–19 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Rosa, R., de la Rosa, S., Alonso, A., del Val, L. (2009). The UVa-Neuromuscular Training System Platform. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_131

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_131

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics