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Resumo 

A correcta compreensão de como funcionam os sistemas biológicos depende do 

estudo dos mecanismos que regulam a expressão genética. Estes mecanismos controlam 

em que momento e durante quanto tempo é utilizada a informação codificada num gene, 

e podem actuar em diversas etapas do processo de expressão genética. No presente 

trabalho, a etapa em análise é a transcrição, na qual a sequência de ADN de um gene é 

transformada numa sequência de ARN, que posteriormente dará origem a uma proteína.  

A regulação da transcrição centra-se na acção de uma classe de proteínas 

reguladoras denominadas factores de transcrição. Estes ligam-se à cadeia de ADN na 

região próxima do início de um gene (a região promotora), potenciando ou inibindo a 

ligação da proteína responsável pelo processo de transcrição. 

Os factores de transcrição têm especificidade para pequenas sequências de ADN 

(denominados motivos de ligação) que estão presentes nas regiões promotoras dos 

genes que regulam. 

Um gene pode ser regulado por diferentes factores de transcrição; um factor de 

transcrição pode regular diferentes genes; e dois factores de transcrição podem ter 

motivos de ligação iguais. 

A regulação dos genes que codificam factores de transcrição é ela própria 

regulada, podendo sê-lo por uma série de mecanismos que incluem a interacção com 

outros factores de transcrição. 

O conhecimento de como genes e proteínas interagem entre si permite a criação de 

modelos que representam o modo como o sistema em questão (seja um processo 

biológico ou uma célula) se comporta. Estes modelos podem ser representados como 

redes de regulação genética, que embora possam diferir estruturalmente, os seus 

componentes elementares podem ser descritos da seguinte forma: os vértices 

representam genes (ou as proteínas codificadas) e as arestas representam reacções 

moleculares individuais, como as interacções entre proteínas através das quais os 

produtos de um gene afectam os de outro. 

A representação de regulações genéticas em redes de regulação genética promove, 

entre outros aspectos, a descoberta de grupos de genes que, sendo co-regulados, 

participam no mesmo processo biológico. 

Tal como referido anteriormente, os factores de transcrição podem ser regulados 

por outros factores de transcrição, o que significa que existem dois tipos de regulações: 
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directas e indirectas. Regulações directas dizem respeito a pares gene-factor de 

transcrição em que a expressão do gene é regulada pelo factor de transcrição 

considerado no par; regulações indirectas dizem respeito a pares em que a expressão do 

gene é regulada por um factor de transcrição cuja expressão é regulada pelo factor de 

transcrição considerado no par. 

Existem dois tipos de métodos experimentais que permitem a identificação de 

regulações genéticas: métodos directos, que identificam regulações directas; métodos 

indirectos, identificam regulações mas sem ser possível diferenciar entre directas e 

indirectas. Os métodos directos avaliam a ligação física do factor de transcrição ao 

gene, enquanto os métodos indirectos avaliam a existência de alterações nos padrões de 

expressão dos genes devido à influência dos factores de transcrição (isto é, se a acção de 

um determinado factor de transcrição se deixar de sentir, quais os genes cuja transcrição 

sofrerá alterações, e com que intensidade). 

Dos quatro métodos descritos em seguida, os dois primeiros são directos e os dois 

últimos indirectos: 

• Chip (imunoprecipitação de cromatina) – esta técnica é utilizada na 

investigação de interacções in vivo entre DNA e proteínas [1,2]. 

• CHIP-chip – esta técnica consiste numa adaptação da anterior, sendo 

realizada à escala genómica: um microarray representativo do genoma 

completo de um organismo é exposto a um dado FT, permitindo a 

identificação de todos os genes que este regula [3]. 

• Microarrays – a utilização de microarrays permite a avaliação de 

alterações de expressão genética em grande escala, considerando o genoma 

completo de um organismo ou apenas uma via metabólica [4]. 

• Proteómica – esta abordagem inclui diversos métodos que permitem a 

identificação dos genes regulados por um determinado factor de transcrição 

através do estudo do nível de expressão das proteínas codificadas pelos 

genes [5]. 

O conhecimento existente sobre regulações genéticas encontra-se disponível 

essencialmente na literatura. Embora actualmente exista um número elevado de bases de 

dados biológicas públicas, a grande maioria contém dados sobre entidades biológicas 

mas não sobre regulações genéticas de forma explícita. 
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Com o objectivo de colocar à disposição da comunidade científica dados 

existentes sobre regulações genéticas em Saccharomyces cerevisiae, foi criada uma base 

de dados portuguesa, denominada Yeastract, mantida por curação manual de literatura 

científica. 

Devido à crescente quantidade de artigos publicados actualmente, é de extrema 

importância o desenvolvimento de ferramentas automáticas que auxiliem o processo de 

curação manual. No caso concreto da Yeastract, surgiu a necessidade de criar uma 

ferramenta que auxiliasse o processo de identificação de artigos científicos que 

descrevam regulações genéticas em S. cerevisiae. Esta ferramenta é composta por dois 

componentes: um primeiro que identifica factores de transcrição nos resumos dos 

artigos e que verifica se os resumos contêm descrições de regulações genéticas; um 

segundo que avalia se as regulações hipotéticas que o artigo contém correspondem a 

regulações válidas do ponto de vista biológico. Este segundo componente foi 

denominado GREAT (Gene Regulation EvAluation Tool) e constitui o objectivo do meu 

trabalho. 

A ferramenta que desenvolvi recebe como input uma lista de artigos em cujos 

resumos foram identificados factores de transcrição e, na validação das regulações, 

explora dados obtidos exclusivamente de bases de dados biológicas de acesso público. 

Esses dados são utilizados na avaliação dos seguintes aspectos: participação de um gene 

e de um factor de transcrição no mesmo processo biológico; existência do local de 

ligação do factor de transcrição na região promotora do gene; método experimental com 

que a regulação foi identificada. O resultado de cada um destes aspectos é utilizado por 

um método de aprendizagem automática, árvores de regressão ou árvores modelo, para 

o cálculo de um score de confiança, a atribuir a cada potencial regulação. Artigos que 

contenham regulações com scores elevados serão curados manualmente para extracção 

das regulações genéticas. 

Foi implementado com sucesso um primeiro protótipo do GREAT. No entanto, do 

ponto de vista biológico, os resultados obtidos não foram satisfatórios, pelo que se 

realizou uma análise detalhada dos dados utilizados. Esta análise revelou questões 

importantes, essencialmente relacionadas com a insuficiência de dados disponíveis, e 

permitiu a identificação de medidas que poderão ser implementadas no actual protótipo 

para a resolução dos problemas encontrados. 



Palavras-Chave: Regulações Genéticas, Regulação da Transcrição, Bases de Dados 

Biológicos Públicas, Gene Ontology 





Abstract 

The understanding of biological systems is dependent on the study of the 

mechanisms that regulate gene expression. These mechanisms control when and for 

how long the information coded in a gene is used, and can act several of the steps in the 

gene expression process. In the present work, the step of interest is the transcription, 

where the DNA sequence of a gene is transformed into an RNA sequence, which will 

later be used to synthesise a protein. 

The knowledge about gene regulations is mainly available in the literature. 

Although there are currently multiple public biological databases, the majority of those 

contain data on biological entities but not explicitly on gene regulations. 

In order to provide the scientific community with data on Saccharomyces 

cerevisiae transcription regulations, a Portuguese public repository maintained by 

manual curation of scientific literature, named Yeastract, was created. 

Due to the increasing amount of papers published nowadays, the development of 

automatic tools that can help the curation process is of great importance. In the specific 

case of Yeastract, a tool was needed to help in the identification of papers describing 

gene regulations of S. cerevisiae. This tool was created with two components: one that 

identifies transcription factors in the papers’ abstracts and verifies if they describe gene 

regulations; the other that evaluates if the hypothetical regulations the paper contains 

correspond to valid regulations from a biological point of view. This second component 

was named GREAT, Gene Regulation EvAluation Tool, and is the goal of my work. 

The tool I developed uses data obtained exclusively from public biological 

databases to validate the regulations. That data is used in the evaluation of three aspects: 

the participation of a gene and a transcription factor in the same biological process; the 

existence of the transcription factor binding motif in the gene promoter region; the 

experimental method with which the regulation was identified. The output of these 

features is used by a machine learning method, either regression or model trees, to 

calculate a confidence score to attribute to each putative gene regulation. Papers 

containing regulations with high scores will be manually curated to extract the gene 

regulations. 

Although a first prototype of GREAT was implemented, from a biological point 

of view the results obtained are unsatisfactory. This prompted a detailed analysis of the 



data used, which uncovered important questions that need to be addressed in order to 

further improve this tool. 

 

Keywords: Gene Regulation, Transcription Regulation, Public Biological Databases, 

Gene Ontology 
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Chapter 1  

Introduction 

The understanding of biological systems is dependent on the study of the 

mechanisms that regulate gene expression. These mechanisms control when and for 

how long the information coded in a gene is used, and can act several of the steps in the 

gene expression process. In the present work, the step of interest is the transcription, 

where the DNA sequence of a gene is transformed into an RNA sequence, which will 

later be used to synthesise a protein. 

The regulation of the transcription is centered on the activity of regulatory 

proteins, called transcription factors, which bind to a region of the DNA sequence near 

the origin of the gene (the promoter region), enabling or inhibiting the binding of the 

protein responsible for the transcription process.  

Transcription factors recognize specific DNA motifs, present in the promoter 

region of the genes, thus identifying their targets. One gene can be regulated by several 

transcription factors; a transcription factor can regulate several genes; and two 

transcription factors can have the same binding motif. 

Since transcription factors are themselves encoded by genes, their expression is 

also subject to regulation including the interaction with other transcription factors. 

 

The knowledge of how genes and gene products interact with each other enables 

the creation of models that represent how the system in question (a specific biological 

process or a cell as a whole) behaves. These models can be represented as gene 

regulatory networks, which can vary greatly in structure but whose elemental 

components can be described as follows: the nodes represent genes (or their products) 

and the edges represent individual molecular reactions, such as protein interactions 

where the products of one gene affect those of another. 
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Amongst other aspects, the representation of gene regulations in gene regulatory 

networks promotes the uncovering of groups of genes that, being co-regulated, 

participate in the same biological process. 

 

As referred before, transcription factors themselves can be regulated by other 

transcription factors, which means that there are two types of regulations: direct and 

indirect. Direct regulations refer to gene-transcription factor pairs whose gene’s 

expression is regulated by the binding of the transcription factor considered in the pair; 

indirect regulations refer to pairs whose gene is bound by a transcription factor that is 

itself regulated by the transcription factor considered in the pair. 

There are two types of experimental methods that allow the identification of gene 

regulations: direct methods, with which direct regulations are identified; indirect 

methods, with which regulations are identified but without the possibility to 

differentiate direct from indirect. Direct methods verify the physical binding of the 

transcription factor to the gene promoter region, while indirect methods identify 

changes in the expression patterns of genes due to the influence of the transcription 

factors (i.e. if the action of a given transcription factor is somehow hampered, which 

genes will have their transcription affected, and how strongly). Although some of the 

regulations identified with indirect methods can be direct, they cannot be differentiated 

from the indirect ones. 

From the four methods described next, the first two are direct and the last two 

indirect: 

• ChIP (Chromatin ImmunoPrecipitation) – this technique is used to 

investigate interactions between DNA and proteins in vivo (such as 

transcription factors) [1,2].  

• ChIP-chip – this technique is an adaptation of ChIP to a genomic-wide 

scale: a microarray representative of an organism whole genome is incubated 

with a given TF, allowing for the identification of all of its gene targets [3]. 

• Microarrays – the utilization of microarrays enables the evaluation of gene 

expression changes in a large-scale, either whole genome or just a pathway 

[4].  
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• Proteomics – this approach encloses several methods, which allow the 

identification of the genes regulated by a given transcription factor through 

the study of the expression levels of the proteins they encode [5].  

 

The knowledge concerning gene regulations is available mainly from the 

literature, currently the preferred mean of scientific dissemination. Although a great 

amount of public biological databases exist nowadays, the great majority contain data 

on biological entities but not explicitly on gene regulations. 

In order to provide the scientific community with data on Saccharomyces 

cerevisiae transcription regulations, Yeastract [6] was created. This a Portuguese public 

repository maintained by literature manual curation, providing not only the data but also 

a set of bioinformatics tools to explore it. 

1.1  Motivation 

Since the scientific literature is growing at an ever increasing rate [7], its manual 

curation has become unfeasible. As such, the development of an automatic tool that can 

identify papers containing the sought information, in this case, S. cerevisiae gene 

regulations, is of great importance.  

Although text mining tools can be used to identify regulations, their development 

still depends on the domain knowledge provided by humans which is often difficult to 

translate into machine-usable information [8]. 

1.2  Objectives 

The goal of my work is to develop a tool, named GREAT (Gene Regulation 

Evaluation tool) that, given a list of abstracts and the transcription factors (TFs) 

identified in them, calculates a confidence score for each gene-TF pair in the paper that 

states if the pair corresponds to a true gene regulation. The papers containing pairs with 

high scores will be manually curated for the extraction of the gene regulations and 

subsequent storage in Yeastract database. 

The list of abstracts and TFs is obtained from the output of a text mining tool that 

verifies the existence of TFs in the papers abstracts, and if the sentences in which the 

TFs are found may describe a gene regulation. 
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The external data used in GREAT is obtained from scientific literature and public 

biological databases. 

These objectives are integrated in the project “ARN – Algorithms for the 

Identification of Genetic Regulatory Networks” (PTDC/EIA/67722/2006).  

1.3  Methodology 

The input of GREAT is a list of PubMed Identifiers (PubMed Id) of papers whose 

abstracts were identified as containing at least one TF (automatic identification with a 

text mining tool). 

For each paper, GREAT obtains the genes referenced therein from the 

Saccharomyces Genome Database (SGD) and pairs up all these genes with all the TFs 

identified in the text to represent all possible gene regulations that may be described in 

the paper. 

For each gene-TF pair obtained, a confidence score attribution is performed 

through the evaluation of the following three features: 

• Biological Potential – if a gene is regulated by a TF, they have to 

participate in the same biological process (data source: Gene Ontology 

Database (GO)). 

• Physical Potential – if a gene and a TF can physically bind, then it’s 

possible that the gene is regulated by that TF (data source: Yeastract 

database). 

• Experimental Evidence – if a direct method was used to evaluate the gene 

regulation, then the gene and the TF can physically bind (data source: SGD). 

These three features are used by a machine learning method to calculate, for each 

gene-TF pair, a confidence score in the interval [0,1] – the closer to 1, higher the 

confidence that the pair represents a regulation.  

1.4  Results 

A first prototype of GREAT was implemented. This prototype explores the data 

obtained from public biological databases, and attributes a score to each gene-TF pair 

identified, indicative of how likely that pair represents a gene transcription regulation. 

From the biological point of view, the results obtained with the training/evaluation 

data were unsatisfactory. A detailed analysis of the data revealed: the existence of 



 5 

problems related to, among other aspects, the insufficient availability of data (and/or 

data sources); directions that can be followed in order to solve the problems 

encountered. 

1.5  Document Organisation 

This document is organized in the following manner: 

• Chapter 2 – contains a brief explanation on the methods commonly used in 

the identification of gene transcription regulations in scientific literature. 

• Chapter 3 – describes Yeastract database and all the external databases 

used in the implementation of GREAT or identified as potentially useful for 

that purpose. 

• Chapter 4 – contains the details of the design and implementation of 

GREAT. 

• Chapter 5 – describes the results obtained and their analysis.  

• Chapter 6 – analyses the fulfilment of the proposed objectives and 

proposes some future work directives. 

• Attachment – contains examples of hypothetical false negative pairs. 
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Chapter 2  

Identification of gene transcription regulations in 

the literature 

The identification and extraction of gene regulations from text is a difficult task 

due to the intrinsic complexity of both the natural language and the domain 

terminology. A particular piece of information can be expressed in more than one 

sentence in a document (or abstract), sometimes implicitly, and using different 

synonymous expressions. Furthermore, in the scientific literature, particularly in 

Biology, a great amount of domain-specific terminology is used, with new terms and 

variations in constant formation. 

Techniques provided by natural language processing (NLP) are used to deal with 

human language, exploiting its multi-level regularities and constraints. Some of the 

levels considered include the following: 

• Words – the basic building block of language, a word comprehends a root 

and possibly prefixes and suffixes. 

• Syntax (or grammar) – controls how words are grouped into meaningful 

sentences, and its analysis can involve the tagging of each word to 

distinguish nouns from verbs, for instance. 

• Semantics – semantic relations capture the meaning of the words, 

independently of the syntax and the actual words used [7]. 

Dictionaries and ontologies provide an important assistance in the interpretation 

of scientific literature. Lexical databases, like WordNet [9,10], provide a more general 

knowledge of the English language (in which the majority of the scientific papers are 

written), and biomedical ontologies, like GO [11], provide domain-specific knowledge. 
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Another way to insert domain knowledge into a system is through the 

identification of specific words that are expected to be found, like transcription factors 

in gene transcription regulations. 

 

There are two approaches normally followed for the extraction of binary relation 

from biomedical text: symbolic pattern-based systems (rule systems) and feature-based 

statistical machine learning (ML) systems. Specifically for the extraction of gene 

transcription regulations, both type of systems need to perform the following steps: 

• Identification of pairs of gene references as the arguments of the relation 

(entity recognition). 

• Identification of the roles of the arguments in the relation (the regulator 

and the regulated). 

• Decision whether the entity pair constitutes a relation [12]. 

The referred types of systems employ NLP techniques to various extends, whether 

just for simpler tasks as sentence splitting and tokenization, or for the implementation of 

any of the steps described above. 

Both rule-based and ML-based approaches present advantages and disadvantages: 

while the development of rules allows an easier incorporation of semantic and 

biological constraints [13], the fact that they are fine-tuned for a specific application 

may render them less easily adaptable to changes in the application area; in the case of 

ML approaches, since they are trained with annotated corpora (either automatically or 

manually), the adaptation to changes is more easily accomplished [14], but the 

enforcement of constraints may be restricted (if they are not present in the training 

corpora, the system will not learn them). 

2.1 State-of-the-art systems 

Hahn et al. [14] describe one rule-based system and one ML-based. Both aim at 

the identification of gene transcription regulations from full texts, using the RegulonDB 

[15] as a gold standard: regulations identified by the systems and present in the database 

are considered true positives, regulations identified by the systems and not present in 

the database are considered false positives. 

Regarding the steps that these systems need to perform in order to extract the gene 

regulations, the rule-based system implements them in the following manner: 
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• Entity recognition – the system bases the identification of names on a list 

of possible names obtained from RegulonDB. 

• Relation identification – the system analyses the syntactic and semantic 

structures sentences through the utilization of patterns manually created for 

keywords related to gene regulation. 

• Relation evaluation – this step is based on the manual creation of inference 

rules that reflect the knowledge of the gene regulation domain and that, when 

applied to the patterns previously referred, allow the inference of implicit 

meanings in the text. 

In the case of the ML-based system, the referred steps are implemented in the 

following manner: 

• Entity recognition – the system uses a ML-based name tagger trained with 

publicly available corpora. 

• Relation identification and evaluation – the system employs Maximum 

Entropy models [16] considering text features, namely word features (the 

words before, after and between the recognised entities) and entity features 

(account for combinations of entity types).  

Table 1 contains the precision and recall obtained with both rule-based and ML-

based systems. The pairs identified as false positives in the ML-based system were 

analysed in detail and that 21% of them correspond to true regulations that are not 

present in the RegulonDB. 

 

Table 1. Evaluation statistics of the gene regulations’ identification systems described by Hahn [14] and 

Saric [13]. 

Hahn Evaluation 

Statistics Rule-based system ML-based system 
Saric 

Precision (%) 53 54 83-90
1
 

Recall (%) 5.6 10 20 

1 – Variations dependent on the biological organism considered. 

 

Saric et al. [13] describe a rule-based system whose purpose is to extract from 

biological abstracts information on which proteins are responsible for regulating the 

expression of genes, independently of the organism. 
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The accuracy of the relations was evaluated at the semantic rather than at the 

grammatical level: regulations identified by the system were considered true positives if 

they extracted the correct biological conclusion, independently of the analysis of the 

sentence from a linguistic point of view. 

The main steps performed by the system were implemented as follows: 

• Entity recognition – this step is performed using cascades of finite state 

rules [17]. The system uses a dictionary of synonymous names and 

identifiers of six eukaryotic model organisms, extended to include different 

orthographic variants of each name. 

• Relation identification – the system also recognizes verbs – of activation, 

repression, etc – to improve this specific step. The combination of syntactic 

and semantic properties of the relevant verbs allows their mapping to the 

relations recognized (up, down and unspecified regulation of expression). 

• Relation evaluation – this step is performed manually for all regulations 

extracted from the evaluation corpus using the TIGER Search visualization 

tool [18]. 

The precision and recall statistics obtained with this system are present in Table 1. 

2.2 GREAT 

GREAT is part of a two component system whose purpose is the identification of 

gene transcription regulations in abstracts, specifically for the model organism S. 

cerevisiae. The Yeastract database is used as a gold standard, with regulations identified 

by the system and present in the database being considered true positives and those not 

present in the database being considered false positives. Like the systems described 

above, this one also includes the following steps: 

• Entity recognition – TF names are identified by the first component of the 

system, using an ML-approach (88% of precision and 90% of recall); gene 

names are obtained by GREAT from a public database that contains the list 

of genes referenced in each paper. For the identification of the TFs the 

system uses a dictionary of names obtained from Yeastract and SGD.  

• Relation identification – all potential regulation relations present in each 

paper are considered through the pairwise combination of all TFs and all 

genes. 
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• Relation evaluation – this step is performed by GREAT using a ML 

algorithm (either regression or model trees) that calculates a confidence 

score to attribute to each relation. The algorithm combines the output of 

three features: physical potential, biological potential and experimental 

evidence. 

 

Among other aspects, text mining approaches are highly dependent on the 

efficient identification of the biological entities and on their correct semantic tagging. 

The gene regulations’ identification system in which GREAT is included only uses text-

mining in the identification of the TFs. All steps performed by GREAT take advantage 

of data already curated and publicly available.  

Since this system was designed specifically to help the manual curation process of 

Yeastract, some of the data sources used by GREAT are specific to S. cerevisiae. 

Nevertheless, the principles in which the regulations’ evaluation features were 

constructed upon are not species-specific. 

In GREAT, the domain knowledge is imbued in the definition and implementation 

of the evaluation features, and is straightforward in terms of machine utilization since 

the data does not need to be “interpreted” but only collected as specified. 

 

To the best of my knowledge, there are no gene regulations’ identification 

systems that use more than the text itself in the identification of the relations’ entities, or 

that use features based on data from databases instead of text features like GREAT 

does. 
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Chapter 3  

Yeastract and Related Resources 

The existence of databases where biological findings are maintained in a 

structured and standardized manner enables a faster and efficient retrieval, exchange 

and analysis of data. This is also true for data concerning gene transcription regulations, 

and was the reason behind the development of Yeastract – the YEAst Search for 

Transcriptional Regulators And Consensus Tracking database. 

 

This chapter provides a brief description of Yeastract and related databases, as 

well as of other databases relevant for the development of GREAT. 

3.1 Yeastract 

Yeastract (Figure 1) was created by INESC-ID [19] and the Biological Sciences 

Research Group from the Centro de Engenharia Biológica e Química - Instituto 

Superior Técnico [20]. 

This database contains regulatory associations between TFs and target genes in S. 

cerevisiae manually curated from more the literature. Table 2 contains information 

regarding the amount of data stored in Yeastract when it was created (2006) and 

currently (as of September 2008). It can be seen that the number of gene regulations 

increased almost three fold, accompanied by an increase of 28% in the number of 

bibliographic references. 
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Figure 1. Screenshot of Yeastract exemplifying a search query for the TFs that regulate the gene Yap1. 

 

 

Table 2. Volume of data stored in Yeastract database, on 2006 and 2008. 

 2006 Sept 2008 

Regulatory associations 12,346 34,518 

Bibliographic references 861 1,099 

DNA-binding motifs 257 284 

Unique binding motifs
1
 181 208 

1- This count refers to binding motifs specific for no more than one TF. 

 

 Some of the information used to populate Yeastract has been obtained from 

external databases: data concerning genes from SGD; data about gene annotations from 

GO; and data on nucleotide sequences (of coding regions and promoters) from 

Regulatory Sequence Analysis Tools [6]. 

The regulations contained in Yeastract are catalogued either as documented or 

potential. They are documented when the regulation was identified with methods that 

either analyze the binding of the TF to the target gene promoter region or the changes in 

the target gene expression in consequence to the transcription factor suppression; and 
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are potential when the only experimental evidence found was the transcription factor 

binding motif in promoter region of the target gene [6]. 

Yeastract includes tools for several tasks related with the stored regulatory 

associations: 

• Identification of complex motifs found to be over-represented in the 

promoter regions of co-regulated genes. 

• Comparison between DNA motifs and the TF binding sites described in 

the literature. 

• Identification of documented or potential transcription regulators of a 

given gene and of documented or potential genes regulated for a given TF. 

• Grouping of a list of genes (for instance a set of genes with similar 

expression profiles) based on their regulatory associations with known 

transcription factors [6]. 

3.2 Saccharomyces Genome Database 

Yeastract references the SGD for the obtention of further information about genes. 

SGD is a scientific database of the molecular biology and genetics of the yeast S. 

cerevisiae, housed in the Department of Genetics at the School of Medicine, Stanford 

University,. It contains the following data: 

• Sequences of yeast genes and proteins. 

• Descriptions and classifications of the biological roles, molecular 

functions, and subcellular localizations of genes and proteins. 

• Links to literature information. 

• Links to functional genomics datasets. 

• Tools for analysis and comparison of sequences [21]. 

The database curators maintain a list of categories that describe the kind of 

biological information that the papers may contain, and assign one or more of these 

categories to each paper during the curation process. The categories refer both to 

specific chromosomal features and to more general information about yeast. The 

following is a list of examples of both category types: 

• DNA/RNA Sequence Features - DNA sequence and sequence features 

(promoters, exons, introns, etc.), and RNA sequence features (splice sites, 

poly-A sites, etc.). 
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• Function/Process - the role played by the protein in the cell and function 

specifications (for example, what type of enzyme it is). 

• Evolution – refer to studies that discuss S. cerevisiae evolution in general, 

as well as evolutionary studies of specific S. cerevisiae genes. 

• Genomic expression study - includes microarray/chip/serial analysis of 

gene expression (SAGE) or other genome-wide techniques to assay gene 

expression on a genomic scale [21].  

 

This database is used in GREAT for the obtention of data referenced in the 

papers: the gene names, necessary for the identification of the putative regulations; and 

the method used for the identification of the regulations, which is used in the feature 

Experimental Evidence. 

3.3 Gene Ontology Database 

Yeastract also references the GO database for the obtention of further information 

concerning functional annotations of all genes. 

GO was created due to the need to describe and conceptualize biological entities 

in a non ambiguous manner, providing consistent functional annotations of gene 

products in a species-independent fashion. 

The GO project developed three structured controlled vocabularies, independent 

of each other, to describe gene products: Molecular Function, Biological Process and 

Cellular Component. A given gene product executes a certain biochemical action 

(Molecular Function) as a part of a biological process, in a specific cell compartment 

[11]. 
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GO is structured as a direct acyclic graph, which means that there exist multiple 

parent-child relationships between the terms that compose the ontology but that cycles 

cannot exist. The root term in the ontology is all (Figure 2), of which molecular 

function, biological process and cellular component are children. The ontology is 

structured in such a way that the terms nearer to the graph’s root provide less specific 

information about the gene products annotated with them; the terms’ specificity 

increases along a path, with the leaf terms (the last in the path) having the highest 

specificity. For a given term to be introduced in the ontology, it has to respect the true 

path rule that states that “the pathway from a child term all the way up to its top-level 

parent(s) must always be true” [22]. 

Figure 2. Exemplifying representation of the graph structure of GO. The following aspects can be seen: 

the root term all and its children molecular function, biological process, cellular component; two of the 

relationships types, is-a and part-of, as well as their directionality. 

 

The relations between terms can be expressed in three different manners: 

• is_a – refers to a class-subclass relationship. 

• part-of – refers to a part-whole relationship. 

• regulates – refers to a relationship where one process directly affects the 

manifestation of another process (or quality). 
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The terminology defined by GO, and with which the gene products are annotated, 

is used by GREAT for the obtention of data regarding the Biological Potential. This 

feature is based on the semantic similarity of the ontology terms shared by the gene and 

the transcription factor in a putative regulation. 

The following section contains a description of the concept ‘semantic similarity’ 

and of some approaches to calculate it. 

3.3.1 Semantic Similarity 

Semantic similarity measures provide a means to estimate how related in meaning 

two concepts are. Considering a measure that provides values in the interval [0,1], if the 

semantic similarity between two concepts is close to ‘1’ it signifies that they are highly 

related, and if it is close to ‘0’ it signifies that they are distantly related. 

It is possible to compare gene products with a semantic similarity measure using 

their ontology annotations. Several measures have been devised for use with GO since 

the comparison of gene products at a functional level is important for several 

applications, and GO is widely adopted by the scientific community. 

Many of the existent semantic similarity measures are based on the notion of 

information content (IC). The IC of a concept is based on the probability of usage of the 

concept in a corpus [23]: a term that occurs less often is considered more informative 

than one that occurs more often. Measures based on the IC rely on the notion that the 

similarity between two concepts can be given by the extent to which they share 

information [24]. 

3.4 Gene Ontology Annotation Database 

The Gene Ontology Annotation Database (GOA) is housed by the European 

Bioinformatics Institute and aims to provide high-quality GO annotations to proteins in 

the UniProt Knowledgebase (UniProtKB) and International Protein Index (IPI), being 

also a central dataset for other major multi-species databases [25].  

GOA become a member of the GO Consortium in 2001, and is responsible for the 

integration and release of GO annotations to the human, chicken and cow proteomes, 

although due to the multi-species nature of the UniProtKB it also assists in the curation 

of another 120,000 species [25]. 
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In GREAT, GOA is used as the source of annotation data, and as a basis to 

calculate the information content of GO terms [26]. 

3.5 Other Resources 

An extensive search was performed in order to identify databases containing the 

experimental methods referenced in papers in a format amenable to computation. Both 

generic S. cerevisiae databases and methodology databases were queried, and three 

relevant databases were found: SGD, ArrayExpress [27] and Gene Expression Omnibus 

[28,29]. Of these, SGD was chosen as it contains references to more methodologies and 

lists a higher number of papers annotated with them. 

In order to obtain the genes referenced in papers, the first choices were the Entrez-

PubMed and Entrez-Gene databases [29], which together contain this information. 

However, the SGD was later found to have a higher number of genes per paper listed 

than the Entrez databases. 

The following sections contain more information concerning the databases 

introduced here. 

3.5.1 Entrez Databases: PubMed, Gene and Gene 

Expression Omnibus 

Entrez is a retrieval system developed by NCBI with the purpose of performing 

text-based searches in their multiple databases at a time. 

Two of those databases are PubMed – a literature database containing abstracts 

in scientific fields as medicine and preclinical sciences - and Gene – a molecular 

database which information on genomes’ sequences and annotations [29]. 

Gene Expression Omnibus is a repository for heterogeneous data sets from high-

throughput gene expression and genomic hybridization experiments. It is also possible 

to query this repository with the Entrez system, through the GEO Profiles and GEO 

Datasets databases. 

3.5.2 ArrayExpress 

ArrayExpress, developed by EBI, is a public archive for functional genomics 

data obtained from array based platforms, including gene expression and chromatin 

immunoprecipitation experiments. 
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The three major goals of this repository are: to serve the scientific community as 

an archive for data supporting publications; to provide easy access to high-quality data 

in a standard format; and to facilitate the sharing of technical platforms, specifically 

microarray designs and experimental protocols [27]. 

 

All the databases described in this chapter are public and are either used in the 

implementation of GREAT or where identified as alternative data sources. Table 3 

contains the links for these databases. 

 

Table 3. Links for the databases described in Chapter 3. 

Yeastract http://www.yeastract.com/ 

Databases used in GREAT: 

SGD http://www.yeastgenome.org/ 

GO http://www.geneontology.org/ 

GOA http://www.ebi.ac.uk/GOA/ 

Alternative databases to use in GREAT: 

Entrez Databases http://www.ncbi.nlm.nih.gov/Database/ 

ArrayExpress http://www.ebi.ac.uk/microarray-as/ae/ 
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Chapter 4  

Design and Implementation 

GREAT is not a stand-alone tool: it is a component of a system whose purpose is 

to identify papers containing gene regulations so these can be manually extracted by 

Yeastract curators. 

The first section of this chapter describes briefly the text mining component that 

identifies the papers whose abstracts reference one or more TFs, providing the input to 

GREAT. The next sections describe in detail the implementation of GREAT. 

4.1 Identification of TFs in Scientific Literature 

The software for this component is being developed in Python and comprises four 

modules responsible for the following tasks [30]: 

• Obtention and storage of abstracts. 

• Identification of TFs in the abstracts. 

• Identification and score attribution to selected text features (used to build a 

statistical model). 

• Classification of the abstracts as relevant or non-relevant for the purpose 

of gene regulations, using libbow’s implementation of Support Vector 

Machines (SVM) [31]. 

All abstracts are obtained from the literature database PubMed and, for training 

purposes, were selected as follows: 

• Positive set - abstracts of papers used to populate Yeastract database, 

hence known to contain one or more gene regulations. 

• Negative set – since a curated set of negative instances (papers not 

containing gene regulations) does not exist, a set abstracts of papers referring 

only the Saccharomyces genus was used a pseudo-negative set. 



 22 

 

The rationale behind the design of this component was that a sentence referring a 

TF may also refer a gene regulation in which it participates. Evidently this is not always 

true, but the module that identifies and scores text features was designed precisely to 

evaluate if the words around a TF can be interpreted as a description of a gene 

regulation. 

Each sentence containing a TF is considered an instance, of which the text 

features are used to train the SVM. Sentences containing a TF and a possible description 

of a gene regulation are considered as positive, the remaining sentences are considered 

as negative.  

4.2 GREAT Design 

From the output file of the SVM are selected and extracted the instances 

identifying the PubMed Ids of the papers to be further analysed by GREAT, as well as 

the TFs present in the abstract of each of those papers. 

The genes referenced in each paper are obtained from a public biological database 

and a pairwise combination of the genes with the TFs is performed, in order to identify 

all the potential gene regulations described in the paper. 

Since not all of the identified gene-TF pairs correspond to actual regulations, a 

confidence score is attributed to each pair, based on the output of the following features: 

• Biological Potential – if a gene is regulated by a TF, they are expected to 

participate in the same biological processes. This feature provides a measure 

of how similar the biological processes are for a given pair (continuous 

output). 

• Physical Potential – the transcription of a gene can only be directly 

regulated by a TF if that TF binds to the promoter region of the gene. This 

feature verifies if a binding motif for the TF exists in the promoter region of 

the gene, and therefore if the physical binding is possible (binary output). 

• Experimental Evidence – regulations identified with direct experimental 

methods are necessarily direct regulations, but the same is not true for those 

identified with indirect methods (which have a higher likelihood of not being 

true (direct) regulations). This feature determines whether the method used 

to identify the regulation is direct or indirect (binary output). 
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The final confidence score is calculated with a machine learning method that 

combines the outputs of the previous features. The requirements for this method were 

two-fold: capability to produce a numeric output and simplicity so that it can be 

expeditiously implemented and interpreted). According to these requirements, 

regression trees [32] and model tress [33,34] were the first choices since they produce 

the desired output; their implementation requires the manipulation of few parameters; 

and the logical growth of a tree is based on linear divisions of the space of solutions, 

providing an easy-to-understand representation of the partitions made by the algorithm. 

4.3 GREAT Implementation 

4.3.1 Databases 

Two databases were used in the development of this work: ProteInOn, which 

integrates the GO and GOA databases; and Yeastract. 

Yeastract (version from September 2008) was locally installed using MySQL and 

was named ARN. Two tables were added to this database (Figure 3), exclusively for the 

implementation of GREAT: one containing gene data (common name, systematic name 

and a protein identifier from ProteInOn - protId) and the other containing data on the 

gene-TF pairs (PubMed Id, gene and TF internal identifiers, output for each one of the 

features described above and confidence score).  

 

sgd_gene gene_TF_pair 

common_name 

systematic_name 

protId 

 

PubMed Id 

gene 

TF 

biological_potential 

physical_potential 

experimental_evidence 

confidence_score 

Figure 3. UML schema of the tables created for the implementation of GREAT, sgd_gene and 

gene_TF_pair. The attribute ‘protId’ stored in the table sgd_gene is an external identifier obtained from 

the table Prot_Info in the database ProteInOn. 

The tables containing the data about the genes and the pairs are duplicated in 

order to accommodate training data and new data (to be classified by the trained tool). 

gene participates in  

1 * 

TF participates in  

1 * 
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The only difference between them is that the training table for the pairs contains a field 

for the type of instance (positive or negative), instead of the confidence score. 

4.3.2 GREAT building blocks 

This evaluation tool is composed of a total of six Perl modules, five of which are 

common to training and new data and one (‘DefineTrainingSets’) is specific for training 

data (Figure 4). 

 

 

DefineTrainingSets 

PrepareInput 

GetDataFromSGD 

CheckBiologicalPotential 

CheckPhysicalPotential 

CreateWekaInput 

Training 

Data 

New 

Data 

 

Figure 4. Fluxogram representing the workflow of GREAT. The modules used both by training and new 

(unclassified) data are depicted in black. Training data is depicted in blue, with the representation of its 

entrance into the workflow and its passage through the module ‘DefineTrainingSets’. New (unclassified) 

data is depicted in green, with the representation of its entrance into the workflow and its direct course 

from the module ‘GetDataFromSGD’ to ‘CheckBiologicalPotential’. 

 

The first step in GREAT is the obtention of its input from the text mining tool 

output. While training data is obtained from the SVM output obtained with training 

data, new data is obtained from the SVM output obtained with unclassified abstracts. As 
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mentioned in 4.1, the data used to train the SVM includes sentences with TFs identified 

in the abstracts of papers used to populate Yeastract. 

In the case of the obtention of the training data for GREAT, and after the 

identification of the SVM settings that produced the best results, a total of 50 runs were 

performed using 60% of the instances for training and 40% for testing. This resulted in 

an output file of the SVM containing a compilation of all instances used to test the 

models learned, and their final classification (either positive – sentences containing a TF 

and a possible description of a gene regulation – or negative). Since the instances are 

used more than once, only those classified as positive in every run were selected as 

potentially describing a gene regulation. 

In the case of the obtention of new data for GREAT, only one run of the SVM is 

to be performed for each batch of unclassified abstracts, and the instances selected are 

those whose final classification is positive.  

The module ‘PrepareInput’ was designed to produce the input of GREAT. For 

each instance selected from the output of the SVM, the module performs the extraction 

of the PubMed Id of the paper to which the instance belongs and of the TFs it refers. 

 

The second step includes the obtention of the genes referenced in the papers for 

further analysis and the Experimental Evidence feature. This is performed by the 

module named ‘GetDataFromSGD’, which accesses a file downloadable by ftp from 

SGD [35]. Since these files are continually updated, they have to be periodically 

downloaded (the module receives the new file name as a parameter). The version used 

during the development of this work is from February 2009. 

The file from SGD contains literature information that includes the following: 

PubMed Id, the bibliographic reference, the gene names (common and systematic), and 

a list of categories describing the biological information contained in the paper. 

The gene names are directly stored in the local database, ARN, as well as the 

gene-TF pairs obtained with the pairwise combination of genes with TFs. 

From this point on, the actions performed by the modules of GREAT are centered 

in the gene-TFs pairs. 

The Experimental Evidence is obtained from the list of categories that describe 

the biological information. Amongst the existent categories, three refer to methods used 

for the identification of gene regulations: “Genomic co-immunoprecipitation study” 

(includes ChIP and ChIP-chip assays – direct methods), “Genomic expression study” 
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(microarrays – indirect methods), “Large-scale protein detection” (proteomics – indirect 

method). The Experimental Evidence is a binary feature: gene-TF pairs from papers 

describing a direct method receive the value 1; pairs from papers describing an indirect 

method receive the value -1. The feature’s value is a missing value when no method is 

identified. 

 

The module ‘DefineTrainingSets’, the only specific for training data, identifies 

each gene-TF pair as a positive or negative instance, for the purpose of training 

GREAT. Positive instances, labelled 1, correspond to pairs identified by GREAT that 

are present in Yeastract as documented regulations (experimentally confirmed); 

negative instances, labelled 0, correspond to pairs identified by GREAT but that are not 

present in Yeastract. 

 

The module ‘CheckBiologicalPotential’ performs the calculation of the Biological 

Potential. This potential is a value in the interval [0,1] and corresponds to the semantic 

similarity between a TF and the gene it potentially regulates. This similarity is 

calculated using the GO Biological Process terms with which the TF and gene are 

annotated in the GOA database (both manually curated and electronic annotations are 

considered). 

The semantic similarity measure used is IC-based and is an extension of Resnik's 

measure [24] for comparing genes or proteins (rather than terms). Starting with the list 

of all the terms annotated (directly or by inheritance) to the gene and the TF, the terms 

they share are identified and the term with highest IC is selected from these [36]. 

Therefore, the Biological Potential score is the IC of the most informative (or specific) 

term shared by the TF and the gene. The higher this score, the more specific is the 

biological process shared by the TF and gene, and the more likely it is that they are 

related. 

The selection of this specific semantic similarity measure was based on the fact 

that existent comparative studies consider it as the most successful in terms of 

protein/protein interaction prediction and/or validation [37] 

 

The Physical Potential is obtained in the module ‘CheckPhysicalPotential’. First it 

is verified if the gene-TF pair is present in a list of potential regulations from Yeastract. 

A regulation is potential when the only experimental evidence found was the presence 
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of the TF binding motif in the gene promoter region. Yeastract stores the information of 

what genes contain which TF binding motifs in this list, but not for regulations already 

documented. 

Secondly, if the pair is not found in the referred list, a match is performed 

between the gene promoter region and the TF binding motif. This match consists in a 

simple verification if the promoter sequence (a string of letters) contains the TF motif (a 

substring of letters). If the TF can physically bind the gene the Physical Potential of the 

pair is 1 otherwise it is -1. 

The promoter sequences of the genes and the TF binding motifs are obtained from 

Yeastract. For some TFs the motifs contain degenerate nucleotides (that is, symbols that 

represent a position in a DNA sequence that can be one of multiple nucleotides), but 

only those with non-degenerate nucleotides are used to perform the match. 

 

The last module, ‘CreateWekaInput’, accesses the data stored in the local database 

ARN and writes a file in a specific format (arff) to be used by Weka [38]. This is a 

collection of machine learning algorithms for data mining tasks that includes an 

algorithm that can create both model and regression trees, the M5’ [34]. 

Confidence score calculation 

As explained before, the algorithm M5’, implemented in Weka, creates model and 

regression trees. Weka presents this possibility as a definable parameter, among the 

following: minimum number of instances allowed in a leaf node and use of pruning. 

In terms of applicability, both model and regression trees calculate a numeric 

output, with the difference between them residing in the format of that output. While 

regression trees store in each leaf a class value that represents the average value of 

instances that reach that leaf, model trees store a linear regression model that predicts 

the class value of the instances that reach that leaf [38]. 

The confidence score was only calculated for the training data. The results 

obtained were not suitable to decide which type of tree to use, despite the variations of 

the algorithm parameters tested. This question will be addressed in detail in the 

following chapter. 
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Chapter 5  

Results and Discussion 

This chapter describes three types of results: 

• Those obtained from the training of regression and model trees using the 

algorithm M5’. 

• Those obtained from the analysis of the data used to train the trees. 

• Contributions of this work to the scientific community. 

5.1 Regression and Model Trees 

The data used to train and test the trees was the same, performing a 10-fold cross-

validation. The variation of the minimum number of instances accepted in a leaf was 

tested, as was the use of pruning. When considering 4 instances in a leaf, the values 

presented correspond to three runs, and when considering 8 and 16 leaves, they 

correspond to only one run. 

 

Table 4. Statistics of the results obtained in the implementation of the regression tree, when performing 

10-fold cross-validation with the training data. Number of instances: the minimum number of instances in 

each leaf; RMSE: root mean squared error; CC: correlation coefficient; Leaves: number of leaves in the 

final tree. The values indicated correspond to the arithmetic mean of 3 runs when using 4 instances, and 

to a single run when using 8 and 16 instances. 

Number of Instances RMSE (%) CC Leaves 

Pruning 45,5 0.4136 22 
4 Instances 

No Pruning 44,0 0.4795 133 

8 Instances 45, 6 0.4120 22 

16 Instances 45,7 0.4053 22 
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The statistics considered for comparing the performances of the trees are the root 

mean squared mean (RMSE), which is referred by Witten and Frank (2005) as a good 

criterion for regression, and the correlation coefficient, that measures the statistical 

correlation between the predicted and actual values of the instances. It is expected of a 

well trained tree (or any other method) that the error be has low as possible and the 

coefficient correlation as closer to ‘1’ as possible. 

As can be seen in Table 4 and Table 5, the error values obtained for both methods 

are around 40-50% and the correlation values are below 0.5. Furthermore, neither of the 

statistics appears to be visibly influenced by the variations of the parameters, with the 

exception of pruning. When no pruning was performed, the RMSE decreased slightly 

and the correlation coefficient increased. However, due to the high number of leaves in 

the resultant tree which decrease its interpretability and due to the risk of overfitting, the 

absence of pruning is not desirable.  

Since the obtained values of RMSE and correlation are not the expected for a 

good trained tree, it was not possible to choose one of the methods, regression or model 

trees, for the calculation of the confidence score. In order to verify if the results 

obtained are due to the inadequacy of the models tested or due to the data used to train 

them, a further analysis of the training data was performed. 

 

Table 5. Statistics of the results obtained in the implementation of the model tree, when performing 10-

fold cross-validation with the training data. Number of instances: the minimum number of instances in 

each leaf; RMSE: root mean squared error; CC: correlation coefficient; Leaves: number of leaves in the 

final tree. The values indicated correspond to the arithmetic mean of three runs when using 4 instances, 

and to a single run when using 8 and 16 instances. 

Number of Instances RMSE (%) CC Leaves 

Pruning 45,3 0.4244 20 
4 Instances 

No Pruning 43, 6 0.4929 133 

8 Instances 42,2 0.4534 20 

16 Instances 45,4 0.4188 20 

5.2 Training Data Analysis 

From the text mining output obtained with training data, GREAT selected 205 

papers whose abstracts contain at least one TF, and that potentially describe a gene 
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regulation. For 195 of these papers, the names of the genes referenced therein were 

obtained. Table 6 shows the resulting number of genes, TFs and gene-TF pairs. 

The pairs identified as ‘Positive’ correspond to gene regulations existent in 

Yeastract and those identified as ‘Negative’ correspond to regulations identified by 

GREAT, but not existent in Yeastract. It is important to have in mind that some of the 

pairs considered ‘Negative’ can be false negatives. This is possible since the negative 

training set used in the text mining tool might contain abstracts that contain regulations, 

but whose papers were never curated by Yeastract curators. This is one aspect that can 

condition the performance of GREAT, due to the existence of miss-classified training 

data. 

 

Table 6. Data statistics for GREAT: number of regulation pairs (with indication of the number of positive 

and negative instances), total number of genes, number of TFs. 

Gene-TF pairs 

Positive Negative Total 

Genes 

(including TFs) 
TFs 

916 918 1834 635 90 

 

Table 7 shows the characterization of the training data in terms of the three 

features: Biological Potential average, Physical Potential and Experimental Evidence 

frequencies, and missing values for each feature. 

 

Table 7. Training data descriptors. For each set of pairs, positive and negative: Biological Potential 

average, Physical Potential and Experimental Evidence frequencies counts; missing values percentage. 

Feature 
Positive  

Pairs 

Negative 

Pairs 

Missing values 

(%) 

Average 0.31 0.36 Biological 

Potential Std. Deviation 0.25 0.24 
3.9 

Yes 287 116 Physical 

Potential No 298 466 
36 

Direct 0 0 Experimental 

Evidence Indirect 272 176 
76 

Biological Potential 

The Biological Potential measures the similarity between the biological processes 

in which the gene and TF in a given pair participate. Considering that a TF is likely to 
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be involved in some of the biological processes in which the gene it regulates is 

involved, positive pairs were expected to have higher Biological Potential values than 

negative pairs. However, this was not true for the training data, where the negative pairs 

had a slightly higher average Biological Potential (Table 7). 

Since the average values are relatively low (below 0.5) for both positive and 

negative pairs, it is possible that most genes and TFs are annotated with not very 

specific terms, and thus positive and negative pairs are difficult to distinguish using a 

semantic similarity measure. However, it is also possible that the semantic similarity 

measure used is not the most adequate for this data, and that further information could 

be extracted with an alternative measure. 

The possible existence of false negatives in the training set may also be a factor 

behind the similar Biological Potential values obtained for the positive and negative 

pairs, since the false negatives would be expected to have Biological Potential values as 

high as those observed for the positives. The pair defined by the gene  

For this potential the missing values are negligible (3.9%). 

Physical Potential 

Since the Physical Potential indicates whether a given TF can physically bind to a 

gene (a prerequisite of a direct regulation) it is expected that the majority of positive 

pairs have a positive potential and that the majority of the negative have a negative 

potential. However, as can be seen in Table 7, for the positive pairs there are a similar 

number of cases with positive potential and cases with negative potential. There are two 

possible explanations for the existence of so many positive pairs with no physical 

potential: either the gene is indirectly regulated by the TF, and so the physical binding 

does not occur; or the method used to evaluate the existence of the transcription factor 

binding motif in the gene does not work as desired. This last explanation is based on the 

fact that binding motifs containing degenerate nucleotides have not been considered in 

the match between binding motif and promoter region. As such, the identification of the 

true number of pairs with positive potential may be diminished. 

In the case of the negative set, only 25% of the pairs have a positive potential. 

This percentage might be due to the existence of false negative pairs, or to the fact that 

same that the existence of the binding motif in the promoter of the gene does not 

determine the validity of the regulation itself. 
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For this potential, the missing values are considerable (36%). They correspond to 

pairs for which the promoter sequence of the gene, the TF binding motif, or both did not 

exist in Yeastract. 

Experimental Evidence 

This feature was the most problematic to implement due to the difficulty in 

finding databases that referenced the methods present in papers in a manner suitable for 

computational extraction. 

The analysis of the training data allowed the identification of two major problems 

associated with the Experimental Evidence: 

• There are no gene-TF pairs identified with direct methods, only with 

indirect ones. 

• The missing values amount to 76% of the pairs. 

The inexistence of direct methods represents an important drawback for a training 

dataset, and implies that this feature has no ability to separate negative from positive 

pairs. 

Given the limitations encountered for this feature, it is not possible to draw any 

hypothesis about the influence of the possible existence of false negative pairs. 

The missing values correspond to pairs for which it was not possible to obtain the 

method from the SGD database. 

 

Table 8. Example cases of false negative pairs. For both pairs the values of the features are indicative of a 

regulation.  

Gene TF 
Physical 

Potential 

Biological 

Potential 

Experimental 

Evidence 
PubMed Id 

Rtg3 Rtg1 1 0.881557 Missing value 17351075 

Msn4 Msn2 1 0.908332 Missing value 10409737 

 

In Table 8 are presented two examples of gene-TF pairs classified as negative 

pairs, but whose features indicate that they might correspond to a true regulation. From 

the names of the papers to which both pairs correspond it is expected that the papers 

contain descriptions of gene regulations: 

• PubMed Id 17351075 – “Multiple basic helix-loop-helix proteins regulate 

expression of the ENO1 gene of Saccharomyces cerevisiae”. 
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• PubMed Id 10409737 – “Osmotic stress-induced gene expression in 

Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor 

Hot1p”. 

More examples of cases similar to these can be seen in the Attachment. 

5.3 Contributions of this work to the scientific community 

The development of the present work resulted in the implementation of a first 

prototype of GREAT. The following functionalities of this prototype are fully 

implemented: 

• Module ‘GetDataFromSGD’ - Browse of a SGD file containing literature 

information (specific SGD file format); identification of contents using the 

PubMed Id and extraction of the gene names and experimental evidence 

labels. 

• Module ‘CheckBiologicalPotential’ – Calculation of the semantic 

similarity between two gene products. This module is optimized to use with 

ProteInOn, and depends on data previously obtained in the module 

‘GetDataFromSGD’. 

• Module ‘CheckPhysicalPotential’ – Evaluation of the presence of a TF 

binding motif in the promoter region of a gene. This module is optimized to 

use with Yeastract, and depends on data previously obtained in the module 

‘GetDataFromSGD’. 

Although these modules were implemented sequentially and are better suited to be 

used as described in section 4.3, only minor changes would be required in order to 

embed them into another system. 

 

The features obtained by GREAT for the positive training regulations are stored in 

a relational database and can be used for other applications, since they correspond to 

manually curated regulations from Yeastract. 

 

The analysis of the training data allowed the identification of implementation 

aspects of this first prototype that are not working as desired (since the results obtained 

are unsatisfactory from the biological point of view), but also of possible solutions to 

this problems.  
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Chapter 6  

Conclusions and Future Work 

Yeastract was created to provide the S. cerevisiae scientific community with a 

public database of transcription regulatory associations. The data with which the 

database is populated is obtained by human curators that identify the papers describing 

the regulations and then read them to extract that information. 

With the astounding rate at which papers are being published, it is impossible to 

depend solely in a manual curation process to keep Yeastract up to date. This has 

prompted the development of automatic tools to help in this process, wherein GREAT is 

inserted. 

GREAT is part of a system whose purpose consists in the identification of papers 

describing S. cerevisiae gene regulations, solely using public datasources: the papers’ 

abstracts and public biological databases. The first component of this system uses text-

mining to identify the papers sought through the identification of transcription factors in 

theirs abstracts and the evaluation of the words around the transcription factor, verifying 

if they are likely to describe a regulation. The second component is GREAT, which 

receives the list of papers selected by the first component, and that, after obtaining the 

genes referred in the paper from Saccharomyces Genome Database, evaluates if any of 

the gene-TF pairs found corresponds to a true regulation. The evaluation results in the 

assignment of a confidence score to each pair, and those papers that contain putative 

regulations with high scores will be manually curated to extract the regulations and 

store them in Yeastract. The score attribution is based on three features: Biological 

Potential, Physical Potential and Experimental Evidence. These depend on data 

obtained from public biological databases – respectively Gene Ontology, Yeastract and 

Saccharomyces Genome Database. The output of all features is combined with a 

machine learning method, either a regression or a model tree, which calculates the 

confidence score. 
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After the obtention of a training dataset, with positive gene-TF pairs 

corresponding to regulations identified in Yeastract and negative pairs corresponding to 

relations not identified in Yeastract, that data was used to train both types of trees, 

regression and model. Due to the low quality of the results obtained, it is not yet clear 

which of the trees, if any, might be best suited for this type of data. These results, 

obtained for both the methods, and presenting no visible differences upon parameters 

variations, prompted the need to analyse the data in detail. 

It is important to bear in mind that the pairs considered as negative might include 

false negatives, since the negative dataset used to train the text mining tool might 

include abstracts containing regulations not extract by Yeastract curators. 

The analysis performed over the training data revealed the following issues 

concerning the three features, respectively Biological Potential, Physical Potential and 

Experimental Evidence: 

• The similarity between the biological processes in which the gene and the 

TF participate is, in average, relatively low (below 0.5, in a scale between 0 

and 1). Since this happens for positive and negative pairs alike, the 

utilization of a semantic measure to help in their separation is difficult. This 

might be due to the fact that the biological entities are annotated with not 

very specific terms or that the semantic similarity measure used is not the 

best suited. 

Since the average values of positive and negative pairs is very similar, it is 

possible that the existence of false negatives might be responsible for higher 

average values for negative pairs. 

• This means that very little information can be retrieved from these values, 

hampering the capacity to infer if the gene and the transcription factor really 

participate in the same biological process and, consequently, if the regulation 

of the gene by that transcription factor is biologically possible. 

The low specificity may be due to an insufficient annotation of the 

entities or due to the inadequacy of the semantic similarity measure used. 

• About 50% of the pairs identified in Yeastract as documented regulations 

have a negative Physical Potential. The physical binding of the TF to the 

gene is imperative in direct regulations, and this information is used to assist 

in the validation of a gene-transcription factor pair as a true regulation. It is 

possible that the match process is not identifying all possible pairs with a 
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positive potential as a consequence of the use of only binding motifs that do 

not contain degenerate bases. 

• The number of gene-transcription factor pairs for which no experimental 

methods was identified is as high as 76%. In addition, for the remainder pairs 

the method identified is indirect. This renders this feature useless for the 

pairs’ evaluation. 

In order to deal with the problems exposed by the data analysis, there are some 

aspects in the implementation of GREAT that might be differently approached: 

• The papers that contain pairs identified by GREAT and considered 

negative regulations should be analysed to verify if the pairs correspond to 

true negatives or false negatives.   

• The genes referenced in the papers may be obtained from the 

Saccharomyces Genome Database and also from the Entrez-Pubmed and 

Entrez-Gene databases (aiming not only at a higher number of genes per 

paper but also at a higher number of papers annotated). 

• The Biological Potential can be calculated using a different semantic 

similarity measure, one that, for instance, considers more than just one 

shared term, providing a more global perspective of the similarity between 

the annotations of the genes and TFs. 

• The Physical Potential can be evaluated considering transcription factors’ 

binding motifs containing degenerate bases and, when necessary, databases 

other than Yeastract may be used to obtain the promoter sequences and the 

transcription factors binding motifs. 

• The Experimental Evidence can be obtained from the Saccharomyces 

Genome Database and also from Gene Expression Omnibus and 

ArrayExpress. Although the first contains more methods and a higher 

number of papers annotated with the methods, the combined use of all three 

databases may decrease the missing values. 

Not only the currently existent features of GREAT may be manipulated, but also 

new features may be considered: 

• It is possible to verify in the abstract if a gene name is in the vicinity of a 

transcription factor (using the text features with which the text mining tool 

evaluates if a sentence describes a regulation). 
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• Knowing that a gene in a pair participates in the same biological process 

as another gene that is known to be regulated by the transcription factor 

considered in the pair, it is conceivable that the pair may correspond to a 

regulation. 

 

The contributions of the present work can be resumed as follows: successful 

implementation of a first prototype of GREAT, which incorporates fully implemented 

functionalities related with the obtention and utilization of data from external sources; 

the data compiled for the positive regulations is ready to use (being based on manually 

curated data) and is stored in a relational database; the analysis of the data used to train 

the prototype provided relevant information on the limitations of the system and 

possible solutions for these limitations. 

Although the results obtained with the regression and model trees were not 

satisfactory from the biological point of view, the conclusions drawn about the training 

data analysis suggest that the features considered in the initial design are adequate to 

solve the problem. However, their implementation was ultimately hindered by lack of 

information: the semantic similarity measure used to obtain the Biological Potential 

does not extract enough information from the data; the binding motifs using degenerate 

bases were not used to obtain the Physical Potential; there are not databases containing 

enough information on the methods referred in the papers. 

From the aspects proposed to improve GREAT, those related with the 

Experimental Evidence present the greatest challenge. This is due to the fact that, 

despite the extensive search performed, the databases containing this information have it 

for few papers. However, it is possible that the introduction of new features, such as 

those proposed above will render the use of the Experimental Evidence unnecessary. 
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Attachment 

Hypothetical false negative pairs 

Query with which these examples were obtained: 

 

SELECT g.common_name, t.common_name, p.biological_potential, 

p.physical_potential, p.experimental_evidence, p.pubmed_id 

FROM sgd_gene_training g, sgd_gene_training t, gene_trans_factor_pair_training p 

WHERE g.gene_id=p.gene 

AND t.gene_id=p.trans_factor AND doc_regulation = 0 AND physical_potential = 1 

AND biological_potential > 0.5; 
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Biological Physical Experimental

 Potential  Potential  Evidence

SKN7 Yap1 0.8478 1 0 10930459

RTG1 Rtg3 0.881557 1 0 17351075

MSN2 Msn4 0.908332 1 0 10411744

PBS2 MSN2 0.559752 1 0 14699125

HOG1 MSN2 0.559752 1 0 14699125

TYE7 GCR1 0.753024 1 0 15789351

MSN2 Msn4 0.908332 1 0 10409737

MSN1 Msn4 0.559752 1 0 10409737

HOG1 Msn4 0.559752 1 0 10409737

MSN1 MSN2 0.559752 1 0 10409737

HOG1 MSN2 0.559752 1 0 10409737

MSN2 Msn4 0.908332 1 0 10407268

Rtg3 RTG1 0.881557 1 0 10848632

RTG2 RTG1 0.881557 1 0 10848632

SKN7 Msn4 0.559752 1 0 11821410

MSN2 Msn4 0.908332 1 0 11821410

RAS1 Msn4 0.721201 1 0 11821410

RAS2 Msn4 0.721201 1 0 11821410

SKN7 MSN2 0.559752 1 0 11821410

RAS1 MSN2 0.721201 1 0 11821410

RAS2 MSN2 0.721201 1 0 11821410

SOK2 NRG1 0.725206 1 0 15466424

PHD1 NRG1 0.725206 1 0 15466424

KSS1 NRG1 0.744205 1 0 15466424

TEC1 NRG1 0.744205 1 0 15466424

RAS2 NRG1 0.725206 1 0 15466424

SKN7 Yap1 0.8478 1 0 16862604

SNF2 Gcn4 0.630144 1 0 12665580

SKN7 Yap1 0.8478 1 0 16313629

MSN2 Msn4 0.908332 1 -1 11102521

MSN2 Msn4 0.908332 1 0 10641036

RTG1 Rtg3 0.881557 1 0 12393187

RTG1 Rtg3 0.881557 1 0 10509019

RTG2 Rtg3 0.881557 1 0 10509019

Rtg3 RTG1 0.881557 1 0 10509019

RTG2 RTG1 0.881557 1 0 10509019

MSN2 Msn4 0.908332 1 0 9756934

RAS2 Msn4 0.721201 1 0 9756934

RAS2 MSN2 0.721201 1 0 9756934

MSN2 Msn4 0.908332 1 0 14685262

MSN2 Msn4 0.908332 1 0 15922872

MSN2 Msn4 0.908332 1 -1 10722658

HOG1 Msn4 0.559752 1 -1 10722658

HOG1 MSN2 0.559752 1 -1 10722658

MSN2 Msn4 0.908332 1 0 9649426

SKN7 Yap1 0.8478 1 0 12614847

HOG1 SKN7 0.559752 1 0 12614847

SKN7 Msn4 0.559752 1 0 12614847

MSN2 Msn4 0.908332 1 0 12614847

RAS1 Msn4 0.721201 1 0 12614847

RAS2 Msn4 0.721201 1 0 12614847

HOG1 Msn4 0.559752 1 0 12614847

SKN7 MSN2 0.559752 1 0 12614847

RAS1 MSN2 0.721201 1 0 12614847

RAS2 MSN2 0.721201 1 0 12614847

HOG1 MSN2 0.559752 1 0 12614847

HOG1 SKN7 0.559752 1 0 9843501

MSN2 Msn4 0.908332 1 0 10048026

MSN2 Msn4 0.908332 1 0 11827753

MSN2 Msn4 0.908332 1 0 11260469
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